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Abstract

We study the fix point components of the big torus action on the moduli space of sta-
ble maps into a smooth projective toric variety, and apply Graber and Pandharipande’s
localisation formula for the virtual fundamental class to obtain an explicit formula for the
Gromov—-Witten invariants of toric varieties. As an application we show how to derive the
Gromov-Witten invariants and the quantum cohomology of P(Op2(2) @ 1).

Résumé
Nous étudions les composantes des points fixes de ’action du grand tore sur ’espace de
modules des applications stables dans des variétés toriques projectives lisses afin d’utiliser
la formule de localisation de la classe virtuelle fondamentale démontrée par GRABER et
PANDHARIPANDE et d’en déduire une formule explicite pour les invariants de Gromov-Witten
des variétés toriques. Comme exemple d’application nous montrons comment en déduire les
invariants de Gromov-Witten et la cohomologie quantique de la variété P(Op2(2) @ 1).

Zusammenfassung

Wir studieren die Fixpunktkomponenten der Wirkung des grofien Toruses auf dem Mod-
ulraum stabiler Abbildungen in eine projektive torische Mannigfaltigkeit, um mit Hilfe der
Lokalisierungsformel von Graber und Pandharipande fiir virtuelle Fundamentalklassen eine
explizite Formel zur Berechnung der Gromov-Witten—Invarianten fiir projektive torische
Mannigfaltigkeiten herzuleiten. Als Anwendung und Beispiel zeigen wir, wie damit die Gro-
mov-Witten-Invarianten und die Quantenkohomologie des Raumes P(Opz(2) @ 1) hergeleitet
werden koénnen.






Nicht die Erkenntnis gehért
zum Wesen der Dinge,
sondern der Irrtum.

Friedrich Nietzsche
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I. Introduction en francais 9

I Introduction en francgais

Le but de cette thése est de démontrer une formule pour le calcul des invariants de Gromov—
Witten des variétés toriques symplectiques.

Invariants de Gromov—Witten

Les invariants de Gromov—Witten et ’anneau de cohomologie quantique, étudiés pour la
premiere fois par WITTEN en physique théorique ([Wit91]), expriment essentiellement la méme
donnée symplecto-topologique'. Ce théoricien a en fait considéré la cohomologie quantique
comme exemple d’un o—modele topologique dans lequel, ce qu’on appelle aujourd’hui les in-
variants de Gromov-Witten, sont au fond des fonctions de correlation. D’ou I'interprétation que
ces invariants comptent certaines courbes pseudo—holomorphes dans une variété symplectique.

Soient (M,w) une variété symplectique compacte et J une structure presque-complexe sur
M compatible avec w. Une application f : (¥X,,j) — (M, J) d’une courbe de genre g (X, j)
dans M est dite J-holomorphe si f est C-linéaire, c’est a dire si

s f = %(df—}—Jodfoj):O.

Dans le cas d’une variété de Kahler, ces sont justement les applications holomorphes qui vérifient
cette condition. Fixons une classe intégrale d’homologie en degré 2, A € Hy(M,Z), et ne
considérons que des applications J-holomorphes telles que f,[¥,] = A. Pour certaines classes A,
il y a seulement un nombre fini de telles courbes & reparamétrisation pres. Sous certaines condi-
tions de généricité, ce nombre est un des invariants de Gromov—Witten de la variété symplectique
(M, w).

Par contre, ce nombre n’est pas a priori un invariant symplectique : la construction ci-
dessus dépend fortement de la structure presque—complexe J qu’on a choisie. En fait, méme la
dimension de 'espace des applications JJ-holomorphes f : (¥,,7) — (M, J) avec fi[¥,] = A
peut changer pour différentes structures presque—complexes J, c’est a dire le nombre ci-dessus
pourrait bien étre défini pour certaines .J, mais pas pour certaines autres. Ce phénomeéne d’un
«espace de modules des applications J-holomorphess trop grand vient de la propriété plutot
désagréable de I'opérateur dy de ne pas toujours étre transverse a la section nulle du fibré
vectoriel de dimension infinie

& —— Map(X,, M),

ayant comme fibre en f € Map(X,, M) l'espace £ = QUL(f*TM). En effet, d; est un opérateur
de Fredholm, et on sait calculer son indice en utilisant des arguments de type Riemann—Roch.
Dans ce qui suit nous réfererons a cet indice griace a la notion de «dimension virtuelle» de
I’espace de modules concerné, puisque l'indice est effectivement égal a la véritable dimension de

' faut faire attention en énongant une telle propriété au fait qu’il existe plusieures versions de cohomologie
quantique : le grand anneau de cohomologie quantique contient en effet la méme donnée que les invariant de
Gromov—Witten de genre 0, tandis que le petit anneau de cohomologie quantique contient beaucoup moins d’in-
formations, en particulier il n’est pas nécessaire de connaitre tous les invariants de Gromov—Witten de genre 0
pour le définir. Lorsque nous parlerons de la cohomologie quantique il s’agira en général du petit anneau.
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I’espace de modules si l'opérateur d; est transverse (& la section nulle mentionnée ci-dessus).
Notons que 'indice d’un opérateur de Fredholm est par définition toujours fini.

D’ailleurs, il y existe un deuxieme probleme important pour une telle définition d’un inva-
riant : I’espace de modules des courbes .J-holomorphes dans une classe d’homologie A de degré
2 n’est pas compact en général. Considérons par exemple la famille de coniques donnée par
I’équation zy = €. Pour les £ > 0, ces coniques sont toutes lisses, mais a la limite € — 0 on
obtient une conique singuliere avec un point double. En fait, GRoMov a démontré dans [Gro85]
qu’une telle dégénérescence est tout ce qui peut arriver : une série d’applications J—holomorphes
converge vers une application J-holomorphe & points doubles, c’est & dire, il se peut que la
courbe sous—jacente X, contienne des points doubles. Afin de compactifier I’espace de modules
des applications J-holomorphes, il suffit alors de lui ajouter ces applications a points doubles,
et c’est ce qui amena Kontsevich a la notion d’espace d’applications stables. Pourtant, cette
stratégie a un grand inconvénient : en général les dimensions des composantes de bord, qu’il
faut ajouter pour la compactification de I’espace, vont étre plus grandes que la dimension de
I’espace de départ, méme les dimensions virtuelles peuvent devenir plus grandes. Il se peut donc
que finalement nous comptions des applications J—holomorphes & points doubles au lieu des
applications lisses.

Ces dernieres années, les difficultés mentionnées ci—dessus ont été résolues par des moyens
différents, tous gardant plus ou moins I’idée intuitive que I'invariant compte certaines courbes.
RUAN et TIAN ont été les premiers a définir rigoureusement les invariants de Gromov—Witten
en termes mathématiques. Dans leur théorie, ils se sont limités au cas des variétés symplectiques
faiblement monotones. Ces variétés ont la propriété agréable que la dimension virtuelle des com-
posantes de bord est toujours plus petite que celle de 'espace de modules des applications lisses.
De plus, ils ont réussi & montrer que pour une structure presque—complexe .J assez générique,
'opérateur 0y est toujours transverse pour toutes les composantes de I’espace de modules com-
pactifié. Donc, dans le cas des variétés symplectiques faiblement monotones, I'invariant compte
effectivement des courbes J—holomorphes. Par contre, pour une structure presque-complexe .J
arbitraire (mais quand méme compatible avec la structure symplectique choisie), la descrip-
tion de toutes les applications J—holomorphes dans une variété symplectique reste un probleme
ouvert.

Apres les travaux de RUAN et T1AN, plusieurs équipes ont élaboré une définition des inva-
riants de Gromov-Witten pour toutes les variétés symplectiques (voir par exemple [Sie96, L.T96,
FO96]), et également pour des variétés projectives lisses (voir par exemple [BF97, LT98a]).
Toutes ces constructions dans les deux catégories suivent essentiellement le méme principe : au
lieu d’essayer d’obtenir un espace de modules ayant la dimension virtuelle et une classe fonda-
mentale, on choisit n'importe quelle structure? presque complexe J et on construit une classe
fondamentale virtuelle dans I’espace de modules correspondant a la structure J. La classe fon-
damentale virtuelle ainsi définie est supposée se comporter comme la classe fondamentale d’un
espace de modules générique du moins, s’il en existe un.

Bien que les constructions dans les deux catégories mentionnées ci—dessus soient techni-
quement assez différentes, les invariants de Gromov-Witten obtenus sont égaux (voir [Sie98,
LT98b]). En effet, méme I'idée principale pour la construction de la classe fondamentale vir-

20u la structure complexe naturellement donnée sur une variété complexe.
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tuelle est identique dans les deux approches : toutes les deux utilisent la théorie de ’exces afin
de «découper» un cycle de la bonne dimension, étant guidées par ’observation que 'opérateur
07 n’est pas transverse. Dans la construction algebro-géométrique, ce découpage est fait a I'aide
d’une certaine théorie d’obstruction cotangente E*. Une telle théorie est donnée par un complexe
a deux termes de faisceaux localement libres sur I’espace de modules M et par un morphisme
(dans la catégorie dérivée)

¢ B —— LSy

dans le complexe cotangent L%, de I'espace de modules tel que le rang rk E* = rk(E° — E~1)
du complexe F* est constant et égal a la dimension virtuelle de ’espace de modules M. En
simplifiant un peu, on peut dire que cette théorie d’obstruction cotangente ¢ : K'* — L%, code
la maniere de découper le cycle fondamental virtuel de I’espace de modules M.

L’équivalence mentionnée ci-dessus des définitions dans les deux catégories nous donne une
possibilité intéressante pour des variétés a la fois symplectiques et complexes, celles de Kahler :
on peut essayer d’utiliser les techniques algebro-géométriques qui sont déja trés développées
pour finalement obtenir des invariants symplectiques !

Variétés toriques

Les variétés toriques, c’est a dire les variétés qui contiennent un tore algébrique comme sous—
ensemble ouvert et dense et pour lesquelles ’action de ce dernier sur lui-méme se prolonge sur
la variété entiere, sont alors une classe intéressante d’exemples car un grand nombre d’entre
elles est en fait de type Kihler. De plus, bien qu’elle contienne des représentants de beaucoup
de classes de variétés déja étudiées dans le cadre des invariants de Gromov-Witten (espace
complexe projective; variétés de Fano, faiblement monotones), la plupart des variétés toriques
n’appartient a aucune de ces classes. Malgré cette diversité, toutes les variétés toriques sont
classifiées combinatoirement par des éventails, ces derniers décrivant en fait la facon dont les
diviseurs invariants de la variétés toriques se coupent.

Par contre, ce qui rend les variétés toriques particulierement attractives pour nous, c’est ’ac-
tion du «grand tore». Cette action n’a qu’un nombre fini de sous—variétés stables, ces derniéres
pouvant étre déduites facilement de la description des variétés toriques par des éventails. En
plus, ’action du tore sur la variété torique X en induit naturellement une sur ’espace des mo-
dules des applications stables vers X . Les composantes des points fixes de ce dernier se décrivent
combinatoirement avec des sous—variétés stables de X en dimension 0 et 1, autrement dit, par
I’éventail de la variété torique. Cela ouvre la voie a ’application de la théorie équivariante a
notre probleme.

Théorie équivariante

Dans [GP97], GRABER et PANDHARIPANDE ont démontré une formule de localisation pour
des champs algébriques Y admettant une action de C* et un plongement C*—équivariant dans un
champ de Deligne-Mumford lisse, ainsi qu’une théorie d’obstruction parfaite C*—équivariante. De
méme que pour le cas de la formule de localisation classique, ils considerent, sur une composante
de points fixes Y; de 'action sur le champ Y, la décomposition de la théorie d’obstruction F?
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restreinte a Y; en la partie fixée par ’action et la partie mobile :
o fix e, move

Leur principale observation est que la partie fixée E;’ﬁx est a nouveau une théorie d’obstruction
pour la composante des points fixes Y;, et que le role du fibré normal est assumé par la partie
mobile, E"™° nommée par conséquent fibré normal virtuel : NZ»Vir = EVY ou Ei, est le
complexe dual & E?. Remarquons que malgré ce nom, NY™ n’est pas un fibré mais un complexe
a deux termes de faisceaux localement libres.

Précisons cet énoncé. Soit Y un champ algébrique avec une action de C* qui peut étre
plongé de facon C*—équivariante dans un champ de Deligne-Mumford lisse. Soient de plus ¢ :
E* — L3 une théorie d’obstruction parfaite C*—équivariante de Y, [Y, E*] et [V, E?] les classes
virtuelles fondamentales respectives de Y et F*® et d’une composante de points fixes, Y;, et sa
théorie d’obstruction parfaite induite par £?. Alors GRABER et PANDHARIPANDE ont démontré
la formule de localisation suivante [GP97] :

Y, BT =0} % (1)

Cette formule de localisation s’applique en particulier au champ de modules Mﬁm(Xg)
des applications stables vers une variété torique projective lisse®. Soit en plus G un fibré C—
équivariant de rang rk G = deg[Y, F'*]. Appelons G; leurs restrictions aux composantes des points
fixes Y; de Y. La formule de localisation implique alors directement la «formule de résidu de type
Bott» suivante [GP97] que nous allons utiliser pour le calcul des invariants de Gromov-Witten
de genre 0 d’une variété torique projective lisse Xy :

Jram @ =2, % )

équation vraie dans I'anneau localisé A% (Y) @ Q[u, i] Notons que tk G = deg[Y, E*], ce qui
implique en fait que

/[Y’E.] (@) = /[KE.] & (@),

En particulier, le terme de droite de (2) prend ses valeurs dans Q, et pas seulement dans un
anneau polynomial sur Q.

Invariants de Gromov—Witten des variétés toriques symplectiques

La formule de résidu de Bott est véritablement tres utile pour résoudre notre probleme ini-
tial, le calcul des invariants de Gromov-Witten des variétés toriques symplectiques. On rappelle
qu’a lorigine 'idée était que les invariants de Gromov-Witten comptent certaines courbes ho-
lomorphes?. Une version plus générale d’un tel invariant qui utilise également la construction

SEn fait, ce théoréme s’applique & tous les champs de modules d’applications stables vers une variété projective
lisse avec une action de C*.
10u, dans le cas général, pseudo-holomorphes.
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d’une classe fondamentale virtuelle décrite ci—dessus est définie par I'intégration sur la classe
fondamentale virtuelle :

\Ilglm(ﬁ;al,...,ozm) ::/ evi (o ®...Q0 ay) A TS, (3)
7 (MG (X),E°]
ol ay,..., 0, € H(X;Z), 8 € H*(Mym), ev : Mﬁm(X) — X est I’application d’évaluation

de M2, (X) et 7 : Mg, (X) = My, est le morphisme naturel d’oubli (et de stabilisation)
vers ’espace de Deligne-Mumford des courbes stables.

Soit maintenant X = Xy une variété torique projective lisse de dimension d. Alors, la coho-
mologie de X, est engendrée par ses diviseurs (C*)?-invariants. En conséquence, les classes a; €
H*(Xy,Z) peuvent étre écrites comme les classes d’Euler de certains fibrés (C*)?—équivariants
sur Xy, ce qui s’applique aussi a la classe ev*(ay @ -+ ® ) car 'action sur I'espace de mo-
dules Mﬁm (Xx) est le pullback de celle sur Xy. Si nous nous restreignons au cas dans lequel
B e H*(M,,,) est triviale®, i.e. 8 =1 = P.D.([M,,]), nous pouvons appliquer® la formule de
résidu de GRABER et PANDHARIPANDE (2) afin de calculer I'intégrale (3) ci—dessus.

Nous avons donc intérét a étudier les objets de droite de I’équation (2), i.e. les composantes
de points fixes dans Mﬁm (Xx), leurs classes fondamentales virtuelles et leurs fibrés normaux
virtuels, ainsi que les restrictions aux composantes des points fixes des fibrés équivariants cor-
respondants aux classes «;. Dans le reste de ce chapitre d’introduction, nous nous limitons aux
applications de genre 0, i.e. aux espaces des modules MOAM (Xg).

Composantes des points fixes dans Mg, (Xx)

Notons d’abord que si Iaction de (C)? sur Mg, (Xz), induite par celle sur la variété
torique Xy, fixe une application stable (C;zq,...,2m; f) € Mém()(g), il faut et il suffit que
cette action ne change pas la classe d’isomorphie de (C;z; f), c’est a dire qu’elle fixe I'image
par f de la courbe C' et des points marqués zq,...,z,, dans Xy. Les composantes irréductibles
d’une application stable (C;z; f) fixée par ’action sont donc envoyées sur des sous—variétés de
Xy de dimension complexe 1 et invariantes sous I’action du tore (C*)d, et les points marqués
d’une telle courbe sur des points fixes dans Xy.

On voit facilement que les déformations d’une telle application stable qui restent dans une
composante de points fixes dans MOAM(XE) sont tres restreintes : en fait, elles ne peuvent faire
bouger que les points marqués (bien entendu sans changer les points fixes de Xy sur lesquels
ils sont envoyés). Les composantes des points fixes dans MOAM (Xx) sont alors essentiellement”
des produits d’espaces de Deligne-Mumford des courbes stables. Notons que la classe fondamen-
tale virtuelle d’un espace de Deligne-Mumford des courbes stables Mg, est égale & la classe
fondamentale usuelle : [Mg ,]¥'" = [Mg ).

SNotons que cela n’impose pas de restriction sur la classe 8 quand on considére les invariants de Gromov—
Witten de genre 0 et de 3 points marqués, i.e. quand g = 0 et m = 3, car I’espace de modules ﬂ073 ne contient
qu’un point.

5Bien qu’ils n’aient démontré leur théoréme de localisation que pour une action de C*, il est évident que celui—ci
se généralise directement aux actions toriques (diagonales) : il faut simplement décomposer ’action de (C*)¢ en
d actions de C* qui commutent, et puis appliquer leur formule de localisation d fois.

"Les composantes des points fixes dans M{im(Xg) sont les quotients de ces produits par leur groupe d’auto-
morphismes. Ce groupe d’automorphismes est un groupe fini.
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Il reste alors a déterminer toutes les composantes des points fixes d’un espace de modules des
applications stables MOAM(XE). Remarquons d’abord qu’il n’existe qu’un nombre fini de points
fixes et des sous—variétés irréductibles invariantes de dimension 1, chacune de ces dernieres
«liant» deux points fixes. Etant une courbe holomorphe, chaque sous—variété 7 C Xy de di-
mension 1 a une énergie positive, c’est a dire que la valeur de la classe symplectique w de Xy
appliquée a la classe fondamentale de Z est positive : w([Z]) > 0. Alors, dans chaque espace
de modules MOAM(XE), il n’existe qu'un nombre fini de composantes des points fixes. Suivant
’approche de Kontsevich [Kon95] pour les espaces de modules des applications stables vers I’es-
pace complexe projective CP™, nous utilisons certains graphes de dimension 1 pour décrire les
différentes composantes des points fixes dans ./\/lOA7m (Xx).

Le fibré normal virtuel

Pour I’étude du fibré normal virtuel, c’est a dire de la partie mobile de la théorie d’obstruction
E*, nous considérons la suite exacte longue (C*)%-équivariante suivante :

0 —— Roﬁ*Hom(Qé/M(D), Oc) —— ROz Hom(f*Q%,Oc) — RO (E,) ——

— RIF*HOIH(Qé/M(D), O¢) —— R'mHom(f*Q%, Oc) — h'(E,) —— 0, (4)

ott 7 :C —3 M est une famille d’applications stables vers Xy fixées par 'action de T = (C*)?
et f : C — Xy l'application stable universelle (voir chapitre 7). Sur une composante des
points fixes de Mg, les quatres faisceaux autres que hi(E.) sont en fait des fibrés vectoriels,
ce qui nous permet de déterminer leur class d’Euler équivariante. Notons que F*® est une théorie
d’obstruction parfaite, i.e. un complexe a deux termes, en degré —1 et 0. On obtient donc la
suite exacte

0 —— hO(F,) » o y By y B (E,) — 0.

Rappelons que le fibré normal virtuel N,}’ir est la partie mobile du complexe F; o = Fojp1n,, Mr
étant une composante des points fixes de MoA,m (Xz). La classe d’Euler équivariante de NY™ est
donc égale a :

eT(]VZyir) — eT(E(r)nove _ Einove) — eT(hO,move(E.) _ hl,move(E.))‘

Gréce a la suite exacte (4), nous avons donc réduit le probleme du calcul de la classe d’Euler
équivariante du fibré normal virtuel & celui des classes d’Euler équivariantes des fibrés vectoriels
Riﬂ*Ho_m(Qé/M(D) et Rim.Hom(f*Qk,O¢) (i = 0, 1). L’étude des parties mobiles de ces quatre
fibrés aboutit au résultat principal de cette these, le Théoreme 7.2 qui donne une formule explicite
pour les invariants de Gromov—-Witten de genre 0 de la forme

\Ilém(l;ozl,... y O (5)

d’une variété torique projective lisse, i.e. les invariants avec 1 = 8 € H*(Mo,). Cette formule
donne en particulier la valeur de tous les invariants de Gromov-Witten de genre 0 & trois points
marqués d’une telle variété.
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Conclusion

Les invariants de Gromov—Witten et la cohomologie quantique des variétés toriques ont été
étudiés par plusieurs auteurs. Des premiers énoncés sur la structure de ’anneau de la cohomo-
logie quantique ont été donnés par BATYREV dans [Bat93], bien qu’il n’ait pas eu & sa disposi-
tion les fondations rigoureuses du sujet établies plus tard. GIVENTAL a calculé la cohomologie
quantique des variétés toriques faiblement monotones employant des techniques équivariantes
et «miroires» ([Giv96, Giv9T7]). En appliquant la formule généralisée de Vafa et Intriligator,
certains invariants de Gromov-Witten peuvent étre d’eduits d’une présentation de I’anneau de
cohomologie quantique induite par une présentation de I'anneau de la cohomologie ordinaire
([Sie97a]). Récemment, QIN et Ruan ([QR98]) ont étudié Ianneau de cohomologie quantique
et quelques invariants de Gromov—Witten de certains fibrés projectifs sur CP". En particulier,
ils ont vérifié pour une petite classe de ces fibrés la conjecture de Batyrev ([QR98, Theorem
5.21]) ; pourtant leur théoréme ne s’applique pas a notre exemple Pp2(O(2) & 1). LiaN, Liu et
Yau [LLY97] ont également étudié ’anneau de la cohomologie quantique des espaces complexes
projectifs utilisant des techniques équivariantes, bien qu’ils n’aient pas encore généralisé leurs
résultats.

Contenu

La these est structurée comme suit. Dans le chapitre 1 nous rappelons la définition de ’espace
de modules des courbes stables et donner quelques unes de leurs propriétés. Le chapitre suivant
est consacré a l'introduction de la notion due a Kontsevich des applications stables vers une
variété. Dans le chapitre 3 nous décrivons la construction de la classe fondamentale virtuelle
a la maniere de BEHREND et FANTECHI ([BF97, Beh97]). Nous allons essayer de donner des
énoncés et des références completes pour ces constructions qui sont souvent fragmentaires dans la
littérature et donc difficiles a lire par des «non—expertss. La formule de localisation de GRABER
et PANDHARIPANDE est discutée dans le chapitre 4. Afin de rendre le texte raisonnablement
autonome nous allons fournir les bases de la théorie de variétés toriques dans le chapitre 5.
Dans le chapitre 6 nous allons étudier des actions du tore sur les variétés toriques et sur leurs
espaces de modules des applications stables. C’est dans le chapitre 7 que nous analysons enfin le
fibré normal virtuel des composantes des points fixes de ’action induite de (@)d sur ’espace de
modules des applications stables vers Xy, ou Xy est nimporte quelle variété torique projective
lisse. Cette analyse aboutit a une formule explicite pour tous les invariants de Gromov-Witten de
genre 0 de la forme (5) pour n’importe quelle variété torique projective lisse. Comme application
et exemple, nous allons montrer dans le chapitre 8 comment en déduire les valeurs des invariants
de Gromov-Witten de genre 0 et la cohomologie quantique de I’espace projectif complexe CP"
et de la variété de Fano de dimension trois P(Op2(2) @ 1). A notre connaissance, les techniques
connues auparavant ne permettaient le calcul des invariants de Gromov—Witten de cette variété
de Fano.

Conventions générales

Dans la catégorie algébro—géométrique, nous travaillons toujours sur le corps de nombres
complexes k = C, sauf indications contraires. Par conséquent, les dimensions des variétés sont
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données comme dimensions complexes.
Bien que nous travaillions le plus souvent dans la catégorie algebro—géométrique, nous
préférons utiliser ’homologie et la cohomologie au lieu des groupes de Chow.
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IT Introduction in English

The aim of this thesis is to give a formula that computes the Gromov-Witten invariants of
symplectic toric manifolds.

Gromov—Witten invariants

Gromov—Witten invariants and quantum cohomology express essentially the same symplecto—
topological data® first studied by Witten in theoretical physics ([Wit91]). In fact, he looked at
quantum cohomology as an example of a topological o—model where what we now call Gromov—
Witten invariants are basically the correlation functions. This lead to the interpretation of these
invariants as counting certain (pseudo-)holomorphic curves in a symplectic manifold.

Let (M, w) be a compact symplectic manifold, and J be a compatible almost-complex struc-
ture on (M,w). A map f : (¥,,7) — (M,J) from a genus—¢ curve (X,,7) to M is called
J-holomorphic if f is C-linear, namely if

07f := %(df—}—.]odfoj):().

For Kahler manifolds (M,w,.J), these are exactly the holomorphic maps. Now we fix an in-
tegral degree—2 homology class A € Hy(M,Z), and only look at .J—-holomorphic maps such
that f.[¥,] = A. For some classes A, there will be only a finite number of such curves up to
reparametrisation, and this number will be, under certain genericity assumptions, one of the
Gromov—-Witten invariants of the manifold (M, w).

This number, though, is not a priori a symplectic invariant: the construction above strongly
depends on the chosen compatible almost—complex structure J. In fact, even the dimension
of the space of J-holomorphic maps f : (¥,,7) — (M,J) with f.[¥,;] = A might change for
different almost—complex structures .J, that is, the above number might be defined for some .J,
but not for some others. This phenomenon of a “moduli space of J-holomorphic maps” being
too big comes from the unpleasant property of the dy-operator of not always being transversal
to the zero section in the infinite dimensional vector bundle

& —— Map(X,, M)

whose fibre at f € Map(%,, M) is the space & = Q®(f*T'M). In fact, d; is a Fredholm
operator, and its index can be computed using Riemann—Roch arguments. We will usually
refer to this index as the virtual dimension of the corresponding moduli space, since the index
is equal to the actual dimension of the moduli space when @; is indeed transversal (to the
above mentioned zero section). Note that being a Fredholm operator in particular includes the
property of the index being finite.

There is, however, another important problem of such a “definition” of an invariant: the
moduli space of J-holomorphic curves in a degree—2 homology class A is in general not compact.

8Care has to be taken since there exist several different versions of quantum cohomology: the big quantum
cohomology ring indeed contains the same data as the genus—0 Gromov—Witten invariants of a symplectic manifold;
the small quantum cohomology ring contains much less data, and in particular not all Gromov-Witten invariants
are needed for its definition. When we refer to the quantum cohomology ring we usually mean the small version.
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Take for example the family of conics that is given by the equation zy = . For £ > 0, these
conics are all smooth, but in the limit ¢ — 0 we obtain a singular conic with a node. In fact,
Gromov has proven in [Gro85] that this is all that can happen: a series of J—holomorphic maps
converges to a J—holomorphic map with singularities at worst nodes, i.e. where the underlying
curve Y, might have nodes. So to compactify the moduli space of J-holomorphic curves it
suffices to add these curves with nodes, an approach that eventually lead to Kontsevich’s space
of stable maps. This strategy, though, has one big disadvantage: the dimensions of the boundary
components that we have to add for this compactification can be bigger than the dimension of
the moduli space we started with, even the virtual dimension of the boundary components might
get bigger. So we might end up counting .J-holomorphic curves with nodes instead of smooth
curves.

In the past years, the above mentioned difficulties have been resolved by different means,
keeping more or less the intuitive idea of the invariant counting certain curves. Ruan and Tian
([RT95]) were the first who rigorously defined Gromov-Witten invariants in a mathematical
context. They restricted themselves to weakly monotone symplectic manifolds. These manifolds
have the nice property that the virtual dimension of the boundary components is always smaller
than the virtual dimension of the moduli space of smooth curves. Moreover, they were able
to show that for a generic almost-complex structure .J, the operator @y is transversal for all
components of the compactified moduli space. So, in the case of weakly monotone symplectic
manifolds, the invariant still counts J—holomorphic curves. However, the description of all
J—holomorphic curves in a symplectic manifold for an arbitrary almost-complex structure J
(compatible with the symplectic structure) remains an unsolved problem.

Later, several successful attempts were undertaken to define Gromov-Witten invariants for
all symplectic manifolds (for example [Sie96, LT96, FO96]), as well as for projective complex
varieties (for example [BF97, LT98b]). All constructions in both categories of varieties follow
basically the same principle: instead of trying to obtain a moduli space of the expected dimension
with a fundamental class, they take any compatible (respectively the given) almost—complex
structure J and construct a virtual fundamental class in the moduli space corresponding to .J.
The virtual fundamental class so defined is then supposed to behave as the fundamental class
of a generic moduli space (if it existed at all).

Although the constructions in both categories are technically quite different, the Gromov—
Witten invariants obtained are the same (see [Sie98, 'T98a]). Actually, even the main idea for
the construction of the virtual fundamental class is the same in both approaches: they both
use excess intersection theory to “slice out” a cycle in exactly the right dimension, being led by
the observation that the operator d; is not transversal. In the algebro-geometric construction
this is done by using a particular tangent obstruction theory E*, that is a two—term complex of
locally free sheaves on the moduli space M and a morphism (in the derived category)

¢ E* —— LSy

to the cotangent complex L%, of the moduli space, such that the rank rk E* = rk(E? — E~1) of
the complex E* is constant and equal to the virtual dimension of the moduli space M. Roughly
speaking, one can say that this obstruction theory ¢ : E* — L%, encodes how the virtual
moduli cycle has to be cut out off the moduli space M.
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The above mentioned equivalence of the definitions in the two different categories opens an
interesting opportunity for manifolds that are symplectic and complex varieties at the same time,
Ké&hler manifolds: one could try to use the rather developed machinery of algebraic geometry
to finally obtain symplectic invariants!

Toric manifolds

Toric manifolds, i.e. those which contain an algebraic torus as an open and dense subset and
whose action on itself extends to the entire manifold, are an important set of examples to consider
here because many are in fact Kihler. Moreover, although they include representatives of many
classes of manifolds so far looked at in the context of Gromov-Witten invariants (complex
projective space; Fano and weakly monotone manifolds), most toric manifolds do not fit into
any of these groups. In spite of this diversity, all toric manifolds are combinatorically classified
with the help of fans that basically describe the intersection pattern of the divisors of the toric
variety.

However, what makes toric manifolds particularly nice to us is the action of the “big” torus
on them. This action has only finitely many stable submanifolds which again can be easily
derived from the fan description of the toric manifold. In addition, the action on the toric
manifold X naturally induces a torus action on the moduli spaces of stable maps to X, the
fixed point components of which can be described combinatorically in terms of the zero and one
dimensional stable submanifolds in X, hence again by fan data. This opens to us the possibility
to apply equivariant theory to our problem.

Equivariant theory

In [GP97] Graber and Pandharipande have proven a localisation formula for algebraic stacks Y
with a C*—action and a C*—equivariant perfect obstruction theory that can be C*—equivariantly
embedded into a non—singular Deligne-Mumford stack. Similarly to the classical localisation
formula, they look, on a fixed point component Y; of the action on the stack Y, at a decomposition
of the obstruction theory E? restricted to Y; into the part that is fixed by the action, and the
moving part:

Ez. — E;,ﬁx @ E;,move.

Their main observation is that the fixed part E;’ﬁx is again an obstruction theory for the fixed
point component Y;, and that the role of the normal bundle is taken by the moving part F*™°ve,
accordingly called virtual normal bundle: NZ»Vir = E7YY¢, where F; 4 is the dual complex to E}.

To be precise, let Y be an algebraic stack with a C*~action that can be C*-equivariantly
embedded into a non-singular Deligne-Mumford stack. Let ¢ : E* — L} be a C*—equivariant
perfect obstruction theory for Y, [Y, E*] and [Y;, E?] be the virtual fundamental classes of Y
and E*, and of the fixed point components Y; and the induced perfect obstruction theories E?,
respectively. Then they have shown the following localisation formula [GP97]:

i, E7]
—~ eC* (NYI)’

K3

[V, E*] = ¢, (6)
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In particular, this localisation formula holds for the moduli stacks Mﬁm (Xg) of stable maps
to a smooth projective toric variety”. Furthermore, let G be a C*—equivariant bundle with rank
rkG = deg[Y, F*]. Denote by G; its restriction to the fixed point components Y; of Y. Then
the localisation formula immediately implies the following “Bott residue formula” [GP97] which
we will use for the computation of the (algebraic) genus—zero Gromov-Witten invariants of a
smooth projective toric variety Xx:

_ e (Gi)
@ =Xy vy g

an equation that holds in the localised ting A (Y) ® Q[u, i]
Note that since rk G = deg[Y, F'*] we actually have

/ (@) = < (@),
[YV,E*] [Y,E*]

In particular, the right hand side of (7) takes values in Q, and not just in a polynomial ring over

Q.

Gromov—Witten invariants of symplectic toric manifolds

The Bott residue formula is indeed very helpful for resolving our initial problem of calculating
the Gromov-Witten invariants of symplectic toric manifolds. Remember that the original idea
of Gromov-Witten invariants was that they count certain holomorphic!'® curves. In a gener-
alised version and in the set—up of virtual fundamental classes, these invariants are defined by
integration over the virtual fundamental class:

\Ilﬁm(ﬁ;ozl,...,ozm) ::/ evion ®...Q0 ay) AT70, (8)
(MG (X),E°]

where a1, ..., € HY(X;Z), B € H* (M, ), ev : Mﬁm(X) — X™ is the m—point evaluation

(X) = M, is the natural forgetting (and stabilisation) morphism to the

Deligne-Mumford space of stable curves.

Now let X = Xy be a d-dimensional smooth projective toric variety. Then the cohomology
of Xy is generated by its (C*)?-invariant divisors. Therefore the classes o; € H*(Xx,Z) can be
expressed as the Euler classes of some ((C*)dfequivariant bundles on Xy, and since the action on
the moduli space M}, (X)is the pull back action, the same applies to the class ev*(a1®. . .@ay,).
If we restrict to the case where the class 8 € H*(M, ) is trivial'!, i.e. 8 =1= P.D.(IM,.n]),
we can apply'? Graber and Pandharipande’s Bott residue formula (7) to compute the above

map, and 7 : M4

.g7m

integral (8).

?In fact, the theorem holds for all moduli stacks of stable maps into a non-singular variety.

%0r, in the general set—up, pseudo-holomorphic.

"Note that this is no restriction to the class 8 if we only look at genus—zero three—point Gromov-Witten
invariants, i.e. when g = 0 and m = 3, since the moduli space ﬂo,s consists of just a single point.

2 Although they proved their Localisation Theorem only for (C*)-actions, it obviously generalises to (diagonal)
torus actions: we just “decompose” the (C*)*-action into d commutative (C*)-actions, and apply their localisation
formula d times.
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Hence to eventually obtain the values of these Gromov—Witten invariants, we have to study

the objects on the right hand side of equation (7), i.e. the fixed point components in Mﬁm (X)),
their virtual fundamental class and their virtual normal bundle, and the restrictions to the fixed
point components of the equivariant bundles corresponding to the classes «;. In the rest of this
section we will restrict ourselves to genus—zero maps, i¢.e. the moduli spaces MOAM (Xg).
Fixed point components in MOAM(XE): To describe the fixed point components in the moduli
space of stable maps MOAJH(XE), we have generalised Kontsevich’s graph approach [Kon95] that
he uses in the case of X = CP™. The main observation is that the irreducible components of
a stable map (C;z; f) that is fixed by the (C*)%-action have to be mapped either to a fixed
point of the action in Xy or to an irreducible one-dimensional (C*)%-invariant subvariety of
Xy. Moreover, the irreducible components of C' that are not mapped to a point are rigid in each
fixed point component. Hence the fixed point components are essentially products of Deligne—
Mumford spaces of stable curves, a fact that makes it particularly easy to compute their virtual
fundamental class: for the Deligne-Mumford spaces of stable curves My, it is just the usual
fundamental class, [Mg,]"'" = [Mo,m].
The virtual normal bundle: For the study of the virtual normal bundle, or the moving
part of the obstruction theory F*, we consider a ((C*)dfequivariant long exact sequence derived
from a the pull back to the fixed point components of a distinguished triangle containing F'*
(see Section 7). This way we can reduce the computation of the equivariant Euler class of the
virtual normal bundle to the computation of the equivariant Euler classes of bundles such as
Riﬂ'*Ho_m(f*Q}(E, O¢) and Riﬂ'*Ho_m(Qé/M(D), Oc), where 7 : C — M is a (C*)?fixed stable
map to Xy, and f:C — Xy is the universal map to Xy.

The main result of this thesis is Theorem 7.2 giving an explicit formula for the genus—zero
Gromov—-Witten invariants

\Ilém(l;ozl,... y O (9)

of a smooth projective toric variety, i.e. the invariants where 1 = 3 € H*(Mo,,). This formula
gives in particular all genus—zero three—point Gromov—Witten invariants of a smooth projective
toric variety.

Gromov-Witten invariants and the quantum cohomology of toric varieties have already been
studied by various authors. First claims on the structure of the quantum cohomology ring were
made by Batyrev in [Bat93], though without the rigorous framework of the subject that is now
available. Givental has calculated the quantum cohomology of weakly monotone toric varieties
using “mirror techniques” and equivariant methods ([Giv96, Giv97]). By using the generalised
Vafa-Intriligator formula, certain Gromov-Witten invariants can be obtained using a presenta-
tion of the quantum cohomology ring coming from a presentation of the ordinary cohomology
ring ([Sie97a]). Recently, Qin and Ruan ([QR98]) have studied the quantum cohomology ring
and some of the Gromov—Witten invariants of certain projective bundles over CP™. In particular
they verify Batyrev’s conjecture for a small class of such bundles (Theorem 5.21); our example
Pp2(O(2) @ 1), however, is not treated by their theorem. Lian, Liu and Yau [LLY97] have also
studied the quantum cohomology ring of complex projective space in an equivariant setting,
however so have not yet generalised their results to a bigger class of manifolds.
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Contents

The paper is structured as follows. In Section 1 we will recall the definition of the moduli space
of stable curves and give some of its properties. The next section, Section 2, will introduce
Konsevich’s notion of stable maps to a manifold. In Section 3 we will describe the construction
of the virtual fundamental class in the sense of Behrend and Fantechi ([BF97, Beh97]), and will
try to give complete statements and references for these constructions that are often sketchy in
the literature and thus hard to read for “non experts”. Graber and Pandharipande’s localisation
formula will be discussed in Section 4. In order to make the text reasonably self-contained, we
will provide in Section 5 the basics of toric manifolds. In Section 6 we will then study torus
actions on toric varieties and their moduli spaces of stable maps. Finally, in Section 7 we will
analyse for an arbitrary projective toric manifold the virtual normal bundle to the fixed point
components of the moduli space of stable maps to Xy, for the induced (C*)¥-action. This leads
to an explicit formula for all genus—0 Gromov-Witten invariants of the form (9) for any smooth
projective toric variety. As an application and example, we show how to derive the Gromov—
Witten invariants and the quantum cohomology of projective space P™ and the Fano threefold
P(Op2(2) @& 1) in Section 8. To our knowledge, the techniques known previous to this thesis did
not admit the computation of the Gromov—Witten invariants of this Fano threefold.

General conventions

In the algebro—geometric category, we always work over the field of complex numbers k = C,
unless otherwise mentioned. Accordingly, dimensions of varieties are given as complex dimen-
sions.

Although we mostly work in the algebro—geometric category, we prefer to use homology and
cohomology instead of Chow groups.
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1 The moduli spaces of prestable and stable curves

Prestable and stable curves have been intensively studied since Deligne and Mumford’s first
paper [DM69] on the moduli space M, for g > 2 (and no marked points). Later, their results
have been extended by Knudsen ([KM76, Knu83a, Knu83b]) to marked stable curves. In [Kee92],
Keel has given a different description of the genus-0 moduli spaces Mj ,, as subsequent blow
ups (cf. example 1.6). The recently published book [HM98] by Harris and Morrison collects
many of the results known about these curves and its moduli spaces, and gives many references
to the literature.

1.1 Prestable and stable curves

The moduli space of stable curves M, ,,,, also called Deligne-Mumford space, is a compactifica-
tion of the following moduli space of smooth genus—g curves with m marked points:

Mgvm = {(073317 e 7'rm)

X(C)=2-2g,2, € C,z; # x; iff i # j} /{isom.},

where isomorphisms ¢ of a marked curve (C;24,...,2,,) have to fix the marked points: ¢(z;) =
x;. In general, only the cases where 2g+m > 3 are considered, to secure a discrete automorphism
group of the marked curves.

In the sequel we will give the definitions in the algebro—geometric category. For example
instead of single curves we will look at families of curves parameterised by a scheme.

Let g and m be non—negative integers such that 2g + m > 3, and let S be a scheme.

Definition 1.1 A genus—g prestable curve with m marked points is a flat and proper morphism
7w :C' — S together with m distinct sections x1,...,%y S — C such that:

1. the geometric fibres Cs = w~='(s) of m are reduced and connected curves with at most
ordinary double points;

2. Cy is smooth at P; := z;(s) (1 <i<m);
3. P, # Pj fori # 3.

4. the algebraic genus of the fibres is g: dim HY(Cs, O¢,) = g.
Such a prestable curve is called stable if it fulfils in addition the following stability condition:

5. The number of points where a non-singular rational component E of C; meets the rest of
Cs plus the number of marked points P; on E is at least 3.

Example 1.2 The simplest example of such a family of (pre—)stable curves is certainly a single
one, i.e. when S = SpecC is just a single point. In this case, the curve C is a reduced and
connected singular curve of algebraic genus g, with possibly some marked points zq, ..., z,,. We
require, however, the singularities to be not too bad: only ordinary double points are allowed.
Figures 1 to 4 give some examples.
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Definition 1.3 We denote by M, ,,, and MW the categories of m—pointed prestable respectively
stable curves. Morphisms in these categories are diagrams of the form

Q
l&

C
[ |
S S
where
1. pozt=xz;0% for 1 <i<m,

2. ¢ and n' induce an isomorphism C' = C xg S'.

If the morphism of schemes v : S' — S is an isomorphism, we call the morphism between the
two curves an isomorphism.

Theorem 1.4 ([Knu83a, Theorem 2.7]) For all relevant g and m, M, is a separated al-
gebraic stack, proper and smooth over Spec(Z) of dimension dim M, ,, = 3(g — 1) + m.

Remark 1.5 We will not give the definition of a stack and refer the reader for example to

[Vis89] or [LMB92].

So why would one like to consider something like a stack at this point? What one really
would like to have is a representation of the moduli functor F from the category of schemes to
the category of sets

F : Schemesg — Sets
S ———{(pre—)stable curves over S}/.,

assigning to each scheme S isomorphism classes of (pre-)stable curves over S. Here, a scheme
M is a representation of the functor F if there is an isomorphism ¥ of functors from schemes
to sets between F and the functor of points of M, the latter assigning to each scheme S the set
Morgeh,. (5, M) of all morphisms of schemes from S to M. The scheme M is then called a fine
moduli space for the moduli functor F.

Unfortunately, our moduli problem does not in general has a scheme as a fine moduli space.
The reason for this rather unpleasant fact is that there are non—trivial automorphisms acting on
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the (pre—)stable curves. For stable curves though the automorphism groups are not very bad:
they are finite. In fact, the moduli functor of stable curves has a coarse moduli space M in the
category of schemes, that is M is a scheme and there exists a natural transformation W4 from
the functor F to the functor of points Mor g of M such that

1. The map ¥gpecc : F(Spec C) —— Mor(Spec C M) is a set bijection.

2. Given another scheme M’ and a natural transformation W,y from F to Moryys, there
is a unique morphism 7 : M ——— M/’ such that the associated natural transformation
IT : Morpq — Morp satisfies Wap = 1o Wpy.

Another way round the problem that there is no fine moduli scheme for our two moduli
functors, is to consider bigger categories to find a fine moduli space. There are several different
approaches for finding such a category'®, one of which is to look at algebraic stacks. The stacks
defined above are indeed fine moduli spaces (in the category of stacks!), and the theorem above
tells us that the moduli stack of stable curves has rather nice topological properties.

Intuitively, being compact and separated boils down to the following property: Take a scheme
S and take out one point: S* = S — {pt.}. Then for any stable (marked) curve 7 : C' — S*
over the punctured scheme S*, there exists a morphism S — S and an extension of © : C' —
S* to S (compactness). Moreover, every two such extensions S,S’ are dominated by a third
(separateness).

While compactness still holds for the moduli stack of prestable curves, this is not true for
separateness. This adds even more importance to the question how curves “degenerate” in this
set—up, that is what kind of limits over the singular point (the puncture of S*) we can get.

As we are looking at two different moduli problems — the moduli of prestable curves and
the moduli of stable — these are naturally a priori different. However, the only (significant)
difference between two such limits is that the stable limit curve might be the result of “stabilis-
ing”, that is the collapsing of unstable components, whereas stabilising of course does not apply
to pre—stable curves. In the sequel, we will always keep in mind the necessity of stabilising to
obtain stable curves, even if not mentioned explicitly.

In the limit of a sequence of marked curves, basically only two non—trivial things can happen:

1. Two or more special points can converge to the same point (see figure 6). Or

2. “A closed geodesic converges (non—trivially) to a point”, or in algebro—geometric language,
locally, a family of curves is given by 2y = ¢, where € converges to zero, i.e. a new double
point appears (see figure 5).

Of course, stabilising kills bubbles coming from the contraction of “trivial” closed geodesics, that
is loops that are homotopically trivial considering the marked points as punctures. Exactly this
process of stabilising leads to the separateness — the uniqueness of the limit — of the moduli
stack of stable curves. If we do not stabilise, the same prestable curve over the punctured disk
D*, say, can have several limits. Indeed there is only one isomorphism class of smooth prestable
rational curves over the unpunctured disk D — while the limit of the representatives of this

13 For a more detailed discussion and plenty of references see [HM98, ch. 1A, 2A, 3D].
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Figure 5: A closed geodesic collapses.

Figure 6: Two marked points converge to the same point.

class, restricted to D* could be any genus zero prestable curve without marked points (cf. figure
7). Note that the stable limit in all these cases is simply a smooth rational curve (if we added
three marked points to one, the main component of the curve), since all the extra bubbles would
have to be collapsed when stabilising.

1.2 The universal curve of the moduli stack of stable curves

The moduli stack of stable maps Hw admits a universal curve Egm T MW, that is for a
stable curve C' = S and its map S — M, ,, to the moduli stack there is a map C' — C,,,,, such
that the following diagram is commutative:

C —— Cym

I I
S —— T,
Moreover, the description of the universal curve stack is particularly easy: it is just the moduli
stack of stable curves with one extra marked point: C,,, = M, n41. Themap 7 :Cy ., = My,

is one of the two natural morphisms between moduli stacks of stable curves, the map forgetting
the extra marked point and stabilising:

Mg,m-H ’Mg,m

(C;ph s 7pm7pm+1) '—>(é7p17 s 7pm)7
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OO

@

Figure 7: Possible degenerations of a smooth prestable rational curve.

where C' is the curve resulting from C' after stabilisation (if necessary).

The other natural morphism mentioned above is the so—called clutching morphism, gluing
together two marked points 2,41, Zm4+2 to form a new double point, increasing the genus by
one (cf. figure 8):

My myz —— Mgpim.

Figure 8: The clutching morphism gluing together p and g.

Example 1.6 As an application we will derive the moduli spaces My, of genus—0 stable curves
for m = 3,4,5 (note that for m < 3 the moduli spaces Mg, are not defined). So let us start
with Mg 3. By the stability condition, Mg 3 contains only smooth P'’s with three marked points.
But by applying an isomorphism to P!, we can always assume that the three points are 0, 1 and
oo. Thus the moduli space is just a point: Mgz = {pt.}.

By applying the fact that the universal curve Cg 3 to Mo 3 is equal to the moduli space M 4,
we see that HOA = P'. However, HOA does no longer only contain smooth curves, but as well
three curves of two P'’s with one double point, corresponding to when the fourth marked point
“becomes” 0, 1 and oo, respectively (see figure 9).

Again, to find a representation for the moduli space Mg 5, we will construct the universal
curve on the moduli space with one less marked point, HOA. So let us start off naively with a
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1 0 1

Figure 9: The three singular curves of Mg 4 corresponding to ps = 0, 1 and 0o, respectively.

trivial P! bundle on Mo,m that is P! x P'. This of course is not the universal curve since we
have not yet taken care of singular curves of HOA — there the fibre is not simply P!, but two
P!, the second being the result of blowing up P! x P! at one point in this fibre. Hence, My 5 is
equal to P! x P! blown up at the three points of Mg 4 representing singular curves, 0, 1 and co.
Note that this space is isomorphic to P? blown up at four points, a description used by some
authors. Also note that this description by blow—ups extends to all moduli spaces of genus—0
stable curves (cf. [Kee92]).

Remark 1.7 Pursuing the construction in the above example, one can actually find that for
genus-0 curves, My, is in fact a fine moduli space and a non-singular variety. Although our
applications later on will only involve genus—0 curves and maps we have nonetheless chosen to
introduce My, as stacks, since the corresponding moduli problem for stable maps will no longer
admit a fine moduli space (even for genus—0 maps).

1.3 Line bundles on Deligne—Mumford spaces of genus—0 curves

Later on we will study the action of the big torus (@)d on a toric variety, and in particular
the induced action on the moduli space of stable maps and its fixed points, to eventually apply
Graber and Pandharipande’s Bott residue formula. It will turn out that the fixed point compo-
nents in the moduli space of stable maps are essentially products of Deligne-Mumford spaces of
stable curves. Moreover, we will be able to express the equivariant Euler classes appearing in
the right hand side of the Bott residue formula (7) as the cup product of Chern classes of certain
line bundles on these Deligne-Mumford spaces, the so—called universal cotangent bundles.

Consider the universal curve Cy,, — m(),m and the m sections zy,...,z,, given by the
marked points. Let Kejm be the cotangent bundle to the fibres of Cy ,, — M(),m. Then the it"
universal cotangent line is defined to be L; := 2} (K¢/pq). In other words, over a stable curve
(Ciz1,y. . 2m) € M(),m the fibre of the universal cotangent line bundle £; is just the cotangent
space T, C of (' at the point z;.

For a tuple (dy,...,d,) of non—negative integers satisfying the condition

Zdi = dimﬂum =m — 3,

=1
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define the number (c¢f. [Wit91])

(TdyTdy =+ " Td,,) 1= /ﬂ c (El)dl A A cl(ﬁm)dm. (10)
o,m

Remark 1.8 If the d; do not satisfy the dimension equation ) /-, d; = m — 3, or if one of the
d; <0, we set (14, Td, -~ - Td,,) := 0.

Remark 1.9 Note that these integrals are obviously symmetric in the tuple (dy,...d,,). There-
fore we can abbreviate (4, - -+ 74, ) by using exponents, i.e. {T1717oTo7) simply becomes (r273),
as does for example (117971 7970). Remark that the sum of the exponents still gives the number
of marked points, that is the Deligne-Mumford space of stable curves we are working on.

Example 1.10 We will look in detail at these line bundles on the moduli space HOA which we
have seen to be equal to P, a point (C;0,1,00,z) € Mg, in the moduli space corresponding to
z € P'. The universal curve Mg s is P! x P! blown up at three points — the trivial P! bundle
over P! = Mg 4 blown up at the three points 0,1, 00 of the diagonal, that is when the fourth
marked point z passes through one of the other three. Hence the cotangent bundle K¢,y to
the fibres of the universal curve is given by the cohomology class Fo+ F1 4+ Fo — 2F where the
F; are the exceptional classes of the blow up and where F is the class of the fibre P'.

We have the following intersection pattern between the sections z; and the classes F; and F:

| | Eo | By | P

zg | 0| 1 0 0
zy |0 0 1 0
Too | 0| O 0 1
zqg | 1|1 1 1

Therefore the four universal cotangent lines, that is the pull backs of K¢/ by the marked point
maps ; : HOA — 50747 we all be the same:

['i = ;73?;}(5074/m074 = 0(1)

Therefore the integral of the universal cotangent lines over Mo 4 is indeed one:

/_ L;=1.
Mo 4

It was conjectured by Witten [Wit91] and later proven by Kontsevich [Kon92] that these
intersection numbers fulfil the so—called string equation:

m

(o T 7) = 30y ms T 70 (1)

=1 i=1 i#]

With the obvious “initial condition” {73} = 1 we can thus obtain the following explicit formula
for these products:
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Corollary 1.11 ([HM98, Exercise 2.63]) The intersection numbers (10) on the Deligne-
Mumford space of stable curves are given by:

HTk) mlz)'

Proof: We will proof the lemma by induction. For m = 3, the only non—trivial intersection
product (73) = 1 obviously fulfils the formula. So assume that the formula holds for m > 3.
Since an (m + 1)-point intersection product can only be non-—zero if m — 2 = Z:r:il k;, there
exists an 7 € {1,...,m+ 1} such that k; = 0. Without loss of generality we can assume k; = 0.
Hence, by the string equation (11) we get

m+1 m+1
(o [T ) = D (-1 [T 7w
i=2 i=2 =y
_ %?Un—wbh
7=2 H;n:-gl kl'
_ (m-3)
Ik
(m —2)! sy

= 7Hm+1k' asZk_m 2.

Hence the desired formula. O

Example 1.12 As an example we will give the intersection products on the Deligne-Mumford
spaces with four and five points, respectively:

1!
3\ _
(70) = Tior0m01 =
91
4\ _ _
(r270) = Sigmm0101 = (12)
2.3 2' 2
('70) = Tmomon0r = 2

Note that the four—point integral is the same we have looked at in example 1.10.
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2 The moduli space of stable maps

Kontsevich’s notion of a stable map to a smooth variety X is a generalisation of stable curves.
In fact, if we take the variety X to be a single point X = {pt.}, the two notions are identical. In
this sense, stable maps are the biggest possible generalisation to stable curves: basically a stable
map is a map of a prestable marked curve to X, where all irreducible components mapped to a
point are required to be stable:

Definition 2.1 Let m,g > 0 and X be a smooth variety. A genus—g stable map to X with m
marked points is given by a genus—g prestable curve m : C' — S with marked point sections
z; + S — C, and a morphism f : C' — X satisfying the following condition that for each
geometric fibre Cs, the non-singular components E of Cs that are mapped to a point by f satisfy
the stability condition 5 of definition 1.1, that is

1. each non-singular rational component F of Cs that is mapped by f to a point contains at
least three special points;

2. each non-singular elliptic component E of Cs that is mapped by f to a point contains at
least one special point.

A morphism of stable maps (7 : C' — S;z1,...,2m; f) and (7' : C" — S’ 20, ... 2l f) is
a morphism of the two prestable curves commuting with the morphism f and f': f = f' o ¢:
f/
ooty

el

S ——=S.
Such a morphism is a isomorphism if the underlying morphism of prestable maps is one.

Now, for the moduli space of genus—g stable maps to X with m marked points we only look
at maps f : C' — X such that the push forward of the fundamental class [C] of each geometric
fibre Cj is a chosen homology class A € Hy(X,Z) of X, f.[Cs] = A.

Definition 2.2 Let A € Hy(X,Z) be an integral degree-2 homology class of X. We denote by
Mﬁm(X) the category of genus—g stable maps to X with m marked points, such that the push
forward by f of the fundamental class [C] of the fibres is f.[Cs] = A. The morphisms in this

category are the morphisms between stable maps.

Example 2.3 As mentioned at the beginning of this section, if X = {pt} is just one point, the
moduli stack of stable maps is equal to the moduli stack of stable curves:

Mg ({pt}) = M.
More generally, if the degree-2 homology class A is zero, the moduli stack of stable maps is the

product of the moduli stack of stable curves and the variety X

M‘27m(1¥) - m‘%m X /Y.
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The dimension of the moduli stack is a priori not known. However, by Riemann-Roch
arguments, one finds that the virtual dimension of the moduli stack of stable maps is given by

dimyir M2 (X) = (1 - g)(dim X — 3) + (1 (X), A) + m.

Unfortunately, even if the moduli stack is not empty altogether, the virtual dimension and the
actual dimension of the moduli stack almost never coincide.

Example 2.4 A rather classical example for when the virtual dimension of the moduli space
does not coincide with the actual dimension is the following (see e.g. [Aud97]). Let X = [P?
be the two dimensional complex projective space blown up at one point, and let A = 2F where
FE is the class of the exceptional divisor. So the virtual dimension of the corresponding moduli
stack M%%(@?) of genus zero stable maps without marked points is equal to 1. However, since
maps in the class 2F have to lie in the exceptional fibre, this moduli stack is equal to the moduli
stack of degree 2 stable maps to P':

MEE(P2) = M2H(PY),

where H is the fundamental class of P'. The virtual dimension of the latter moduli stack is two,
which is in fact equal to the factual dimension since P! is a convex variety (see example 2.5).

Example 2.5 Convex varieties are among the few exceptions where the Riemann—Roch formula
actually gives the accurate dimension of the moduli stack of genus zero stable maps. A smooth
projective variety X is called convez if for every morphism f: P! — X,

H'(P', f*TX) = 0.

Examples of convex spaces include all homogeneous spaces G/P where GG is a semi—simple
Lie group and P is a parabolic subgroup. Hence, projective spaces, Grassmannians, smooth
quadrics, flag varieties, and products of such spaces are all convex. The beautiful paper of
Fulton and Pandharipande [FP97] gives a very detailed account of genus zero stable maps to
convex manifolds.

The following well-known lemma provides us with an equivalent criterion for stability that
we will use later on.

Lemma 2.6 Let C' be a marked rational curve with singularities (over S = Spec C) that are at
worst double points, and let D be the divisor given by the marked points. Further, let X be a
smooth variety and f : C — X be a map.

Then the map f is stable (with respect to the given marked points) if and only if the following

map induced by the natural map f*QY N QL — QL(D) is injective:

Hom(Q4 (D), Oc) —2— Hom(f*QY, O¢).
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Remark 2.7 The above lemma generalises directly to any pre-stable curve = : ' — S with
marked point sections z; : S — C and a morphism f: C — X: the tuple (C' — S;z; f) is a
stable map if and only if the morphism

ROﬂ'*Hom(QIC/S(D), Oc) — R'm.Hom(f*QY%, Oc)

is injective. This follows directly from the fact that a morphism of sheaves is injective if and
only if it is injective on each stalk, and from the property that

ROﬂ'*Hom(Qé/S(D), Oc)s = Hom(Q (Ds), Oc,) and
R°m Hom(f*Q%, 0c)s = Hom(f:Q%, O0c.).

The latter is implied by Grauert’s continuity theorem (see for example [BS77, Théoreme 4.12(ii)]).

Proof (Lemma 2.6): We will prove the lemma by induction on the number of irreducible
components of C'.

To start with assume that C' is irreducible, that is C' =P If f:C — X is not constant, f
is always stable. So we just have to show that ® is always injective. But in this case, ¢ = df is
surjective such that even Hom(Q%, O¢) — Hom(f*Q%, O¢) is injective.

If on the other hand f is constant, ¢ = df = 0 is trivial, and so is the induced map ®
between the homomorphism groups. Thus, ® is injective if and only if Hom(Q} (D), O¢) = 0.
Since C' = P! is just the projective line, the sheaf of differential forms on C' with poles along D
is just QL(D) = O(-2) ® O(|D|) = O(|D| — 2), where |D| is the number of marked points on
C. Hence Hom(QL (D), O¢) = 0 if and only if | D] > 3, which is exactly the stability condition
for f.

Let now C' be a rational curve with double points. So C has at least two irreducible com-
ponents; let £ = P! be one of these components and €' = E U C’, C' being the union of the
remaining irreducible components of C'. Denote by D and D¢ the subset of D containing the
marked points on F and points of E and C".

Locally, around such an intersection point p € S, the ring of local functions on C' is given
by Oc = (z,y]/{zy) where E corresponds to the line, say, (z], and C’ to the line (Jy], both
glued together at (0,0). Differentials on C' pull back to differentials on ¥ and C’, with simple
poles on the intersection points p € S. In fact, the two restrictions, to E and C’, of a differential
on C' have the property that the sum of their residues around each double point is zero:

YweQ,vVpe S : res, W) + Tesp, wicr = 0.

And vice versa: any two forms wg € Q};(5) and wer € QF,(S) on E respectively C’, with simple
poles at the intersection points p € S, glue together to a form w € Qf on ' if and only if they
satisfy this residue condition. Locally, the sheaf of differentials of C around such a point is hence
given as a Og—module by generators dz, dy and relations (z2dy, y*dz, zdy + ydz). Thus we get
in particular the following short exact sequences of Og—modules:

0 —— QL(Dor + S) —— QL(D) —— Qp(Dg) —— 0

0 —— QD+ S) —— QL(D) —— Q& (Der) —— 0,
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where around a double point the morphisms are given as follows:
0 —— (3de) —— (d,dy)/2ayavwiyiyasy — (dy) —— 0
lde —— ydz = —zdy
de  +—— dx
dy —  dy.
So now suppose f is stable and assume that ® is not injective. From the short exact sequences

above we obtain the following diagram with two long exact sequences of homomorphisms:

0 —— Hom(QL(Dg),0p) —2E— Hom(QL(D), Oc) —2¢ Hom(QL,(Der + S), Oc)

Js Js..

Hom(f*QY,0c¢) ——  Hom((f|c/)*Q%, Ocr)

Hom(f*Q%,0c) —— Hom((f|g)*Q%, Or)

TCI) T@E
0 —— Hom(Ql(Der), Oci) &, Hom(QL (D), O¢) AN Hom(QL(Dg + S), Og).
Let a € Hom(QL(D),O¢) be a non—trivial homomorphism such that ®(a) = 0. So its
images in Hom((f|g)*QY%, Or) and Hom((f|c/)*QY, Ocr) must also be zero. But f is stable, so
& and v are injective by induction and hence fg(a) = 0 = Ber(e). Therefore there exist
non-zero a¢, ag such that vg(ag) = a = y¢r(acr). But by the very construction we have

ve(ag)|lor = 0 =vor(ag)| g,

a contradiction to a being non—trivial. Thus our assumption was wrong and ® is indeed injective.

Now to prove the other direction, let ® be injective. By definition f is stable on C if it is
stable on (C', DcvUS) and (E, DpUS). So by induction all we have to prove is that ®5 and ¢
are injective. So by using one of the above exact sequences we obtain the following commutative
diagram:

0 «——— Hom(QL(Dg+ S),0r) +—— Hom(QL(D),0c) +—— Hom(Q}, (Do, Oc)

Jos o

Hom(f*|EQ§(,(’)E) —— Hom(f*Q}(,(’)g).

Suppose there exists a non-zero & € Hom(QL(Dg+5), Og), a # 0, such that ®(a) = 0. Since
the map v is surjective, we can therefore find a non-zero a¢ € Hom(QL(D), O¢), ac # 0 that
maps to a: y(ac) = a. Since we have supposed ® to be injective, the image of a¢ is therefore
non-zero as well:

0 # ®(ac) € Hom(f*Q%, Oc).
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On the other hand we have that r(®(ac)) = ®g(y(ac)) = Pg(a) = 0, so (o) has support
outside of F:
supp®(ac) C C' — E.

So in particular, there exists a o, € Hom(Q¢ (D), O¢) that maps to ®(ac) = P(ay) and
such that suppay, C C' — E. Since ® is injective, ac = af,, and therefore a = 0 which is a
contradiction. The part of the proof for C’ is analogous. (|
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3 Gromov—Witten invariants

Gromov-Witten invariants of a (complex or symplectic) manifold X are defined using intersec-
tion theory on the moduli space of stable (holomorphic or pseudo-holomorphic) maps to X.
They are invariants of the deformation class of the symplectic structure w of X, so in particular
they ought to be independent of the (pseudo—)complex structure .J compatible with w.

Now, it is already easy to find examples where the dimensions of the moduli spaces of
stable maps corresponding to different w-compatible (pseudo-)holomorphic structures are not
the same. However, for a (pseudo—)holomorphic structure J, J-holomorphic maps ¢ to X are
characterised among all maps to X by the vanishing of the 07 operator: d;¢ = 0. So by the
Riemann—-Roch formula we get a virtual (or expected) dimension of our moduli space:

dimvir./\/lﬁm(X) =(1-g)(dimX —3) + (c1(X), A) + m,

that would be the dimension of ./\/lﬁm (X) if 0y were transversal to the zero section of Q%l(f*TX)
at each stable J-holomorphic map f:C — X in Mﬁm(X).

Two different approaches have been developed to solve this problem: one is to try to make
07 transversal to the zero section, the other is to use principles of excess intersection theory to
obtain a cycle in H, (Mﬁm(/Y)) of degree equal to the virtual dimension dimvir./\/lﬁm(X) of the
moduli space. The former has been pursued by Ruan and Tian ([RT95]) for weakly monotone
symplectic manifolds.

The latter has been developed by Behrend and Fantechi as well as Li and Tian ([BF97,
Beh97, L.T98b]) for all smooth projective complex varieties, and by Fukaya and Ono, Li and
Tian, Ruan, and Siebert ([FO96, LT96, Rua96, Sie96]) for all smooth symplectic manifolds'®.
The basic idea of the construction is as follows: Consider a smooth variety W, two smooth
subvarieties X, Y of W, and their intersection Z:

Z — X
L
y L w.

Now, if X and Y intersect properly, i.e. if dimZ = dim X + dimY — dim W then the
fundamental cycle of Z is the intersection of the fundamental cycles of X and Y: [Z] = [X]-
[Y]. Otherwise, using excess intersection theory we can find a cycle in the Chow ring A.(7)
representing [X]-[Y], the virtual cycle of Z: [Z]¥'". Let s : Z = Cyyw Xy Z be the zero section
of the normal cone to Y in W pulled back to Z. Then [Z]""" is the intersection of the zero section
s with the normal cone C'z/x to X in Z:

[Z]Vir =s" (CZ/X)7

where s* : A, (Cy w Xy Z) — A.Z is the Gysin morphism induced by s.

"Of course, this class of manifolds includes the smooth projective complex varieties, though the constructions
by Behrend and Fantechi, and Lian and Tian are entirely in the algebro—geometric category. In particular,
Behrend and Fantechi construct a cycle in the Chow ring A*(M;m(X)) of the moduli space.
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Unfortunately, for our moduli problem such an ambient space W and maps X, Y — W do
not exist naturally such that X Xp Y is the moduli space and [X]-[Y] a virtual moduli cycle with
the properties we want. Instead, the construction will use an obstruction theory for Mﬁm (X)),

a two-term complex F*® on Mﬁm (X) with rk E* = dimvir./\/lﬁm(X).

We will first sketch the definition in some generality, and then apply it to the moduli space
of stable maps and Gromov-Witten invariants.

3.1 The intrinsic normal cone

Let Y be a Deligne-Mumford stack, such as ¥ = Mﬁm(X). For a two-term complex F* =

[F° A F'] of abelian sheaves on Y, we define the stack theoretical quotient
RY/RO(F*) = [/ F°]

via the action of F° induced by d. Now, if F'* is a complex of abelian sheaves of arbitrary length,
we consider the following two—term cut—off

Mo = [cok(F~1 — F%) = ker(F! — F?)],

and define A'/RO(F*) := h' /RO (719 11F*).

Let Y be a Deligne-Mumford stack as above. The intrinsic normal sheaf My is defined to
be

Ny = h'/hO((L})Y),

where L3 is the cotangent complex of Y (see for example [Buc81, llI71] for its definition and
properties on schemes, and [LMB92] for its generalisation to algebraic stacks).

We will now give the construction of the intrinsic normal cone €y of Y (cf. [BF97]). To do
so, we have to consider so—called local embeddings of Y:

U—— M
f

|

where

1. U is an affine scheme of finite type,
2. ¢:U — Y is an étale morphism,
3. M is a smooth affine scheme of finite type,

4. f:U — M is a local immersion.

Consider the normal cone Cyy/pr of U in M that is naturally an f*T'M—cone, that is the vector
bundle f*I'M acts on Cp/ps. Behrend and Fantechi have shown that there exists a unique
closed subcone stack €y < 9y, such that locally the intrinsic normal cone is given by €y |y =
[Cum/ F*TM] ([BF97, Corollary 3.9]). In particular, the construction is independent of the
local embedding (U, f, M) of Y. The intrinsic normal cone €y is of pure dimension zero ([BF97,
Theorem 3.11]).
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3.2 Perfect obstruction theory and virtual fundamental class

Finally, to get the virtual fundamental class we want to take the intersection product of this
intrinsic normal cone €y with something like a zero section of My = A'/h°((L$)V). To achieve
this technically, we have to introduce the notion of (a global resolution of) a perfect obstruction
theory ¢ : F* — L°*.

Definition 3.1 LetY be a Deligne-Mumford stack, that is, an algebraic stack with unramified
diagonal.

Let E* = [E~' — EY] be a two—term complex of vector bundles on'Y. Then a morphism in
the derived category from E* to the cotangent complex LS

¢:E*— Ly
is called a perfect obstruction theory for Y if h(¢) is an isomorphism and h™'(¢) is surjective.

Remark 3.2 The definition of a perfect obstruction theory in [BF97] is more general than the
one given here, that is they consider two—term complexes of locally free sheaves £*. A two—term
complex of vector bundles E'* as above, that is, isomorphic to £* in the derived category is then
called a global resolution.

The morphism ¢ induces a closed immersion ¢¥ : 9y — h'/A°((E*)Y) (Proposition 2.6 in
[BF97]), so Ey = E-"Visa global presentation of h!/hY((L*)Y) and €y — 91y embeds into F;.

Consider the fibered product
C(E.) —_— E1

! !

Q:Y —_— [El/Eo] .
Hence, C'(FE*) is a closed subcone of the vector bundle Fy. Locally, for a local embedding U — M
as above, i*C'(F*) is those just given by

TC(E®) = (CU/M XU ('i*Eo)) /fTM.

By this construction, C(£*) — €y is smooth of relative dimension rk Fy. Since the intrinsic
normal cone €y is of pure dimension zero, C'(E*) is thus of pure dimension rk Ey.

Definition 3.3 Let Y, C(E*) and F; be as above. Let n =1k E* = tk E° —tk E~! = 1tk Fy —
rk 'y be the virtual dimension of Y with respect to the obstruction theory FE*®. The virtual
fundamental class [Y, E*] € H,(Y,Q) of Y is the intersection of C'(E*) with the zero section of
Fi.

Remark 3.4 The virtual fundamental class is independent of the choice of the perfect obstruc-
tion theory within a quasi-isomorphism class. That is, if F* is another perfect obstruction
theory and 9 : F’* — FE* a quasi-isomorphism, % naturally induces the identity map for the
virtual fundamental classes associated to F'* and E* ([BF97, Proposition 5.3]).

By abuse of notation, we will often write [Y]VI* for the virtual fundamental class [Y, £*] when
it is understood which obstruction theory is used.
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3.3 The obstruction complex for the definition of GW invariants

We will now describe the obstruction theory used for the definition of the Gromov-Witten
invariants of a smooth projective complex variety X. Moreover, if there is an action by a torus
Tx on the variety X, this obstruction theory will be Th—equivariant.

Let X be a smooth projective complex variety, A € Hy(X;Z) an integral degree—2 homology
class of X, and ./\/lﬁm(X) the corresponding moduli stack of stable m—marked genus—¢g maps to
X. Let 7 :C/ (X) — M2, (X) be the universal curve, and let z; : M7, (X) — C2,.(X)
(¢ =1,...,m) be the marked point sections. We will denote by D the divisor defined by the
images of the marked point sections z;.

Remember that Behrend and Fantechi have given an obstruction theory for the problem
relative to the stack of prestable curves:

Theorem 3.5 ([Beh97, BF97, BM96]) Consider the canonical morphism from the stack of
stable maps to the stack of prestable curves

p : 'MgA,m()() — m‘%m’

given by forgetting the map, retaining the curve (but not stabilising). Then Mﬁm (X) = Mym
is an open substack of a relative space of morphisms, hence it has a relative obstruction theory
which is given by
) v
¢ (R f'TX) — L:\Ag{m(X)/mtg,m'

Here m : CA, (X)) — M2, (X) is the universal curve and f : C — X is the universal stable

g7m g7m

map. O

The two—term resolution by locally free sheaves of this relative obstruction theory is obtained
by applying the following proposition:

Proposition 3.6 ([BM96, Proposition 3.9]) Let S be a finite type algebraic stack, and let
(Csz; f) be a stable map over S to X. Let V' be a vector bundle on C, and M be an ample
invertible sheaf on X . Then the sheaf

L= wc/s(ﬂfl +...42,)® f*M®3
is ample on the fibres of m : C' — S, so for N sufficiently large we have that
1 . (V® L®N) — V@ L®N s surjective,
2. Rz, (V® L2N) =0,

3. for all s € S we have that H*(C,, L) = 0.

So if we set (cf. [Beh97, Proof of Proposition 5])

F=rm(VeLl®)e LN
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and let H = ker(I" — V') be the kernel, we obtain a short exact sequence

0 y H y I » V > 0
of vector bundles on C'. Moreover, for every s € S we have
HY(C,, F) = HYCs,m (Ve L), L8N
= HYC, LMy or (Ve L), =0,

implying H°(Cy, H) = 0 as well. Hence n.H and m.F are zero, and R'm,H and R'mF are
locally free, which implies that

Rr.V = [R'r.H — R'1,F]

is a two—term resolution of Rm,V by locally free sheaves.

Moreover, if there is an action of a torus Thx on X, this construction is obviously Txn—
equivariant, so by taking V = f*T'X we get a Ty—equivariant two—term resolution of Rm, f*T X
by free sheaves.

Now consider the following cartesian diagram where 7 : C — M is a stable map to X, and
p: M — S is the forgetting map, i.e. Z — S is a prestable curve:

Ze— ¢ L x

°| |
S 2 M.

Remember that if we have two morphisms of schemes (or stacks) U IV S W owe get a
distinguished triangle of cotangent complexes:

W Ly —— L —— Ly —— b Ly 1]

Moreover f*Q% = f*L% naturally maps to L&, so we get the following diagram:

% L Lejm == T7Lys

T Ls ———— 7 p*LY[1].
This diagram is in fact commutative, since ¢ is flat and so by [LMB92, (9.2.5)] we have

T Lys @7 Liyys — L¢)s,
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and the morphisms in the diagram above are just the morphism induced by the distinguished
triangle

T'p* Ly > Lo » Less > T p* Lg[1].

Applying the cut—off functor 759 to f*Ly — LE/M and taking the mapping cone yields the
following diagram in the derived category:

Y —— QD) —— O[S D, (D)

! ! !

Ly — T p*LE[l] —— T L54([1].

L
So if we set F* := R, <(f*ﬂ§([1] P Qé/M(D)) ® WC/M) we have shown that there exists

a morphism
¢ B —— LY.

This morphism is a perfect obstruction theory for Mﬁm (X) if
(a) there exists a two-term resolution of E* by locally free sheaves;
(b) h%(4) is an isomorphism and A7!(¢4) an epimorphism.

Moreover, for a variety X with a Ty—action, this perfect obstruction theory is Thn—equivariant

if
(a*) there exists a Ty—equivariant two-term resolution of F* by locally free sheaves.
Claim 3.7 Let wep be the relative dualizing sheaf of ©: C — M. The morphism

¢ E* —— LSy

is a perfect obstruction theory for the moduli stack of stable maps Mﬁm (X). If there is a torus
Tn acting on X, this obstruction theory is Ty —equivariant.

Proof: First of all, to get a two—term resolution of Rm,E*® that is Ty—equivariant if such an
action exists on X, we will use similar arguments as above (for Rm, f*TX): let L = we/apm(D) ®
f*M®3 as before (i.e. M is an ample invertible sheaf on X') and take

Fi=rrn(f Q%@ L®")@ L8N and H :=ker(F —— f*Q%).
Now consider the complexes (cf. [LT98b, section 4]) indexed at —1 and 0
A.:[H(X)WC/M—}O] and B.:[F@)WC/M_>Qé/M(D)®wC/M]7

where the morphism in B* is induced from the composition map FF — f*Q% — QC/M(D).
Hence there are morphisms

R'm (F ®@weym) — R'm(f*Q @ weym) 2 R'n.B°
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where « is surjective by lemma 2.6 and duality. As before we also have
HY(Cy, F @wepp) = HOChmu(f" Q% @ L¥V), @ LP™N @ O )
= HYC, LY ™M) @ m(Qk @ L¥N) @ Omy =0,

so ROm(H @ weypm) = RO (F ®@ weypq) = 0. Observe that the complex B* fits into the short
exact sequence

0—>Qc/M(D)®wc/M s B® )F@wc/M[l]—>0,
therefore we get a corresponding long exact sequence of higher direct image sheaves:

0—— R'mB* —— Rm(F @ weyjpm) — Rom(Qé/M(D) ®weym) — ROm, B —

=0 .
s R'm(F @ weyp) —2 R () pa(D) © weyag) —— R'mB® —— 0.

Hence R'm,B* = 0 for i # 0. Moreover, since Riﬂ'*(H ®@weym) = 0 for @ # 1, we also get
R'm A* = R (H @ weyamq) = 0 for i # 0. Now note that these two complexes fit into the
following short exact sequence:

0 > A* » B r (FQx[1] @ Q¢ yp(D)) © weypa — 0,
yielding the long exact sequence
0 —— A Y(E*) —— R'm.A* —— R'm.B* —— h°(E*) —— 0.
Thus we have found a two—term resolution of K* by locally free sheaves:
E* > [R7n,A* — R°7.B°].

Moreover, the entire construction is Ty—equivariant, so we actually have found a Ty—equivariant
resolution of F*, if such an action exists on X.

Finally, we observe that ¢ : Rﬂ'*(ﬂé/M(D) ® weym) = p*Ly in the derived category. Then
by using the fact that ¢ : (Rm. f*TX)Y — L:\A/S is an obstruction theory for the relative
problem, and by applying the five lemma we get that A°(¢#) is an isomorphism and that A~!(¢)
is surjective:

0 —— BB —— (R'mSfTX) —— R'm(Qeym(D) @ wepp) ——
R J+ N
0 — h_l(L;\Aém(X)) — h_l(LM;m(x)/sng,m) — he(p*Lay, ) —
— K(E) —— (B'mfTX) —— R'm(Qeym(D) ®weym)
lo L -1

— hO%(L%,4

g,m(X)) N hO(L:M;m(X)/mg,m) - hl (p*sztmyg)
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Hence ¢ : E* — L5 4 (X)
g,m
moduli stack of stable maps MZ, (X). O

is indeed a (Tny—equivariant) perfect obstruction theory for the

That is exactly the obstruction theory we will use for the definition of the Gromov-Witten
invariants. Note that it gives the same virtual fundamental class as the relative obstruction
theory used by Behrend in [Beh97] (see also the remark by Siebert in [Sie97b]), as well as Li
and Tian’s theory in [LT98a]. To see the latter, look at the dual complex to E*,

Ey = RHom(E*, Opa  (x))
~ [(RO7.B*)Y —— (R°m,A®)Y]
= [R'7.[F — Q) p(D)])Y — R'm[H — 0]Y]  (by duality) (13)
= [Ext}([F — Qb u(D)], Oc) —— Extl([H — 0], Oc)]
~ R Hom([f* QY — Q% m(D)], Oc).

Remark 3.8 Note that we have used above that by [Har66, lemma I1.3.1, proposition 1.5.4]
there exists a morphism of functors

¢:R(reoHom( ,0¢)) —— Rm.oRHom( ,Oc¢),
and that this morphism ( is an isomorphism. For convenience we also use the notation
Exti( ,0c)i= Ri(r.oHom( ,0)).
Therefore, the E;’s fit into an exact sequence
0—7T° S FEy—FE —T'—0,
where the sheaves 7¢ are given by taking cohomology of F,:
T' = Exty ([f*Qy = Qea oxoyyma, x) (D)) Ocs (x))- (14)
Remark 3.9 Contrary to [LT98a], the complex [f*Q} — QCﬁm(X)/M;;{m(X)(D)] in (14) is in-
dexed at 0 and 1, instead of —1 and 0, moving the 7 complex to the left.

Let us end this subsection with a lemma about how this obstruction theory behaves under
base change. This lemma will be used when we pass to the fixed point components of the torus
action on the moduli space in section 7.

Lemma 3.10 Letw :C — M be a stable map to X that is an atlas for Mﬁm (X). Furthermore,
let ¢ : Mp — M be a subscheme, and look at the cartesian diagram

o —— ¢ L x

| |

Mr —L—> M.
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Let fr := foi. Then the restrictions of the obstruction theory E* and its dual F are given by
. * )1 1 L
E*|mp = R <<fFQX[1] D QCF/MF(DF)) & wCF/MF)
Eo|mp = RHom,: ([ff2x — Qe pur (Dr)]; Ocy)-

Proof: We will prove the lemma for the obstruction complex E*, the arguments for the dual
complex F, are similar. There is a natural morphism

L
Rr., ((fﬁﬁ}([l] b QéF/MF(Dr)) ® wcF/MF) —— E*|

and we have to show that this morphism is a isomorphism in the derived category, i.e. a quasi-
isomorphism between complexes. Let K*® := [f*Q} @ wem — Qé/M(D) ® we/ml, indexed at
—1 and 0. We then have to show that

(Rim.K*)

My = R (K®ep).
Now K* fits into a short exact sequence of complexes

0 s A* s B* s KC* 5 0

such that Rim,.A®* and R'w.B* are locally free and

Rr . K* = [ROF*.A. — ROW*B.]
(see above). Since 7 is a proper flat morphism, we have by Grauert’s continuity theorem (see
for example [BS77, Théoreme 4.12(ii)]) that

(Rim.A) = Rirr. (B%c,).

T

My = RZWF*(A |CI‘) and (RZ'/T*B ) M

This yields the same property for the complex K°. O

3.4 Definition of the Gromov-Witten invariants

In the previous section we have constructed a (7ny—equivariant) perfect obstruction theory
for the moduli stack M2, (X). Hence we get a virtual fundamental class [M, (X)]"'" =
(M2,.(X),E*] € Hy(M},.(X),Q), where n = rk E* is equal to the virtual dimension of

M2 (X): = (1-g)(dim X = 3) 4+ (c1(X), A) + m. So for cohomology classes ay,..., o, €
H*(X,Z) and 3 € H*(M,,,) we define the Gromov-Witten invariant \Ilfw (8504, ...,0k) by:

\Ilig(ﬁ;ozl,... y Oy 1= evi (a1 @ ...Q apy) AT 3,

/[J\’i;;‘,m(X)]Vir

where ev : M# (X) — X®™ is the m—point evaluation map, and 7 : M7}, (X) = M, the
natural forgetting (and stabilisation) morphism.
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Remark 3.11 Since we eventually want to apply Graber and Pandharipande’s Bott residue
formula to compute the integral defining the Gromov-Witten invariants, we will have to express
the cohomology class in the integral in terms of Euler classes of some bundles. The class
ev* (a1 ®@...® ) will pose no problems to this respect. For the class 3 € H*(M,,), however,
we will restrict ourselves to the case where § =1 = P.D.(Mﬁm(X)) is trivial, and thus only

study Gromov-Witten invariants of the form
A A
O, lan, o) =0 (Lo, ).

Note that for m = 3 and g = 0, the Deligne-Mumford space of stable curves is a point, hence
[ =1 is the only class that exists.

Due to this restriction, care will have to be taken when applying our formula to computing
quantum products of more than two factors using Gromov—Witten invariants of m > 3 marked
points. In this case, we would have to choose 3 = P.D.(point) € H*(My,,). The formulas
below will then have to be adapted accordingly. We can avoid this problem by just carrying out
the quantum multiplications one after another.
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4 Torus action and localisation formula

In this section we will sketch the construction of Graber and Pandharipande’s localisation for-
mula for the virtual fundamental class (see [GP97]). Let Y be a Deligne-Mumford stack with a
C*—action, admitting a C*—equivariant perfect obstruction theory

¢:E*=[E™' — El —— L},

that is ¢ is a morphism in the derived category of C*—equivariant sheaves. Note that the cotan-
gent complex has a natural C*—action induced from the action on Y. Since the intrinsic normal
cone €y of Y is invariant of the action, the construction above actually yields an equivariant
fundamental class [Y, E*] € HE (Y, Q) in the equivariant homology.

We will fix the perfect obstruction theory once and for all, and will write [Y, E*] = [Y]"I" for
the virtual fundamental class of Y and FE°. Let Y;, © € Z be connected components of the fixed
point set of the C*—action on Y.

In the following, we will always work in a local embedding

v o 4om

il
Y

of Y. By abuse of notation we will write Y instead of U, and Y; instead of their restriction to
U. We can then look at the restriction of F* to the fixed point components Y;,

Ef =[E7'® Oy, — E} @ Oy]
that naturally maps to the restriction to Y; of the cotangent complex L3,
LY ly; = yyu/ Ty ® Oy, — Q5 @ Oy].

Observe that for the restricted map ¢; : Ef — L} |y, we still have that h%(¢;) is an
isomorphism and h~'(¢;) a surjection.

The restricted complex F? will yield both, a perfect obstruction theory for the fixed point
component Y; as well as the the virtual normal bundle used in the localisation formula. Basically,
the former will be the part of E? fixed by the C*—action, the latter being induced by its moving
part.

So in general, let F be a coherent sheaf on Y; with a C—action. Let F = @5 F* be the
character decomposition of F into C*—eigensheaves of Oy,—modules. We will use the following
notation for the fixed and the moving subsheaves:

Flix .= F0 — the fized subsheaf
JFrmove = @k;{;ofk — the moving subsheaf.

The cotangent complex of Y restricted to Y;, L3-|y;, naturally maps to the cotangent complex
of Y;
LY, = [Ty, a /gy, — Qy, @ O],

where M; C M is a non—singular connected component of the C*—fixed locus of M containing
Y;.
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fix
Lemma 4.1 ([GP97]) The composition 1 : E;’ﬁr ¢—‘> Ly |y, — LY. is a perfect obstruction

theory for'Y;, where qbfx E ’ﬁr — L} | is the fized map.

Proof: Obviously, E;’ﬁx is a two—term complex of vector bundles. So we will have to show that

h9(7) is an isomorphism and that A=1(z) is surjective.
It is easy to see that ho(qb?x) is an isomorphism since the following sequence is exact:

E_Lﬁx — Eo’ﬁx @ (Iy/M/]}Q//M ® O}Q)ﬁx — (9]1\4 ® OYz‘)ﬁX — 0 (15)

We also have (9} ® (’)y)ﬁx Ql which is just that zeroth cohomology of the fixed part of the
restricted cotangent complex of Y LY v.; as well as of the cotangent complex of Y;, L3.. Hence
hY(%) is an isomorphism.

To show that A~ (1)) is surjective, first observe that the map

Iyynr/ Iy © Oy, — Iy / 3y,

is surjective, and thus so is
L' — Ly —0.
Since LY 1}3‘ = L% = Q;; @ Oy, this implies that the map LY vy, — Ly, is surjective on

cohomology in degree —1. The exactness of the sequence (15) also implies that ¢?X is surjective
on degree—(—1) cohomology. Hence so is 1. O

Definition 4.2 Let Y be a Deligne-Mumford stack with a C*—action and a C*-equivariant
perfect obstruction theory ¢ : E* — L3-. LetY;, i € 1 be the connected fized point components

of the C* —action, and let 1); : E;’ﬁx — Ly, be the perfect obsiruction theory for Y; constructed

above. We will call [Y;, E;’ﬁl] the virtual fundamental class induced by [Y, E*], and will write
[Y]mr — Y;,E 7ﬁ7«1

Definition 4.3 Let Y;, E? be as above. Let FE,; = (E?)Y be the dual complex. We define the
virtual normal bundle N" to Y; to be the moving part of F, ;:

N = B (16)

Note that rk NY' = rk F*|y, — vk E?, hence the rank of the virtual normal bundle is constant
on each fixed point component. Since moreover the virtual normal bundle has no fixed subbundle
under the C*—action, its equivariant Euler class exists:

([NVII‘ s NVII‘]) = (NVII‘ NV]I‘)

We are now able to formulate Graber and Pandharipande’s localisation theorem for the
virtual fundamental class:
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Theorem 4.4 (Localisation formula [GP97]) LetY be an algebraic stack with a C* -action
that can be C*-equivariantly embedded into a non-singular Deligne-Mumford stack. Let ¢ :
E* — L} be a C—equivariant perfect obstruction theory for Y, and let [Y, E*] and [Y;, E?]
be the virtual fundamental classes of Y and E°®, and of the fixed point components Y; and the

induced perfect obstruction theories E, respectively. Then

. [Yi, E7]
V,E* =0 R
[ ) ] L - eC* (]Vimr)

where NP is the virtual normal bundle to Y; defined above.

As a corollary we get the virtual Bott residue formula:

Corollary 4.5 (Virtual Bott residue formula [GP97]) Let G be a C —equivariant vector
bundle on'Y, of rank equal to the virtual dimension of Y, tkG = dim [Y]"" = rk E®. Then the
following virtual Bott residue formula holds:

- (G
/[y]m e(@) = Z/ Juir € (Nyiry (17)

in the localised ring A% (Y )2 Q[u, i], where the bundles G; are the pullbacks of G underY; < Y.
U

Remark 4.6 Note that the formula indeed makes sense: since kG’ = dim [Y]¥"" we actually

[ =] @
[Y]vu [Y]vu

In particular, the right hand side of equation (17) takes values in @, not just in a polynomial
ring over Q.

have

Remark 4.7 Note that we can replace in all statements above the one—dimensional torus C*
by a higher dimensional torus (C*)?. In fact, if we diagonalise the (C*)%-action we get d com-
mutative C*—actions. We thus can apply the localisation formula d times, to get the statement

for the (C*)?-action.
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5 Preliminaries on toric varieties

In the preface of his “Introduction to Toric Varieties” [[Ful93], Fulton writes “Toric varieties
provide a quite different yet elementary way to see many examples and phenomena in algebraic
geometry”, and that “toric varieties have provided a remarkably fertile testing ground for general
theories.” In fact, toric varieties are not just algebraic varieties, thus being a good class to
understand phenomena in algebraic geometry, but in many cases they are as well projective,
hence admitting a Kihler class — in other words, quite often they are algebraic varieties and
symplectic manifolds, therefore being in our opinion the ideal testing ground for understanding
the theory of Gromov—Witten invariants that has been established in the algebro—geometric as
well as symplectic category.

In this section we will remind the reader of the definition and basic properties of toric
varieties. Everything has of course been well known, see for example (in alphabetic order)

[Aud91, Bat93, Cox97, Dan78, Del88, Ful93, Oda88s].

5.1 Definition of toric varieties

Given this nature of toric varieties, it will not come as a surprise that there are several ways
to define or characterise them. Before we will describe them for general (smooth projective)
toric varieties, we will illustrate the general ideas behind these constructions with the example
of projective space P".

One possible way to look at n—dimensional projective space P is as a compactification of
the n—dimensional algebraic torus (C*)™” by lower dimensional tori (C*)", r < n. Here C* is
the affine complex space with the point zero removed, C* = C — {0}, and the zero—dimensional
torus is by definition a single point. The line P!, for example, is the one-dimensional torus C*
compactified with two zero—dimensional tori (see figure 10). The plane P?is the compactification
of (C*)? by three P! intersecting in three points, or — using the above description — by three
one-dimensional tori C* and three zero-dimensional tori (see figure 11).

o

o
Figure 10: P! as compactifica- Figure 11: P2 (C)? com-
tion of C* by two points. pactified by three C*’s and

three pts.

While one might want to call the first description given above topological or homological, the
other two we will give next are geometrical: in both cases the projective space P" will be given
as a certain quotient, in the algebro—geometric category on the one hand, and in the symplectic
category on the other hand.
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For the former we will start with complex (n + 1)-dimensional space and remove zero:
C+! — {0}. The one—dimensional torus C* acts diagonally on this space:

C xC*t - {0} — C*! — {0}
t, (Zoy ..., @) —— (t-20,... 1 2,).

The quotient of C**1 — {0} by this action is P, realised as homogeneous space.

For the latter description, remember that C**! is Kihler, with the standard symplectic form
given by w =37 dp; Adg;, where z; = pj+1iq; are the complex co—ordinates of C**1. The group
S1 acts as the maximal compact subtorus of C* diagonally on C**!, leaving the symplectic form
w invariant. In fact, the action is Hamiltonian with moment map

% Ct' — R
1
(215 s Zng1) —— §(|Zl|2 +. |z ).

With this data we can apply the technique of symplectic reduction: If t € R is a regular value
of y, u=1(t) is again a manifold. In fact, in our case, except for t = 0, u=1(t) is topologically
always equal to S?"*1. It is obvious that the manifold p~!(#) is no longer symplectic, though the
direction of degeneracy of the form w restricted to u~!(#) coincides with the orbits of the action
of S!. Hence, since S! acts effectively on p=!(¢), the quotient p=1(¢)/S! = P is smooth, and
w descends to the quotient as symplectic form. Note that for different ¢ € R we obtain different
symplectic classes on P, varying by multiplication of a scalar (the ratio of the corresponding
t’s).

So far for motivating the constructions that will follow in this section. Although we will
describe toric varieties in some detail, we will hardly be able to cover all the material available
about toric varieties. In fact, we will mostly omit proofs and just state the results. For further
details and a guide to the literature the reader is referred to literature cited above. The classic
reference for symplectic reduction is [Wei77], also see [MS98]. If not otherwise mentioned, we
will restrict ourselves to smooth compact toric varieties.

5.1.1 The algebro—geometric construction using fans

In this section, we will take up the first characterisation of P” as compactification of the n—
dimensional algebraic torus (C*)™ by lower dimensional algebraic tori. In general, a toric variety
is not required to be compact'® — we are free to glue just some lower dimensional tori to the
“big” torus: A toric variety over Cis an n—dimensional normal variety X containing (C*)” as a
Zariski open and dense set in such a way that the natural action of (C*)" on itself extends to
an action of (C*)” on X ([Cox97]). The idea of gluing together tori of different dimensions is
best seen in the fan approach.

For all what follows we will fix the following notation: Let d > 0 be a positive integer. Let
N = Z? be the d-dimensional integral lattice, and M = Hom (N, Z) be its dual space. Moreover,
let Ng = N ®z R and Mr = M ®z R be the R-scalar extensions of N and M, respectively.

5 Nonetheless, we still restrict ourselves to smooth compact toric varieties!
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Definition 5.1 Let k& > 1 be an integer. A convex subset ¢ C Ng is called a regular k-
dimensional cone if there exrists a Z—basis vy, ..., vk, ...,vq of N such that

o= Rzo’vl + .. .Rzo’l)k.

In this case we call vy,..., vy € N the integral generators of o.
The origin 0 € Ny is called the regular zero dimensional cone. Its set of integral generators
is empty.

Definition 5.2 Let ¢ be a reqular cone in N. A face of ¢ is a cone o' generated by a subset of
the integral generators of o. If o' is a (proper) face of o, we will write o' < o.

Remark 5.3 Note that we do not allow regular cones to contain any (non—trivial) vector sub-
spaces of Np. In admitting such cones, however, we would also get non—compact varieties. In
fact, one could even drop the condition that a cone has to be generated by a subset of a basis of
N, as long as the cone is generated by (any number of) elements of N. Of course, in this case
we could get singular varieties. For such a more general approach consult e.g. [Ful93].

Definition 5.4 A finite system ¥ = {oy,...,0s} of regular cones in Ny is called a regular
d—dimensional fan of cones, if the following conditions are satisfied:

1. Any face o' of a cone o € ¥ in the fan again belongs to the fan

VoeX:o' <o= o €%;

2. The intersection of two cones 01,09 € X in the fan is a face of both fans o1 N oy < 01, 09
and thus again in the fan.

A fan ¥ is called a complete fan if the (set theoretic) union of all cones o; in ¥ is all of Ng, i.e.
Np = U o;.

The k-skeleton (%) of the fan X is the set of all k—dimensional cones in .

By abuse of language, we will also consider cones ¢ as fans, meaning in fact the fan 3, of ¢
and all its faces:

Y, ={d"|0' g o}

To any d-dimensional fan >, we will now associate a toric variety Xy. We will first define the
toric variety Xy as a quotient of (a subset of) C* (n = |2(1)| is the number of one dimensional
cones in ¥) by an (n — d)-dimensional torus, and then see how one gets the variety by gluing
together affine pieces that are themselves toric varieties, each piece corresponding to (the fan
associated with) a cone o € ¥. Before we will go on, though, we will give an example of a fan.



52 Definition of toric varieties

Figure 12: The fan for the toric variety P2

Example 5.5 Let v1,...,vg be a basis of N = Z¢, and let Vg1 = —v1 —...—vq. Consider the
fan of all cones generated by a proper subset of {vy,...,v441}. For d = 2 (see figure 12), the fan
contains the zero dimensional cone, the origin, three one dimensional cones, o}, ..., o, and three
two dimensional cones, of, ..., 0%. The zero dimensional cone corresponds to the big torus (C*)?,
that is all points of P? given in homogeneous co-ordinates by [zo @ z1 @ 2o with z; # 0 for all
i = 1,2, 3. Each one dimensional cone o}, i = 1,2, 3, attaches to the big torus a one dimensional
torus C*, the torus corresponding to o} given by {[zg : z1 : z2]|z; = 0;z; # 0for i # j}.
Finally, the three points still missing, [0 : 0 : 1], [0 : 1 : 0] and [1 : 0 : 0] are attached by the
two dimensional cones o, 02 and 02, respectively. In fact, the fans corresponding to one of the

two dimensional cones o2 each give an affine chart C* of P2, o2 representing the chart where

Tit1 # 0.

Definition 5.6 A subset P C X1 of the 1-skeleton of ¥ is called a primitive collection of ¥ if
P is not the set of generators of a cone in X, while any proper subset of P is. We will denote
the set of primitive collections of ¥ by P.

The primitive collections introduced by Batyrev [Bat91] are in fact an effective way to keep
track of the subsets of C* we have to take out such that the action of the (n — d)-dimensional
torus we have in mind becomes effective:

Definition 5.7 Let n = |E(1)| be the cardinality of the one—skeleton of . Let z1,...,z, be a
set of coordinates in C* and let 1 : C* —— N ®7 C be a linear map sending each generator z;
of C* one—to-one to an element v; of the 1-skeleton of X: 1(z;) = v;.

For each primitive collection P € P, P = {v;,,...,v;,}, we define an (n — p)-dimensional
affine subspace in C* by

A(P):={(z1,-..,2n) € C| 2 =...=z, =0}
Moreover, we define the set U(X) to be the open algebraic subset C* given by

Uy =C - |J A(P).

PeP
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Example 5.8 The fan for P? given in example 5.5 has only one primitive collection, the entire
1-skeleton: P = {vy,...,v441}. The corresponding set A(P) = {0} is just the single point zero.
Hence, U(X) = C*! — {0}. Remember, that above in the introduction to this chapter, we have
constructed P? as a quotient of C**! — {0} by an action of the 1-dimensional torus C*. In fact,
C acted as a subtorus of (C*)3+1.

All we are left with is to construct the action of an (n — d)-dimensional subtorus of (C*)".
The quotient of U(X) by this subtorus will be the toric variety Xx. Above we have defined a
map ¢ : * —— N¢ mapping the generators of C* onto the one—skeleton of ¥. Actually, the
map ¢ can be considered a map between tori:

v (C) —— (C)%

If 32 is a complete fan, or more general if 3 contains a cone of maximal dimension d, the kernel
of the map ¢ is a (n — d)-dimensional torus which we denote by

D(Y) := ker(s: (C)" = (C)9).
Definition 5.9 Let ¥ be a d-dimensional'® fan of reqular cones. The quotient
Xy :=U(X)/D(%)
is called the toric variety associated with X.

Example 5.10 For ¥ being the fan given in example 5.5, the kernel of ¢ : (C*)4+! —— (C*)?
is given by the map

C —— (C)™!
t— (t,...,1).
So the action of D(X) on C*! is the diagonal one, and since U(X) = {0}, we indeed have

X5 = (CH! - {0}) /T =P~

Example 5.11 Let X be the fan generated by the cone of in figure 12. The set of primitive
collections P for ¥ is empty, P = &, hence U(X) = C. Moreover, the kernel of the map ¢ is
trivial as well. Therefore the corresponding toric variety is just C2.

In fact, this example does not only generalise to C*, but in a broader sense to all fans coming
from a cone in Z? (for a proof see for example [Cox95, Lemma 2.2]):

Proposition 5.12 Let ¢ be a k-dimensional cone in ¥, and let {v;,...,v; } be its set of
generators. Let {v;,,...,v;,} be a Z-basis of N = Z? completing the set of generators of o, and
let uy, ..., uq be its dual basis of M = Hom(N,Z). Define the open subset V(o) C C* by

Vie)={(z1,...,2,) | 2; #0 for j ¢ {ix,...,%}}.
These open sets V(o) satisfy the following properties:

16 A d-dimensional fan is a fan in Z% containing a cone of dimension d.
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1L U®X) =U,ex@ Vo),
2. if o' < o, then V(o') C V(o);

3. V(o) is isomorphic to C* x (C*)"*, and the torus D(X) acts freely on V(o). The quotient
U, :=V(X)/D(X) is the toric subvariety associated to the cone o € ¥, whose co-ordinate

functions z7, ..., x5 are the following Laurent monomials in zi, ..., z,:
J;;r — ZfUlyu]) .. Z’Szvnvuj)‘

Remark 5.13 One could actually define relative primitive collections of a subfan ¥/ C ¥: A

subset P ¢ ©(1) = {v1,...,v,} is a relative primitive collection P € Py -y if each proper subset
P is the set of generators for a cone in X', but P is not.
Then for a cone o = (v;,,...,v;,) in X, its set of relative primitive collections Pyyy is just

Ps,cx = {{vik+1}7 s 7{Uin}} )

and the set V(o) = U(X, C X) is the open set of C* corresponding to the set of primitive
collections Px_cx:
U, co)=C- |J A(MP).
PePs,cx

Remark that U, = U(c) x (C)?=*, where U(c) =2 C* is the toric variety associated with the
fan ¥, in N = Z<.

Note that our notation is slightly different from that of [Bat93]: he defines the open sets
U(X) just for (complete) fans, while he calls U(o) what we call V(o). Even though our approach
has the advantage of a uniform definition for the open sets U(X) for any type of fan, we have to
admit that the toric variety obtained from a fan of dimension lower than those of the ambient
space N might differ by factors of C* (see above) from those obtained by the classical definition.

5.1.2 Digression to symplectic geometry and Hamiltonian actions

Before we will go on and give the definition of a toric manifold as a symplectic quotient, we will
remember a few key concepts of symplectic geometry.

Definition 5.14 Let M be a manifold. A differential two—form w € Q%(M) is called symplectic
if it is closed and non-degenerate, i.e. dw =0 and w™ =voly; #0, n = %dim M. A symplectic
manifold is a manifold with a symplectic form (M,w).

A vector field X € X(M) on M is called a Hamiltonian vector field if the one—form 1xw is
ezact, and locally Hamiltonian if txw is closed. Denote by H(M) and Hi,.(M) the spaces of
Hamiltonian respectively locally Hamiltonian vector fields on M.

For a symplectic manifold (M, w), the symplectic gradient is the map s—grad : C*° (M) ——
H(M) assigning to each smooth function f : M — R a Hamiltonian vector field X ; = s—grad(f)
on M satisfying

Ls,grad(f)w = df
We will also call Xy the Hamiltonian vector field associated with f, and we will say that f is a
Hamiltonian for X;.
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Remark 5.15 Note that every symplectic manifold is even dimensional thus speaking of an
n—form for n = %dim M makes sense.

If J is a calibrated almost complex structure, that is if ¢(X,Y) = w(JX,Y) defines a metric on
M, the symplectic gradient can be expressed in terms of J and the gradient of g:

s—grad(f) = J grad f.

Example 5.16 Let M = C* be the complex n—dimensional space with coordinates (z1, ..., 2z,).
Write z; = p; +1q;. Then w = >, dp; A dg; is a symplectic form on M, called the standard
symplectic form on C".

-1

Consider the Hamiltonian f(z) = 537, |Z]‘|2. Its symplectic gradient is then given by

i n 15} 0
Xf= %: (q]a—p]‘ —pya—qj) -

Definition 5.17 Let G be a compact Lie group with Lie algebra g. Let (M,w) be a symplectic
manifold.
A G-action on (M, w) is symplectic if for all elements g € G, the pull-back of the action by g
preserves the symplectic form:

g'w = w.

A symplectic G-action on (M,w) is called Hamiltonian if there exists a Lie algebra morphism
g g —— C°°(M) making the following diagram commute:

where the map g —— Hi,.(M) associates with each X € g its fundamental vector field.
For such a Hamiltonian G'—action we define the moment map p by:

M —— g* = Hom(g, R)

Remark 5.18 For a symplectic G-action, all its fundamental vector fields are indeed locally
Hamiltonian: let X € g, X be the associated fundamental vector field, and let g; be the flow of
X. Deriving the equation gjw = w with respect to time ¢ we obtain

Lxw= %gfw|t:0 =0.
Since the symplectic form w is closed, dw = 0, the Cartan formula

Lx =dix +1xd

yields the closeness of txw.
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The moment map of a G—Hamiltonian action has the nice property that it associates with
each element X € g in the Lie algebra the Hamiltonian function f of its fundamental vector

field X:

fM—R
& — (u(z), X).

Example 5.19 Let M = C* with the standard symplectic form. The n-dimensional torus
T = (SHY" ={(t1,... ,tn) € C*| |t;| = 1} acts on C* by

(tl, e ,tn) . (Zl, e ,Zn) = (tlzl, e ,tnzn).

This action is Hamiltonian with moment map'”

W M — R*= (")~
1 2 2
(q,...,ﬁn)%i(w e |zl )
Now consider the one—dimensional diagonal subtorus 7! generated by (1,...,1). As a sub-
group it also acts on C*. Since its Lie algebra is generated as subalgebra in t* by (1,...,1), the

Hamiltonian function of the action of this subtorus is given by

J{CEE S (YRR NINREE ) IS

DN | —
N | —

the same function we have already seen in example 5.16. In fact, the Hamiltonian vector field
X in 5.16 is obviously the tangential vector field of our diagonal action of 7.

For a commutative action — that is in particular for any torus action — one can easily
derive that the moment map p is constant on any orbit of . Hence we get an induced G—action
on the level sets u=1(&) for each & € g. If ¢ is a regular value of the moment map p, the level
set u~1(€) is again a manifold by the inverse function theorem. However, the symplectic form
w restricted to this submanifold is no longer symplectic: in fact it is degenerate on the tangent
spaces to the orbits of the G—action. If the induced G—action on the level set is free though, one
can take the quotient to obtain a new symplectic manifold:

Theorem 5.20 (Symplectic reduction) If the torus G acts freely on a reqular level set =1 (&)
of the moment map pu : M — g*, the orbit space p=(€)/G is a manifold naturally endowed
with a symplectic form wg, called the reduced symplectic form.

Remark 5.21 Since the symplectic form w on M is invariant under the G—action, its restriction
to a level set of u is a pull-back form from the quotient by . The reduced symplectic form w;

"Note that a moment map is always only given up to a constant, as the map /i is not unique.
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is then defined to be exactly this form: p*w¢ = j%w, where

0 (©)/G.

5.1.3 Toric varieties as symplectic quotient

We have seen above that the n—dimensional complex space C* has a natural symplectic structure.
Remember from above, that D(X) is an algebraic subtorus of (C*)”, thus acting on C*. Let
G = (S)"? be the maximal compact subgroup of D(X). Since D(X) C (C)" acts as a
subtorus, so does G C T™. The action of G C T™ is naturally Hamiltonian, and we obtain its
moment map g by composing the moment map pur» of the n—dimensional torus action with the
restriction map f* : (f*)* —— g*:

po 0 I ey 2 g

With a little bit of linear algebra it is straightforward to show the following two facts for a
subtorus action defined by a regular fan:

e For almost all £ € g*, the moment map is regular.

e The action of G on the level set u='(€) is effective if and only if ©='(£) C U(X), the open
subset of C* used for the algebro—geometric quotient.

The first point is rather reassuring, the second might however pose a non surmountable
problem. In fact, this problem can be resolved if and only if the toric variety Xy defined as
algebro—geometric quotient is projective:

Theorem 5.22 ([Del88]) Let X5 be a projective simplicial toric variety. Then there exists a
regular value € € g* of the moment function pn : M —— g* such that the level set p=*(€) C U(Y)
is in the effective subset of the action G, and there is a diffeomorphism

p(€)/G — Xx

preserving the cohomology class of the symplectic form.

In the next section, we will give a criterion for when a toric variety is projective (or Kahler),
as well as an example for when it is not.

5.2 Cohomology, Kahler cone and dual polyhedra

From now on we will only look at complete (regular) fans X.
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5.2.1 Support functions of a fan and dual polyhedra

We will see in the next subsections, Y -piecewise linear functions, also called support functions
of a fan X are a useful tool when analysing the cohomology of a toric variety. In this subsection,
we will start by giving their definition and some of their properties.

Definition 5.23 A continuous function ¢ : Ngp —— R is called Y—piecewise linear, if ¢ is
a linear function on every cone of ¥. We will denote by PL(Y) the set of X-piecewise linear
functions.

A Y-piecewise linear function ¢ is called a strictly convex support function for the fan 3,
if @ satisfies the following two properties:

1. @ is an upper convex function, i.e.
e(z) +o(y) 2 ¢z +y).

2. For any two different d-dimensional cones 1,09 € X, the resirictions ¢, and p|,, are
different linear functions.

Note that a Y—piecewise linear function is given by its values on the 1-skeleton of 3, the
group PL(X) thus being canonically isomorphic to R™:

PL(Z) —— R
O r— (QO(Ul), ce #P(Un))v

where 2(1) = {v1,...,v,}. We will now turn our attention to the subset of strictly upper convex
support functions:

Theorem 5.24 A Y -piecewise linear function ¢ is a strictly upper convex support function if
and only if for all primitive collections P € P, P ={v;,,...,v; }, the following inequality holds:

e(viy) + ...+ evy) > (v, +...+vi,).

We will give another criterion in terms of convex polytopes that will be useful in particular
for the construction via a moment map:

Theorem 5.25 Let ¥ be a complete, reqular fan in N = Z3. Let ¢ € PL(X) be a Y -piecewise
linear function on ¥. Define a polytope A, € M by

Ay, ={m € Mg|(m,n) > —¢(n), Vn € N }.

Then the function ¢ is a strictly upper convex support function if and only if the integral
convez polytope A, is d-dimensional and has exactly {l,|o € E(d)} as the set of its vertices.

Of course, polytopes as well have faces, i.e. a face of a polytope A is the intersection of A
with a hyperplanes in the tangent cone of A. For a polytope A C V in a (real) vector space V
(for example V = N, M), there also exists the notion of a dual polytope AY C V* = Hom(V, R):

AV i={ue V*|{u,v) > -1Vv eV}
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Proposition 5.26 Suppose that a convex polytope (1 C Ng contains the origin 0 in its interior
and that all of its vertices belong to N @7 Q. Define a fan X and a function ¢ : Np —— R as
follows:

= {Ry- ' |0V < 00}

inf R -0 '
go(n)::{})n{o‘e >o|n € a0} Z;Zig

Then 3 is a finite complete fan in N, for a suitable positive integer r, ro is a strictly upper
convex support function with respect to 3, and O = {n € Ng|p(n) < 1} = AZ is the polytope
dual to the polytope A, defined above.

Remark 5.27 Note that the fan produced by proposition 5.26 is not necessarily regular.

5.2.2 Divisors, cohomology and first Chern class

Theorem 5.28 The space PL(X) /Mg of all ¥-piecewise linear functions modulo the d—dimen-
stonal subspace My of globally linear functions on N is canonically isomorphic to the cohomol-
oqy space of Xx:
H*(Xz,R)2 PL(X)/Mg.

Moreover, the first Chern class ¢;(Xs) € H?*(Xg,R) is represented by the Y-piecewise linear
Junction ¢, € PL(X)

c1(Xx): o (v1) =.0.= @ (vn) = 1.
Let R(X) C Z™ be the subgroup of Z" defined by

RE)={(\,..., ) €ZM | Moy 4 ...+ Ao, =0} 2 Z077

Then the group R(X)r = R(X) ®z R of R-linear extensions of R(X) is canonically isomorphic
to Hy(Xx, R).

The pairing H*( Xy, R)® Hy( Xz, R) — Rlifts to PL(X) ® R(X)g and is given there by the
degree map:

deg,(3) = Y Mg (vi).

In fact, the homology of a (smooth compact) toric variety is generated by (C*)—invariant
Weil divisors on Xy. Let Div(Xy) be the commutative group of Weil divisors of Xy, i.e. formal
finite Z-linear combinations of closed irreducible codimension—one subspaces of Xy, and let
Ty Div(Xx) be the subgroup of Ty = (C*)%invariant divisors'®. Let D; be the irreducible

subspace of Xy corresponding to the closure of the orbit corresponding to v; € (1), i.e.

Di={[(z1,...,2:)] € U(Z)/D(T) | z = 0}.

BFor T we follow the notation of [Oda88]. The subscript N refers to the d-dimensional Z-lattice in which
the fan ¥ is defined. In fact Ty = Hom(M,C*) = N @z C*.
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The set {D1, ..., D,} of these divisors is a basis for T Div(Xyg):
TnDiv(Xs) = Z- D;.
=1

An element D =3"" | a;D; of T Div(Xy) is said to be effective and denoted D > 0 if all a; are
nonnegative.

Since we have restricted ourselves to smooth toric varieties, all Weil divisors are Cartier, i.e.
locally principal Weil divisors. Hence Cartier divisors are in one—to—one correspondence with
Y —piecewise linear functions ¢ : Ng —— R [Oda88, Proposition 2.1], the divisor for such a
map ¢ € PL(X) being given by:

n
Dy ==Y ¢(vi) D;.
=1

Moreover, if Xy is compact, we have the following short exact sequence [Oda88, Corollary 2.5]:

0 y M » PL(S) = Ty Div(Xz) = P Z- D; —— Pic(Xg) —— 0,
=1

where Pic(Xg) is the Picard group of isomorphism classes of line bundles on Xy. Here, the line
bundle L on Xy corresponding to a ¥-piecewise linear function ¢ € PL(Y) is constructed as
follows: For each cone ¢ € ¥ of our fan, there exists a [, € M = Hom(N, Z) such that
VneoCN : )= (,n).
In particular, we have for a face 7 < o of ¢ that
Vner: (lo,n)=(l;n).

So let g, 7 € 3 be two cones in 3. We will define the line bundle L by its transition functions

Gro Uy X CO Upny x C—"5 Uyny x CC U, x C.
Note, that by the above property for the [,, we have

p(n) = s,n) = {snr,n) = (lz,n), forne€onr.
and therefore

l—l,eMn(enn)t cMn(enT)Y,

where the dual ot of a cone ¢ € N is defined by

ot :={mée Mp|(m,n)=0Vnco}.
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Solet vy,...,v € (V) be a Z-basis for £ := o7, and vy41,...,vg € B such that (v1y...,04)
is a Z-basis of N. Let uy,...,uq be its dual basis of M = Hom(N,Z). So we can write
p— — Z;l:l a;u;, thus defining a function f;, on Us/D(X) by

do—lr nlo—1lr
ng(ajﬁ, e ,mg) = (mﬁ)al e (xg)ﬂd — Zé“l ). ‘Z’I<'LU lo—1 )7

where the xf are the homogeneous coordinates on Uz /D(X) introduced in proposition 5.12. The
second expression in the z; shows in particular, that this function does not depend on the choices
made. The transition function ¢,, is given in terms of the function f77:

gTC"(m7C) = ($7f7'o'(ér) . C) for ($,C) € Uo.[-]T X C

It is straightforward to verify that the so defined functions g,, satisfy g., = g;.! and the cocycle
condition ¢, = ¢r,9s,, thus they define indeed a line bundle on the toric variety Xs.

We will next give a concrete presentation of the cohomology of the toric variety Xy. Since
the cohomology ring of a toric variety is generated by its degree—2 classes, it is therefore equal
to R[zy, ..., z,] factorised by some ideal I. There is an obvious contribution to I corresponding
to globally linear functions ¢ € Mp:

P(X) = <Zn:<vi, U1)Ziy .. ,i(vi, ud>zi> ,

where uy, ..., uq is some Z—basis of the lattice M.
The relations on higher degree classes are given in terms of primitive collections:

SR(Y) = < H z]->

vEP 1 pep

In fact, from the fan structure one can easily read off intersection products in the toric variety
Xy the intersection z;, ---2;, of degree-2 classes z; ,...,z, is non-zero if and only if there
exists a cone o € ¥ that contains the corresponding 1-cones v;,,...,v;, as generators.

The ideal SR(X) is usually called the Stanley—Reisner ideal.

k

Theorem 5.29 The cohomology ring of the compact toric manifold Xx is canonically isomor-
phic to the quotient of R[z] by the sum of the two ideals P(¥) and SR(X):

H*(Xs, R) = R[:)/(P(S) + SR(S).
The canonical embedding PL(X)/Mr —— H*(Xx,R) is induced by the linear mapping
PL(Y) —— R[Z]

O Z 99(?]2')22'.
=1

In particular the first Chern class ¢1(Xy) of Xy is represented by the sum z1 + ...+ z,.
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5.2.3 The Kahler cone of a projective toric variety

Definition 5.30 As before let 3 be a complete, reqular cone in N. Denote by K (X) the cone in
H?*(X3,R) = PL(X)/Mg consisting of the classes of all upper convex support function ¢ for ¥.
We denote by K°(X) the interior of K(X), i.e. the cone consisting of the classes of all strictly
convex upper support functions in PL(X).

Theorem 5.31 The open cone K°(X) C H*(Xx,R) consists of classes of Kihler (1,1)forms
on Xy, i.e. K(X) is isomorphic to the closed Kdihler cone of Xx.

Hence the existence of strictly convex upper support function ¢ € PL(Y) is a necessary and
sufficient condition for the variety Xy to be projective, i.e. for Xy to have a nonempty Kahler
cone. So the theorems 5.24 and 5.25 from above give us certain criteria to determine whether a
given toric variety admits K&hler classes. On the other hand, proposition 5.26 always constructs
a projective variety to a convex rational polygon containing the origin 0.

Up to now, however, we have not answered the question whether all toric varieties are
projective. In fact, this is only true for toric varieties of (complex) dimension less than three.
In higher dimensions, there exist smooth toric varieties that do not admit Kéihler classes. Let
us recall the following well known example (see [Dan78], [Oda88, Example p. 84]):

Example 5.32 Let N = Z3 and {vy, vy, v3} be a Z-basis for N. Let
Vo= —U; — Uy — U3 U] = —Up — U3
vh = —v; — v3 vh = —vy — vg.
Let > be the complete regular fan with 1-skeleton
E(l) — {'007 U1, U2, Us, Ui7 ’Uéa ’Ué}
and a set of primitive collections P giving by
P= {{Uo, v1}7 {U07 U2}7 {U07 U3}7 {Uh ’Ué}7 {U27 ’Ué}, {’Ug, 'Ui}7 {U07 Ui? Ué? ’Ué}} .
The maximal cones of X are as follows:
R>ov1 + Ryova + Ryovs,  Rsovi + Ryova + Ryovg
Rsovz + Ryovs + Rsovy, Rsovs + Ryovy + Ryovg
Rsovi + Ryov] + Rsovg, Rsove + Ry + Ryovy

Ry ovz + Rzové + R20U§7 R>ovo + Rzovi + Rzové
Ry ovg + Rzové + Rzové7 R ovo + Rzové + Rzovi

Now, assume Xy were projective, i.e. that there was a strictly convex upper support function
¢ € PL(X). Then, by theorem 5.24, we have for any primitive collection P = {v;,,...,v;, } € P
of 3 that

d_elv) > ¢ (Z vz']) :
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For the primitive collections {vy, v5}, {va, v4}, {vs, v]} we have:

! ! ! !

v 4 vy = —v3 = vy + v € (v2,v9,v;) € X
! ! ! !

vy 4+ V5 = —v; = vy + v3 € (v3, V3, Vy) € X
! ! ! !

v3+ vy = —vg =v3+ v € (vq,0],03) €X

hence, by linearity of ¢ on cones giving rise to the following inequalities:

/

e(v1) + @(v3) > (v]) + @(v2)
e(v2) + ¢(v5) > @(v3) + ¢(vs)
e(v3) + @(v1) > @(vh) + ¢(v1).
Adding up these three inequalities we end up proving that 0 < 0, a classical contradiction. So

Y. does not admit any strictly convex upper support function, and Xy is thus not a projective
toric variety.

5.2.4 Dual polyhedra and the moment map

Remember from section 5.1.3, that we have constructed the toric variety Xy as a symplectic
quotient p=(&)/G, where

G

12

(Sl)n—d SN, (Sl)n

G being the maximal compact subtorus of D(X) C (C*)", and

*

e @ Hrn (tn)* 9*7

the map 3* being the dual to the linear map between Lie algebras associated with the inclusion
G — T". For this construction, £ € g* has to be a regular value in the image of the moment map
p: C* —— g*. Note, that the image of the moment map pz» of the T"—action on U(X) C C*
is the first octant in (")*, the interior of which is the set of regular values of prn. Since the
projection §* : (t*)* — g is linear and surjective, all the points in the interior of the image of
the first octant are regular values for p.

Let K := cok(G < T") be the quotient torus, and ¢ its Lie algebra. The Hamiltonian action
of T™ on U(X) induces!? a Hamiltonian action on the symplectic quotient Xy, and the image of
the moment map

pr : Xy ——

is a polyhedron P equal to the intersection of urn(U(X)) € (£")* and the affine subspace
B*71(€). Note that 3*71(£) = £ is the affine subspace parallel to £* = ker((t")* —— g*) that
maps to £ € g*.

Proposition 5.33 The toric variety constructed from the polyhedron Py is Xx, with symplectic
(or Kdihler) form we. The strictly convex upper support function associated with we is given by

=0, where & € (5*)71(€).

9See e.g. [Aud9l, chapter VI] for details of the constructions in this subsection.
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Remark 5.34 In this statement we have used the following natural identifications:

(04 v N¢
@rC @rC
0 ker ¢ R™ - Ng 0
0 g d t" t 0

and the dual diagram, with (ker:)* = R(X), (C*)* = PL(X) and N* = M. With these

identifications, —&y € PL(X) is a ¥—piecewise linear function.

Proof: Let & € (t*)* be such that §*(&) = £ € g*. Then the affine subspace (8*)7!(£) is given
by & +£*. We have already mentioned that the pp~ (U(X)) image of the open set U(X)C* under
the moment map prn : C* —— (£*)* is the first octant, hence

imurn ={f:t" — R| f(z) >0,i=1,...,n}.

Therefore the image of the moment map px of the moment map of the Hamiltonian K-action
on the toric variety Xy is

Pe=(8)71(&) Nimprn = {f : € — R [(=) 20, fig = Eolg}-

Since f — & vanishes on g, it is therefore induced by a linear map ¢g : ¢ —— R, that is an
element of g € Mr. Hence we obtain

Piz{meM|<m7vi>Z£O(Zi)7i:17-'-7n}'

We now apply proposition 5.26 to obtain the desired result. O
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6 Torus action and its fixed points in Xy and M}, (X)

A toric variety Xy has by definition an algebraic torus acting on it. In fact, it contains an
algebraic torus K = (C*)? as open and dense subset. This “big torus” acts on itself by the usual
group multiplication, and extends naturally to the rest of Xy.

In general by pull back through the universal stable map f : Cém(Xg) — X, an action on
a manifold X induces an action on the moduli spaces MOAM (Xx) of stable maps to X.

In this section, we will study these actions to determine the fixed point components in the
moduli spaces M, (X).

6.1 The torus action on Xy and its fixed points

In our constructions above of the toric manifold as some kind of quotient of C* (or a subset of it)
by a (real or algebraic) subtorus of (C*)”, the big torus can easily be identified. Let us restrict
ourselves to the fan construction. Then we had defined a map ¢ : C* — N¢ that induces a map

i:(C)" 2 Hom((C")Y,C") —— Hom(M,C*) = Ty.

Then T =2 K is the big torus K C Xy mentioned above. Since D(X) is the kernel of the
morphism Z, it fits into the following exact sequence of multiplicative groups:

1 > D(Y) » (C) — K —— 1.

We have mentioned above that the cohomology of a smooth toric variety is generated by Th—
invariant divisors, i.e. subvarieties that are invariant under the Tn—action.

In fact (¢f. [Ful93, chapter 3]), as with any set on which a group acts, the toric variety Xy
is a digjoint union of its orbits. Here again, toric varieties are very nice objects to study: for
each cone o € ¥, there is exactly one such orbit. Moreover,

0, =2 (C)"*  ifdimo = k.

The orbits O, are an open subvariety of its closure in Xy, which we denote by V,. The V, are
closed subvarieties of Xy. The following proposition expresses the relations between these set;
for a proof see for example [Ful93].

Proposition 6.1 There are the following relations among orbits O,, orbit closures V,,, and the
affine open sets U, :

L UC’ = HT#G’ O’i’;
2. "/U = Hw>0 O’Y;
3. 05 =Vy = Uy, Vs

So in fact, the orbit closures V, are the Tn—invariant divisors mentioned above, or inter-
sections of such divisors. When using the quotient construction Xy = U(X)/D(X) from a
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(complete) regular fan X, one can easily describe the orbit closures V, as follows: Let the k-
cone o € ¥ be given by the set {v;,,...,v;}. Then the closed subvariety V, is the quotient of
the set

Zy ={(z1,...,2,) €eUE)CC |z, =...= 2, =0}

by the action of the torus D(X) = (C)"~?. In particular, this description gives a useful charac-
terisation of V, as subvariety of Xy.

In the next section we will be especially interested in such closed subspaces V, that are of
dimension zero and one, i.e. fixed points of the Tx—action on Xy, and invariant curves. In
a compact toric variety, the latter are always isomorphic to P!, as the closed subvarieties V,,
are itself toric varieties again, and since P! is the only compact one—dimensional toric variety.
These Ty—invariant curves are in a one-to—one correspondence to (d — 1)-dimensional cones,
while fixed points are in a one—to—one relation to d—dimensional cones.

6.2 The moduli space of stable maps to a toric variety

We have stated in the introduction that we want to understand Gromov—Witten invariants on
the example of toric varieties, that is, in particular we want to calculate these invariants for
such varieties. As Gromov-Witten invariants are defined as certain intersection numbers (see
above) on the moduli stack of stable maps, we will have a closer look at these stacks now. In
particular, since we want to apply Graber and Pandharipande’s fixed point formula, we will
study the action of the big torus T on the moduli stack, and its fixed points.

In this section we will restrict ourselves to genus—zero stable maps. It is, however, possible
to carry out a similar analysis for higher genus stable maps to toric varieties, ¢f. Graber and
Pandharipande’s analysis in [GP97] for projective spaces P?.

6.2.1 Fixed points of torus action on the moduli space

To find out how the fixed points of the induced torus action on the moduli stack look like, let
us look first at a single stable map (C;z1,...,2m; f) € MOAJH(XE), i.e. a stable map

Spec C.

Xz

Let C =CiU...UC% be the decomposition of the curve (' into irreducible and reduced curves
C};. Since we only look at rational curves C', the irreducible and reduced components C; of C
are all rational as well, that is, they are isomorphic to P'.

Lemma 6.2 The stable map (C;z1,...,2m; f) is a fived point of the induced action of T on
the moduli stack of stable maps MOAM (Xzg) if and only if it satisfies all of the following conditions:

1. All special points of C, that is the marked points x1,...,z,, and the intersection points
CiNC;, 1 # 7 of two different irreducible and reduced components, are mapped to fized
points of the T—-action on Xx;
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2. If C; is an irreducible and reduced component of C that is mapped to point by f, than it is
mapped to a fized point of the T—action on Xx;

3. If an irreducible and reduced component C; of C is not mapped to a point by f, it is
mapped to one of Tn—invariant subvarieties V, C Xy of dimension one, corresponding to
a dimension (d — 1) cone o € X(4=1),

Remark 6.3 The above lemma is a generalisation of similar results by Kontsevich [Kon95] (also
see Graber and Pandharipande’s [GP97]) for stable maps to a complex projective space CP™.

Proof: For a stable map (C;z1,...,2,; f) to be a fixed point of the T—action on Mém(Xg)
means that for any ¢ € Ty, the stable map ¢ - (C;z1,...,2,; f) is isomorphic to the original
curve (C;1,...,%m,; f), i-e. if there exists a morphism ¢; : C' —— C such that the following
diagram is commutative (cf. definition 2.1):

Spec C ——= Spec C.

Now, it is obvious that a curve (' satisfying the three conditions stated in the lemma is
isomorphic to t - C' for any t € Ty, taking for ¢ : C —— C the morphism defined on the
irreducible and reduced components C; by

{ ide, if f(CZ) = {pt.}
¢t|0i =

flotof otherwise.

On the other hand, let C' be a fixed point of the Ty—action on MOAM (Xx). We thus have to
show that C satisfies the three conditions of the lemma.

Let z; € C' be a marked point of the curve C. Then it is obvious that z; has to be mapped
to a fixed point in Xy: since ¢; has to be constant on the marked points, we have

VteTn:t- f(z;) = flz).

Now, assume that ¢ is a special point of C' that is not mapped to a fixed point in Xy. Then the
orbit of f(q) under the Tny—action contains certainly a subspace isomorphic to C*. On the other
hand, the image of the special points of C' by f is a finite set. Hence we obtain a contradiction,
since the image of a special point under any ¢; is always again a special point.

So if C; is an irreducible and reduced component of C' that is mapped to a point by f, it has
to contain at least three special points by the stability condition, and thus is mapped to a fixed
point in Xy as well.

Similarly, if C; is an irreducible and reduced component of C' that is not mapped to a point
by f, and the image of which is not contained in the closure of a one-dimensional Txn—orbit
V,, then C; contains a point whose Th—orbit is at least two—dimensional. On the other hand,
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t- f(C;) always has to be contained in the image f(C) of C' by f that is one—dimensional, hence
a contradiction. O

Note that (general) stable curve to Xy

c1ox

S.

is in a fixed point component of the Tx—action on the moduli stack Mém(Xg) if and only if
each geometric fibre C is a fixed point, i.e. satisfies the conditions of the lemma above.

Following Kontsevich’s description of the fixed points of the action of (C*)? on the moduli
space Mﬁm(ﬂbd) of stable maps to projective space (c¢f. [Kon95]), we will use graphs to keep
track of the different fixed point components in the moduli space MOAM(XE).

However, before we will give the definition of the type of graphs we want to consider, let
us look at an easy example, the moduli space Mém(@lm) of m—pointed stable rational maps
of degree A to the two—dimensional complex space CIP2. The fan ¥ of (OP? and the convex
polyhedron A, associated to the standard symplectic form ¢ = ¢;(CP?) are shown in figure 13.

Figure 13: The fan and the convex polyhedron of CP2.

By the previous lemma, each fixed point in the moduli space ./\/loAm(@P’Q) has to “live on
the boundary of the polyhedron A,”, since the corners and the (one-dimensional) boundary
components of the polyhedron correspond to fixed points respectively one—dimensional orbits of
the torus action on CP2. In fact, if one only looks at where the irreducible components and the
marked points are mapped to in CP?, one could abstractly think of such a fixed map as a graph
that is wrapped around the polyhedron A.

Definition 6.4 Let X be a complete reqular fan in N = Z*.
A MOAJ,L (Xx)-graph I' is a finite one dimensional CW-complex with the following decora-
tions:

1. A map o : Vert(I') —— Y@ mapping each vertez®® v of the graph to a mazimal cone
o(v) in X, representing a fized point of the (C)?-action;

20We will denote vertices with a gothic v to avoid confusion with generators of cones in a fan.
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2. Amap S : Vert(I') —— P({1,...,m}) associating to each vertex a set of marked points;
3. A map d : Edge(I') —— Z~q, representing multiplicities of maps.
These decorations are subject to the following compatibility conditions:

(a) If an edge e € Edge(I') connects two vertices vy,09 € Vert(I') labelled o(vy) and o(vy),
then the two cones must be different and have a common (d—1)—dimensional face: o(v1)N
0(02) € E(d_l);

(b) For any two vertices vy,vy € Vert(l'), the sets of associated marked points are disjoint:
S(Ul) N S(Uz) =,

(c) Every marked point is associated with some vertex: Uyevery(z) S(0) = {1,...,m};

(d) The graph represents a stable map with homology class A:

Z d‘(e)[vcr(nl)ﬁa(tlg)] = A7
e€Edge(T)

de={v1(e),02(e)}

where [V, (o,)no(vy)] 8 the homology class associated to the subvariety V(u,)nos(v,), and
de = {vy(e),v2(e)} associates to an edge e the two vertices vy(e),v3(e) it connects.

Remark 6.5 We have already tried in the definition of a ./\/lOA7m (Xx)-graph I' to give a con-
nection to fixed point components of the induced Tn—action on MOAJH(XE). Let us nonetheless
comment a bit further on this issue.

In this respect, we will describe the Mém(Xg)—graph I’ corresponding to a fixed point
(Ci21,...,pm; f) of the Ty—action on Mém(Xg). The graph I' consists of vertices and edges,
the former representing the points of f~! (Uaez(d) V,) of the inverse images under f of the fixed
points of the Th—action on Xy. The fact that marked points of a Tx—invariant curve have to
be mapped to fixed points in Xy is mirrored in the according labelling of the vertices.

The edges of the graph correspond to the irreducible components C; of C' that are not mapped
to a point, i.e. the images of which are the closure V, (7 € £(#=1) of an one dimensional Ty~
orbits in Xy. These restricted maps fi¢, are effectively maps f, : P! —— P! from the
projective line onto itself, therefore the only homological data it carries is its degree, hence
the labelling of the edges with positive integers. Also, since the push forward f.[C] of the
fundamental class of C' by f has to be A for stable maps in MOAM (Xx), the sum of the push
forwards of the non—trivial components has to add up to the class A, thus the last condition in
the definition.

In a complete fan, a (d — 1)-dimensional cone 7 in ¥ is always the face of exactly two d-
dimensional cones oy, 09. Therefore, the closure V;, (7 € E(d_l)), of the one dimensional orbit
corresponding to the cone 7 goes through exactly two fixed points of the Tny—action on Xy:
the two points corresponding to the cones oy and o3. This is where the first condition of the
definition comes from.
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Before we give an example of such a graph, we prefer to give an equivalent approach to look
at them. Remember that for a complete fan ¥ and a ¥-piecewise linear function ¢ € PL(Y),
we have defined a compact convex polyhedron A, by

Ay, ={me Mgr|(m,n) > —¢(n)V¥ne N}.

With a k-—cone o € £*) in the fan ¥, we can associate a (d — k)-dimensional face A (o) of A,
as follows: let v;,,...,v;, be the generators of o, then

Ay(0) = Ay N {m € Mg | (m,v;)) = —¢(v;) }.

If ¢ is a strictly convex upper support function, i.e. if it corresponds to a Kihler class of Xy,
this identification is one-to-one, that is we can recover the fan X from the polyhedron A,,.
Therefore, for a Kdhler class ¢, vertices of A, correspond to d—cones in ¥, edges to (d — 1)
cones, and the interior of A, to the zero dimensional cone (0).
In particular, we could equally label vertices of a Mém(Xg)fgraph I’ by vertices of the
polyhedron A, the edges of the graph then corresponding to edges of the polyhedron A,.

Example 6.6 Let us describe one example in great detail to familiarise with the notions defined
so far. We will look at the two dimensional toric variety that is given by the following fan in
72, e, and ey being a Z-base:

vy =€1, UV =¢€3, V3= —€ F+e, Us=—€
P = {{v1,vs}, {va, va}}.
The fan ¥ having the 1-skeleton (1) = {v1,...,v4} and the set of primitive collections P is

shown in figure 14, as well as its polyhedron corresponding to the strictly convex upper support
function ¢ = ¢1(Xg). The toric variety Xy constructed from ¥ is the Hirzebruch surface

Fy = P(Op1(1) & 1) 2 P2, which is isomorphic to P? blown up at one point.

U3 v
2 U4
o o3
2
o v
- 1 (0)
2
U3
2 2
U4 01 1y !

Figure 14: The fan of P(Opi1(1) & 1), and its polyhedron for ¢ = ¢;.

Before we give a graph corresponding to a fixed point in MOAM(XE) of this toric variety,
let us analyse the homology and cohomology in degree two of Xy. We have seen above, that
(integral) degree-2 cohomology classes are given by ¥-piecewise linear functions, factored out
by linear functions ¢» € M = Hom(N,Z). A function ¢ € PL(X) is given by its values on the
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1-skeleton, an element @ € M by its values on e, e3. Hence for a ¢ representing an equivalence
class [¢] € PL(X)/M we can assume

e(v1) = @(v2) =0, @(vs), p(v4) € Z.
Such a class [¢] is in the Kdhler cone if it satisfies
@(v1) + @(vs) > @(vi +v3) and  @(v2) + @(va) > @(v2 + v4)
that is, with the choices above,
p(vs) >0 and ¢(v4) > 0.

Note, that this implies in particular, that the first Chern class ¢;(Xg) of Xy is indeed a Kihler
class.
For the degree—2 homology of Xy, notice that the Z-module

RE)={( A1, s ) | A1+ ...+ Ao, = 0}
is generated by the elements corresponding to the equations
vg+v4=0 and vi4+uvs+vy=0
that is by the elements
A:=(0,1,0,1) and A*:=(1,0,1,1).

To find out the homology classes of the four one dimensional Th—invariant subvarieties

Viuiys « -+ Viuy), the Poincaré dual cohomology classes [¢1], .. ., [¢4] of which are given by
1 ifizj
Bi(v:) = 6:; =
#ilvs) ! { 0 otherwise.

Hence, again by Poincaré duality, we get
[‘/(Ul)] = ’\27 [‘/<7J2>] = ’\17 [‘/<’U3>] = /\27 [‘/v<'U4>j| =A%

Therefore, any ./\/16{m (Xx)-graph I' has to “live” on the decorated 1-skeleton Ty shown in figure
15 in the sense that there is a map f : ' —— Yy of one-dimensional CW-complexes such
that the decorations o : Vert(I') —— (%) of the vertices of I' with fixed points in X5 are
induced from the decorations of the vertices of Tyx. Figure 16 shows two Méo(Xg)fgraphs for
the homology class A = 2A? + Al. Note that there are other possible graphs for this class.

In the example above we have given two graphs without marked points. In fact, instead of
labelling the vertices by the numbers of the marked points, we will use so—called legs [Kon95,
GP97]: for each marked point at a vertex v, the vertex will get an extra “outgoing edge”, a leg,
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Figure 15: The 1-skeleton Ty. Figure 16: Two different graphs for

A =224\

i.e. an edge that is not connected to any vertex on its other end. A leg is labelled by its marked

point and by its vertex.
We also define the set F of all flags in a graph I' to be the set of pairs of vertices v and
“outgoing or incoming edges” at the vertex v, i.e. the set

F ={(v,e) € Vert(I') x Edge(I') |v € de} U {(v,1) € Vert(I') x {1,...,m} |l € S(v)}.

The labelling of the vertices o : Vert(I') —— (@) by d-cones induces a corresponding labelling
of flags by

o((v,%)) :=o(v) for (0,%) € F.

We will also use the projections of flags to vertices, edges and legs which we will denote by

o(F)=v for (vo,x)=FeF
e(F)=-e for (x,e)=F € F and e € Edge(I')
lle)=1 for (x,/)=F € F and [ alegof I,

where the latter two maps are only defined for flags coming from edges respectively legs.
In the analysis of the Ty—action on the curves of the fixed point components of MOAM (Xs%),
we will also use the following subsets of vertices and flags:

Vert; — vertices with one flag/no leg Fy — flags at vertices v € Verty

Verty g — vertices with two flags/no leg Fay0 — flags at vertices v € Verty g
Vert; ; — vertices with two flags/one leg Fi,1 — flags at vertices v € Vert; ;
Verts — vertices with > 3 flags Fs — flags at vertices v € Verts.

At the end of this subsection, we will finally give the recipe for how to get all Ty—fixed curves
(Ci21,...,2m; f) corresponding to a ./\/lo“{m(Xg)fgraph I'. Observe, that by the construction of
the graph, it contains the precise image of such a curve in Xy. Moreover, irreducible components
of such a curve C that are not mapped to a point, i.e. that correspond to an edge in the graph
I', are rigid: the branch points of maps of degree higher than one are necessarily sent to fixed
points of Xs.
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Therefore, the only ambiguity for reconstructing a Tx—fixed stable curve (C;z1,...,2m; f)
from a Mém()(g)fgraph I’ are the irreducible components of C' that get mapped by f to a
Tn—fixed point in Xy: these components do not appear in the graph — “they are hidden in
the vertices”. By the stability condition for the stable map, however, we know that irreducible
components can only be hidden in a vertex v of I' if this vertex has at least three special points
associated with it, i.e. if it has at least three flags: v € Verts. On the other hand, each
irreducible component, that is not mapped to a point in Xy, has at each of its two vertices at
most one special point — it intersects the corresponding fixed points in Xy only once. Since the
worst singularities of the curve C' are double points, each vertex v € Verts with at least three
flags must “hide” a tree of irreducible components of C' that are mapped to the fixed point V, ),
that take all the marked points of the vertex v, and that connect the irreducible components
corresponding to the edges at v to each other (see figure 17).

Figure 17: A graph and two of its stable maps. — Components that are mapped to a
point are white in the interior.

At each vertex v of ' we thus have the choice of a stable curve C|, € m07val(n) where

val : Vert(I') —— Zo
b —— #{I"€ F|o(F) =10}

assigns to each vertex v the number of its flags, and where we define the spaces
M()p = MOJ = Mog = {pt.}

to be equal to a point. For each Mém(Xg)fgraph I’ we define the following product of Deligne—
Mumford moduli spaces:
H Mo,val(tl)

bEVert

By the observations above, there is a canonical family of T—fixed stable maps to Xy

w:Cr — Mr,
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fitting into the following diagram.
f

Cr ——C{ L (Xx) L X

&

Mr —3 Mg, (Xy).

The family of stable curves m : Cr —— M describes a fixed point component of the T—action
on M{,.(Xx). However, Mr is not the substack of Mg, (Xz) of this component since there
are automorphisms acting on Mr, as we will see in the next subsection.

6.2.2 Automorphisms of fixed point components

For a family = : Cr — Mr of T—fixed stable maps to Xy, m—equivariant automorphisms on
Mr and Cr come from two different sources: the automorphisms of the Mé{m(Xg)fgraph r
itself?! (with its decorations), and from the multiplicity of non—trivial curves (corresponding to
edges in the graph). So the automorphism group Ar of 7 : Cr —— M fits into the following
exact sequence of groups

1= [ Zae— Ar — Aut(l) = 1,
ecEdge

where Aut(I') acts naturally on [], Zd(e), Ar being the semi—direct product. The induced map
")//AF : MF/AF — Mém(/Yg)

is a closed immersion of Deligne-Mumford stacks. Furthermore, the image is a component of
the Ty—fixed point stack of M@, (Xx).

6.2.3 Weights on fixed point components

At the end of this section, we will calculate the weight of the Th—action on the irreducible
Tn—invariant divisors V,, 7 € (4= and subsequently we will derive the weight of the action
on a non—constant map

f:P'— 5V, c Xy, Texl

represented by an edge e in a Mém(Xg)fgraph [. Let 01,05 € £ be two d—cones in ¥ that
have a common (d — 1)-face 7 € X(4=1). Notice that V; is the closure of a one-dimensional orbit

of the Ty action, compactified with the two fixed points of this action given by the two d—cones

2! These automorphism comme from the construction of Mr as product of Deligne-Mumford spaces: this
means, that in Mr all special points of irreducible components that are mapped to a point are ordered. The
automorphisms of the M{ﬁm (Xs)—graph I correspond just to permutations of special points that are not marked
points.
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o1 and 09. So, the Ty action reduces to a C*—action on V,, that is to the action of a subtorus
C- =T, =Ty of Ty. The torus T is the image of the map

ﬁT : ((C*)n y T > T,

given by the quotient map Ty = (C*)"/D(X) followed by restriction to V;. Thus, we can write
elements of T as equivalence classes of elements in (C*)” by the map 3..

Lemma 6.7 Let 0,02, 7 € ¥ as above. Letv;,,...,v;,_, be the generators of the common face
T = 01N oy, such that

g1 = <’Ui17 ey Uiy gy Uh(T))
02 = (Vigs o+, Vig_ys Vly(r))-
Letwy, ... ,w, be a basis of t", the Lie algebra of the torus (C*)". The C*—action as quotient

action of the natural action of (C*)", restricted to the subvariety V — 1, has the weight w7} at
the point V,, :

n

wol = E<UJ7 Ug)w;, (18)

i=1
where uy, ..., uq is the basis of M = Hom(N,Z) dual to vi,, ..., vi,_, 01 (r)-

Proof: The d-dimensional cone oy gives a local chart U,, of our toric variety Xy, and the
coordinates on U,, are given by (cf. proposition 5.12):

vj,U vj,u
mT:Hz]{] 1>, ,acgl:Hz;-J d>,
J J
The 1-dimensional submanifold corresponding to 7 is given by the equations z;, = ... =
2, , = 0. In the coordinates of U,,, these equations are equivalent to

P01 _ 01 —_
' =...=z,., =0.

Hence we have to look at the (C*)?-action on the d'* co-ordinate. Thus the action of
(t1,...,ty) € (C)" on V; is given by

(t17 e 7tn) . Zl?irl = H(tjzj)<'ujvul>

J
— H t§UJ7“1> . H Z§“J7“1>
J J

o1
= twc2$17

using multi-index notation in the last line. Hence the weight of the action on V; is indeed

> (vj, ug)w; in the chart Uy, . 0

The lemma above gives in particular the Th—action on a the component of a fixed stable
curve that is mapped to V;:
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Corollary 6.8 Let e € Edge(I') be an edge of the MA m(Xs)=graph T', and vy,05 € Je be the
vertices at its two ends. Let o; = o(v;) be the d—cones of the vertices v;, and T(e) = o1 Noy its

common (d — 1)—face, that are generated by
o1 =0(01) = (Viys -+, Vig_1» Vi (e))
o2 = 0(02) = (Viys -+, Vig_y, Viy(e))-

For a Tn—fized stable map (C;21,...,2m;f) € Mr C Mém(Xg), let C. be the irreducible
component of C' corresponding to the edge e. Let I’ := (v1,€) € F be the flag of the edge e at
the vertex vy. At the point pp := f=1(V, 01)) NCe, the pull back to C. by f of the Tn—action on
Vi(e) has the weight wr at pp:

1 n
= d—z v}, Ug)Ww;, (19)
e j=1
where d. is the multiplicity of the component C., and uq, ... ,uq is the basis of M = Hom(N, Z)

dual 10 viy, ..., Viy_ 1, V1 (e)-

Proof: The action of Ty on C, is just the pull back by f of the action on V.. Since f has
multiplicity d., the formula follows immediately from lemma 6.7. (|

We will introduce some further notation, grouping together certain weights on the one-
dimensional Tny—invariant subvariety of Xy, or more general on a MOAM (Xx)-graph I'. First of
all, we will write o1 ¢ o for the property of o1 and o3 having a common (d — 1)-dimensional
proper face:

01 ¢ 09 <= 01,09 € ¥ and o1 Nog € »d=1)

The total weight of a d—dimensional cone o is defined to be

o i o
Wiotal *— H w'y'

yoo

Note that w{ ., is in fact a polynomial in the generators of t": w? , | € Zjwy,...,w,].
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7 The virtual normal bundle for toric varieties

In this section we analyse Graber and Pandharipande’s virtual normal bundle to the fixed point
components of the moduli space of stable maps for the natural (C*)"—action on a toric variety,
hence generalising Graber and Pandharipande’s example for projective space CP™ ([GP97]), and
we will derive our main result. Contrary to their calculations for CP", however, we will restrict
ourselves here to genus zero stable maps.

So let Xy be a smooth projective complex variety. Remember from section 3.3, that for
the cohomology sheaves of the dual natural perfect obstruction theory F, for our moduli stack
MOAM(XE) of stable maps

0 A » Eo y E) y T =0, (20)

the sheaves 7 are given by:
7 z * )1 1 .
T = Exte (/"% — Qepxsyymg, 00) (PN Ocg, (x5)) - 1= 0,1

From now on we will sometimes write M and C for the moduli space MOAM (Xx) and its
universal curve Cém()(g), respectively, if no confusion can arise.
Let K* be the complex K*® = [/*Q} — QéA
o,m

fits into the following short exact sequence:

(X5)/ME (XE)(D)] indexed at —1 and 0. It
0,m

0 —— Q¢ (D) » K y f*Q%[1] —— 0.

The corresponding long exact sequence of higher direct image sheaves corresponding to = :
Cém (Xx) — MOAM(XE) is then

~

0—— Homr(Qé/M(D), Oc) — Hom, (f*Q, Oc) > T

21
s Bl (O (D). 00) — Btk (70, 0) — T ——0. Y

Remark 7.1 Note that the injectivity of the map HomW(Qé/M(D), Oc¢) — Hom . (f*Q%, O¢)
induced by the natural map f*Q} — Qé/M — Qé/M(D) is equivalent to the stability of the

map f : C¢,,(Xs) — X (cf. lemma 2.6 and the remark following the lemma), while exactness
on the right of the above exact sequence follows from the fact of the fibres of Cém (Xx) —
M@, (Xx) being curves.

Now, let Mt be a fixed point component in the moduli stack of stable maps MOAJn (Xs),
and 7t : Cr — Mr its universal curve. By lemma 3.10, we know that the restriction of the
long exact sequence (21) to the fixed point component Mr becomes:

0 —— Hom, (/4. (D), Oc) — Hom, (ffQY, Oc) —— T pp ——

— Ext; (¢, m, (Dr), Ocy.) — Exty (ffQ%, Oc,) —— Ty —— 0. (22)
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In particular, if we restrict to a single stable map (C;z; f) € Mr, we get:
0 = Ext®(Qc(z), Oc) = H(C, f*TX) = Tl 0y —
— Ext'(Qc(z), Oc) = H'(C, f*TX) = T'|(cy = 0.
To determine the virtual norm@l bundle for the torus action on our toric variety, we will have to
analyse the moving parts of 7 = 7°| a1, hence the moving parts in the sequence (22). We will

call the i** term of this long exact sequence by B;, and the moving part (with respect to the

induced torus action) by B™°¢. Remember, that the virtual normal bundle NY* is the moving

part of the induced complex F|, r, that is

eTN (nglr) — eTN (E(I)I?Igve B Eil?lgve) — 6TN (Tli),move _ 7}17m0ve),

(23)

where the second equation holds because of the exact sequence (20). Now, applying the long
exact sequence (22) we obtain for the equivariant Euler class of the virtual normal class N
the following formula:

eTN (Banove)eTN (Bflnove)

TN Nvirt _ H: (X . 24
€ ( r ) ETN(Blmove)eTN(B;nove) € TN( 7@) ( )

The notation is indeed correct, since the BM°¥¢, ¢+ = 1,2,4, 5, are vector bundles on Mr! This
does not apply in general to the fixed parts of these sheaves, or even to the sheaves 7}2 So
actually, at least for the moving parts, we look at a long exact sequence of the kind of (23).

In the following, we will calculate the contributions of the four bundles to the equivariant
Euler class of the virtual normal bundle.

7.1 Computation of the equivariant Euler class of B¢

The bundle By = Ext®(Q¢(D), Oc¢) = Aute(C) parameterises infinitesimal automorphisms of
the pointed domain. The induced Tx—action on Aut(C') is obviously trivial on all automorphism
@ of €' that restrict to the identity ¢|¢, = id¢, on all irreducible components €, corresponding
to edges e € Edge(I') in the graph I'. Thus, the moving part of Aut.,(C') splits into

AutZV(C)= P AutR(C).
e€Edge(T)

Note in particular, that the bundle AutZ°v*(C') is topologically trivial on Mr since it only
depends on the irreducible components that are not mapped to a point, i.e. that are rigid in
Mr.

We will study two different types of edges depending on what type of vertices they connect.
Since we only look at moduli stacks of stable maps with at least three marked points, we can
exclude two special cases (cf. figures 18 and 19):

7.1.1 An edge e with vertices v;,vy € Vert; or vy € Verty, vy € Verty

Here we are in the case of a smooth curve (the graph has only one edge) with zero or one marked
point, that is all curves corresponding to one of these graphs are in the moduli stacks MOAD(XE)

or M@, (Xx), i.e. in moduli stacks that we do not consider.
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Figure 18: A graph Figure 19: A graph Figure 20: Two examples for parts of
with two vertices in with the left vertex graphs that can occur in Mg, (X, A) for
Vert;. in Vert; and the right m > 3.

vertex in Verty .

7.1.2 An edge e with vertices v; € Vert;, vy € Verty gU Verts.

Here, C. corresponds to a non—contracted P! attached to another non—contracted (or, in the V3
case, contracted) component (see figure 20). Therefore we have to look at Mdbius transforma-
tions that fix one point, infinity say:

[z1: 22] = [azy + bzg @ x4 (25)

Let 7 € F; be the flag corresponding to v;. We have seen above that the induced Ty—action
on (. is given by (using again multi-index notation):

t-[zyiag] = [thacl : Zg),

since the co-ordinate z; corresponds to the chart of the flag I’ (while z3 corresponds to the
chart around infinity, i.e. at the vertex vy. To determine the Thy—action on the automorphism
group of ., we have to compute:

t-(a,b)-t7' [y @ 29] (a,b) - [t™“Fxy 1 2]
[at™Fzy + bxy : 2]
azy + Y bry : x4)

(a,t“Fb) - [z : 23],

.
-
[

hence the Ty—action on an automorphism of C is given by:
t-(a,b) = (a,t“Fb). (26)

Therefore, the infinitesimal automorphisms of C. contribute the weight wr to the total Euler
class:

€TV (Autoo (C)™%°) = wr.
7.1.3 An edge with vertices vy, 0, ¢ Vert,

In this case, any automorphism of C restricts to an automorphism on C. that fixes the two
points corresponding to the special points of the vertices v; and vy. Any such automorphism on
C'. (taking the two points to be zero and infinity) has to look like

[z1 @ zg] — [axy @ 23],
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where @ # 0 is a non-negative. With the same analysis as above of the Tn—action on such
automorphism a, we see that the Ty—action on Aut, (Ce) is trivial, i.e.

Autzoe(C,) = (0).

7.1.4 The equivariant Euler class of B"°V®

Summing up our computations above, we get the following formula for the equivariant Euler
class for the moving part of the bundle B; = Aut., (C):

(B = [ wr. (27)
FE]:l

7.2 The equivariant Euler class of Bj*°¢

Here we are looking at the bundle By = Ext'(Qc(D),Oc¢) = Def(C) of deformations of the
pointed domain, that is deformations that vary some of the special points (varying the isomor-
phism class of the curve) or that smooth some double points. Again, deformations of contracted
components have obviously weight zero, since the Ty—action on these components is trivial, so
deformations coming from varying special points do not contribute to By*°°.

The other deformations of C' come from smoothing nodes of C' which join a non—contracted
component and a contracted or non—contracted component. Such a smoothing corresponds to
choosing an element of the tangent bundle at the double point. So let Lr be the universal
cotangent line (cf. section 1.3) at the double point corresponding to an F € F3UF; o, and write
er = e(Lr) = c1(LF) for the usual Euler class of this line bundle.

If we look at the smoothing of a double point between a contracted and a non—contracted
component, i.e. if I’ € Fs, let ' = (v,e). We have seen above that the Ty—action on the tangent
line T,C, of C, at the point corresponding to v has weight wr. The Tn—action on the tangent
line to the contracted component at the double point is obviously trivial. Hence the equivariant
Euler class of the tangent line is equal to:

eIN (L) = wp — er.

In the second case, when we look at a vertex v € Vert; ¢ joining two non-contracted compo-
nents, we analogously obtain for the equivariant Euler class of the tangent line at this node:

T *
€ N([’F) =WR T WR — €F — €Ry,

where I, Fy € Fy are the two flags at v. However, Lr, and L, are topologically trivial on
Mr (since non—contracted components are rigid in Mr), so we get the following expression for
the equivariant Euler class of the moving part of the sheaf By:

eIV (Bove) = I[I wr—er) ] @r@ +wemne), (28)
FeF; veVertz o

where I (v), F5(v) denote the two different flags at the vertex v € Verty .
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7.3 The equivariant Euler class of the quotient Bj}*°v¢ — BIove

Like Graber and Pandharipande, we will use the following exact sequence to calculate the
contribution coming from H*(f*7TX):

0+0c— P Oc, & P 0Oc. = P O, —0. (29)
vEVert e€FEdge FeF
Note, that a—priori it only makes sense to sum over Verts in the middle term, and over F3
and Verty (instead of F) in the right term. By passing to the pullback under f and taking
cohomology, however, the extra terms make sense and cancel each other. We thus obtain:

0= H(f'TXs) = P HCy, f'TXs)® P H(Ce, fTXs) =
vEVert ecEdge
- P Tppy X5 = H'(f*TXs)— @ H'(C., [*TXs) 0.
FeF ecFdge

(30)

Note that since we only look at genus zero curves, H'(C,, f*T Xx) = 0. On the other hand,
HY(C., f*TXy) is not necessarily zero for a toric variety Xy as it is in general not convex. We
thus obtain the following formula:

HO(f*'TXs) - H'(f*TXs) =+ P T,,,Xs + P HC., ['TXy)

i(v

vEVert e€Edge (31)
- D1 Xs—- P HY(C., [TXs).
FerF ecFdge

To calculate the equivariant Euler class of H?(C,, f*T Xy), we again observe, that the bundle
is constant. To determine the weights of the induced action, we look at the following Euler
sequence on Xy:

050" 5 0Z)&...80Z,) = TXg — 0.
Pulling back to C. and taking cohomology gives

0 C= 5 HOOM)) @ ... ® HO(O(A) = HO(C, [TX5) =0,

where the tuple (A1,...,A,) describes the homology class of f.[C.].
Asin section 6, let de = {01,032} be the two nodes at the ends of the edge e, 0; = o(v;) € »(d)
be the two d—cones in the fan ¥ corresponding to the two nodes v; and vy, and let

g1 = <Ui17 ey Uiy gy Ull(e)>

02 = (Vg -y Vig_ys Vly(e))-

We have already seen earlier, that the divisor Z;; = 0is given in local coordinates by ac;” =0,

where the local coordinates in a chart U,, is given by (see theorem 5.12):

.r;rl = Z§U1’uﬂ> .. .ZﬁL““v“J)’
where w1, ..., uq is the basis dual to v; ..., vy ).
The homology class f.[C.] is represented by (Aq,...,\,) satisfies the following properties

that are straightforward to show:
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1. A (e) = de, where d. is the multiplicity of f;

2. If] ¢ {ih s 7id—17ll(e)712(6)} then A] =0.

In fact, we can label the );’s without using the generators of the cones ¢;. Let v € ¥(%) be
a d—cone in the fan ¥ that has a common (d — 1)-face with o1: 7 ¢ 0y. Then v and oy have
(d — 1) generators in common; let v;, € (1) be the generator of oy that is not a generator of ~.
We then set
AT =N

e Ty ®

If we also set

Agl = Alg(e)

we get new coherent notations for the A; that have to be taken into consideration. In particular,
there is a v ¢ 1 that corresponds to any of the generators o;.

So let us compute the weights of the action in the chart U,,. For k = 1,...,d (we set
iqg = l1(e)), the action on the bundle O(Z;,) in the chart U,, is given by the action on the z;,
co—ordinate. Thus the weight of the action on the fibre over the chart U; is

wil = sz UL Uk) -

Here we have used the same notation as above, i.e. v ¢ g1 is the d—cone having a common
(d — 1)—cone with oy, such that v;, is the generator of oy that is not a generator of 7.

We observe that the weights on the zeroth homology bundle of a bundle O(X), A > 0, with
weights w, and wg in the base and the fibre with respect to a trivialisation over a chart, are
given by

ws—b-wy, b=0,...,A\

In our case, over the chart U, , we have seen that the pull-back bundles O(X;,) = f*O(Z;,)
have the following weights:

— — a1
W, = W= d—wo.2
‘e
o1

Ws = Wy

Therefore we obtain the following weights for the zeroth cohomology bundle of O(AX*) =
*O(Z;,):

b

o1 — Vi

ka—dww, b=1,..., A%~
'€

Note there is one zero weight among the weight coming from O(AJ') = f*O(Z),(¢):

1
a1 a1
wa2,...,d Wasy 0,

while all other weights are non—trivial for a generic action.
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There is one other non-trivial pull-back bundle: O(A7') = f*O(Z,(.)). The weights of its
zeroth cohomology bundle are correspondingly:

o1
0, ——w

de oottt

For j & {i1,...,ia-1,l1(€),l2(e)}, the action on C= H°(O(0)) is obviously trivial.
Hence, for the equivariant Euler class of the moving part of H°(C., f*T'Xy) we obtain

(i rrxe) = e g 1T (e - den). )

ooF£vyoo1 b=0

Note, that for generic weights (wy,...,w,) this product will never be zero. Also note that,
even as a bundle over Mr, it is topologically trivial since the images of the curves C', are rigid
in Mr.

So it only remains to compute the weights of the (trivial) bundles T}, , X5 and T}, . Xx.
Both cases are essentially the same, so we will derive the weights for any Tp Xg

The d weights on T, Xy are given by the weights on the d dimension—1 submanifolds corre-
sponding to the codimension—1 faces of o, i.e. W for yoo. Since, topologically, the corresponding
bundle on Mr is again trivial, the equivariant Euler class of this bundle is equal to

Pc"YT ]___[ w? = <‘*‘)total (33)

Yoo

We are left with computing the contribution of H!(Ce, f*T Xy). As a bundle over Mr, again
it is trivial. The computation of the weights is similar to the H® case, and we obtain:

I(HYC,, [ TXD) = ] H( —H—elwm). (34)

oaFY001 b=)\]

Again, all three corresponding bundles on Mr are topologically trivial, so their equivariant
Euler class over Mr is equal to the expressions given above for their equivariant class over a
point (i.e. for a single stable map in Mrp. So, plugging the results of equations (32), (33)

and (34) into equation (31) we obtain for the equivariant Euler class of the difference bundle
Bmove _ Bmove:

eTN(Bénove . Bgnove) —

-1 .
g1 ? g1
11 <w'v T4 'w02>

d j2d .
(o) (~1yia i
= I («r) - I @) @) II = ,
vEVert ecFEdge " 92 orFY001 o1 4 o1 (35)
86:{01702} H w'y - E : wcr2 0’1_0'(01
t=0 0'2:0'(02)
d=d.,

where val : Vert — N is the number val(b) of flags at a vertex v € Vert.
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7.4 The main theorem

In the previous subsections we have computed all contributions (27), (28) and (35) entering the
formula (24) for the equivariant Euler class of the virtual normal bundle to Mr. Therefore,
applying Graber and Pandharipande’s virtual Bott residue formula [GP97, equation (7)] we
obtain the following theorem expressing the genus—zero Gromov—Witten invariants of a smooth
projective toric variety Xy in terms of its ./\/lém(Xg)fgraphs I' and the fan X:

Theorem 7.2 The genus—zero Gromov—-Witten invariants for a toric variety Xx, are given by

o lik
[Tx=1 (wk(])) ’
®X5 (71, 7t Z / L= 36
m,A( |AF| eln Nmrt) ’ ( )

where
o we use the convention 0° = 1;

. {; l;
o Jh=7" Ty

o:{1,...,m} = XD the image o(7) of j corresponding to the fized point the marked
point j € {1,...,m} is mapped to:

v € Vert(l') :o(v) =0a(j) A j € S(v);

- 0 if i ¢ 30,
e we define wz(j) = () f e )
Wy zf’yoa(j) and v € E \EW ;
e the inverse of the Fuler class of the virtual normal bundle is given by
1 1 o (v) val(v)—1
virty ].__[ ].__[ wE - ]___[ ]___[ Wiotal '
eV(NET)  per, WF = €F g veVerts o “F1(0) TOR(0)  pver ( )

_1 .
1

Wl — — -wgl)

II _(=nta* i=£1+1< Tod
2d v ]

eckage | (@7 (052)" oy 000, f[ (w”l . Ul)

de=(or.02) g

o1 :a'(tll)
Ug:a(bg)
d=d..

1=0

In the next section we will demonstrate how to use this formula effectively in the example
of two toric varieties: the standard example complex projective space CP", and the projec-
tive bundle Pp2(O(2) @ 1). The latter is a Fano threefold for which, to our knowledge, the
Gromov-Witten invariants have not been known yet (although Givental has computed its quan-
tum cohomology).

Before we go on to the examples, however, let us make some concluding remarks:
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1. The above formula does not yield directly the m—point Gromov—Witten invariants (for
m > 3) needed in the computation of quantum products with more than two factors, i.e.
the invariants

W ([t o,y ), (37)

where p: M@ (Xs) — Mo, is the forgetting map (plus stabilisation). It does compute
the invariants
X R
\Ilm?A (P [Momls o, ... ap).

Since for m = 3, the Deligne-Mumford space of stable curves is just a point, Mog, =
[pt], the theorem gives the three—point Gromov—Witten invariants needed for computing
quantum products of two factors: a * .

This, however, is no real disadvantage, since the decomposition law for Gromov—Witten
invariants expresses the m—point invariants in (37) with the help of the three-point invari-
ants.

2. In this thesis, we have not tackled the case of higher genus Gromov—Witten invariants for
two reasons:

o First of all we have been interested in understanding better the quantum cohomology
of projective toric manifolds with the hope of eventually computing it for non-Fano
manifolds as well.

e Secondly, even for genus—zero invariants the formula for the virtual normal bundle
becomes combinatorically quite complicated.

However, generalising the above theorem to higher—genus invariants should essentially
work the same way as in the case of complex projective space, that has been studied by
Graber and Pandharipande (see [GP97]). Note, however, that the fixed point components
Mr will then contain higher genus Deligne-Mumford spaces Mg, as well, complicating
the computation of the integrals in (36): there is no longer an explicit formula such as in
corollary 1.11, but only an recursive formula.



86

8 Examples

In this section we give two examples of actual computations using the localisation formula
applied to toric manifolds (theorem 7.2). We first compute the quantum cohomology ring of the
projective space — this ring is of course well known, but this makes it also a good example to
experiment with our formula. Next we compute the invariants and the quantum cohomology
of the Fano threefold P(Ogp2(2) @ 1). The reason why we have chosen this specific example is
that, as far as we know, it is the simplest smooth projective toric variety that does not appear
in previous work, e.g. this example is not accessible by the methods used in [QR98].

8.1 The projective space

Before we actually start computing the Gromov—Witten invariants of any complex projective
space P using the above formula, we will reduce the number of invariants for which we ac-
tually have to use the formula. Remember that for Gromov-Witten invariants the so—called
composition law holds:

N
AX A, X A3 X | i
@, ([ptlxg, . 01y 02, a3, ) = S D0 (a0, B) @577 (B, as, o),
A=A+ 45 =1

where (81, ...,8n) is a basis of H*(X,Z) and (8',...,8") its dual basis of H*(X,Z).

For the complex projective space P, let H € H?(IP",Z) be the generator of degree—2 coho-
mology. Then (1, H,H% ... H") is a basis of H*(X,Z) whose dual is (H",...,1). So any class
A € Hy(P", Z) is necessarily a multiple of the class H, A = kH, and if A contains holomor-
phic curves k needs to be positive. Remember that the virtual dimension of the moduli stack

Mo (P, A) is equal to
dimyiy Mo 3(P™", A) = (1 (P"), A)+n+3-3=k(n+1)+n

Hence, for £ > 1, the virtual dimension of the moduli space is bigger than 3n. Therefore there
can only be non—trivial Gromov—Witten invariants for the class??> A = H.

So let us look at the composition law for A = H. First of all, the dimension of the (virtual)
fundamental class of the moduli stack Mg, (P", H) is equal to (¢;(P"),H)+ n+m — 3 =
2n + m — 2. Also, we can not decompose the class H into effective classes, i.e. classes that
contain again holomorphic curves. Suppose that p > ¢ > r > 2 and p+ ¢+ r = 2n+ 1. Hence
we obtain:

O (H? HY H") = JHY HT) - ®Y(H™™" H™™", H)

@3 (H”
Y ([pt; H?, H', H™"' H) (since p+q > n)

A([pt); HP, H™=Y, HY H) (since the GWT are commutative)
H

5 (

H

3

P
P
P

HP H'=' H) - @S(H 1~ HY, H)
=M (HP, H HY.

22 And of course for the trivial class A = 0, given by the intersection numbers (of the usual cup product).
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Therefore, by induction on r we get
S (HP HY, H") = ® (H" H", H),

that is we only have to use the fixed—point formula to compute one single Gromov-Witten
invariant for each complex projective space P".

So let (e1,...,€,) be a basis of Z", and ¥ be the fan given by the following 1-skeleton and
set of primitive collections:

Vi = €1y...,0p =€Ep,Upny1 = —€1 —...— €,

P={{vi,. .., vng1}}.

We will denote the n + 1 different n-dimensional cones in the fan X as follows:

Ui:<’l)1,...,’ﬁi,...7vn+1>7

where the element with the hat has to be omitted. One easily sees that the weights at o; on the

edge connecting to o; is given by
Ui::

Wy, = Wj — Wi

As usual we will denote by Z,..., Z,41 the (C*)"—divisors in P™ coming from the hyperplanes
{2 =0} C C**'. So let us compute the invariant ®(H™ H™ H):

Cfn+1 1 g1

S\ Ty T, a i Ty, 7)) = @——@

1,3 2

_ @i mwngn) (Wn mwngr) - (W2 m @) (Wi —w1) - (@1 —@ng)

(W1 = wnt1)? + (W2 = wny1) (W2 —w1) - (Wi — Wpg1) (Wi — w1)

Summing up, we get the following results for the projective space CP™:
e The only non—trivial genus—zero three—point Gromov-Witten invariants are
1. ®Y(H?, H, H") = 1if p+ ¢+ r = n; and
2. O (H?, HY, H") = 1if p+q+7r=2n+1.

e Its (small) quantum cohomology ring is given by
QH*((]Pn7 Q = (C[H7 Q]/(H”‘H—q)'

8.2 The Fano threefold P(Op:(2) ¢ 1)

A fan for Xy = P(Op2(2) & 1) is given in Z> = (e, €2, e3) by the one—skeleton vy = e, vy =
—e1, U3 = €2, Vg = €3, U5 = —eg—e3—2e1 with the set of primitive collections being {{v1, v2}, {vs, va, v5}}.
We thus have six 3—dimensional cones in the fan X:

g1 = <U17 Us, U4> 02 = <’U17 Us, ’U5> g3 = <’U17 Vg4, ’U5>
04 = <,U27 Us, U4> 05 = <’U2, U3, ’U5> 06 = <,U27 U4, ’U5> '
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The effective cone in Hy(Xy) is generated by the two classes:

A o= (1,1,0,0,0)
Ay = (0,-2,1,1,1).

The degree—2 relations in cohomology are given by 7y — Zy — 275, Z3 — Z5 and Z, — Zs. Since
the set of primitive collections is equal to {{vy, v}, {vs, v4,vs5}}, the higher degree relations are
Z1Zy and Z3Z475. Therefore the cohomology of Xy = P(Op2(2) & 1) is equal to

H*(Xs;Z) =721, ..., Zs) {7y — Zy — 275, Iy — Zis, g — T, Ty Zg, D34 Zs)
=7y, Z3) {7} — 27,73, 73).

To determine the homology classes of the invariant codimension—1 divisors (see figure 22), note
that (71, Z3) is the basis of H?(Xx;Z) dual to (A1, A2). Consider now for example the invariant
codimension—1 divisor V,,n,,, connecting the fixed points corresponding to o; and o3. Since
o1 = (v1,v3,v4) and o3 = (vy, vs, vs), the homology class of V, ns, is Poincaré dual to 7y - Zs.
Hence we obtain

<Zl7 VO’100’2> = Z12Z3 = 2Z1Z§
<Z37 V01002> = Z1Z§.

Since (71, Z3) is dual to (A1, Az), this yields V;, ns, = 2A1 4+ A2. The calculation of the homology
classes of the other invariant divisors is similar.

o1 M 04
2A1+ A2
A2
221+ A2 a2 Al 75 A2
A2
201+ A2
A1
Figure 21: The image of the mo- o3 O
ment map: the bottom triangle has
side length 2X\; 4+ A, and the top Figure 22: Invariant codim-1 divisors of the variety
one Ag. Pp2(O(2) & 1) and their homology classes.

For our calculations later on, it will be convenient to have the following weight table at hand:
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g1 = <Ul7 U3, ’U4>

04 = <U27 Us, ’U4>

uy=e€j wol=w; —wy — 2ws Uuj=—ej wol=—w1 + wz + 2ws
% g1 P X T4 __

Ug=e, wg;) =Wws3 — Ws Ug=ey wag =Wws3 — Ws

p % g1 — p — % T4

U3=¢€3 waé =Wy — Ws U3=¢€3 wag =Ww4 — Ws

g9 = <’U1, U3, U5>

05 = <,U27 Us, ’U5>

uy=ey — 265 wyl=wi —wy — 2wy

ug=ey — €3  Wol=w3 — Wy

uz=—e3 wo=ws — wq

uy=—ej + 265 wpl=—wi +wy + 2wy

ug=es — e Wl =w3 — Wy

Ao— * ag __
U3=—€s wgi =Ws5 — Wy

g3 = <’U1, Uy, U5>

06 = <,U27 U4, ’U5>

uy=ey — 265 wri=wi —wy — 2w3

o3

uy=—ej + 265 wpl=—wi+wy+2w3

o6 —

% * % *
Ug=€z — €9 wg2_w4 — W3 Ug=€3 — €9 w% =Wy4 — W3

g6
wgi =Wy — W3

J— * a3 __ . — *
U3 =—¢, wai’_w5 — w3 Us=—¢4

8.2.1 Gromov—Witten invariants

Now we are ready to start calculating Gromov—Witten invariants of this manifold. Note that
the virtual dimension of the moduli space M{'5(Xx) is equal to dim X5 + (¢1(Xx), A) = 3 +
(c1(Xx), A), hence we can restrict ourselves to homology classes A with (¢;(Xy), A) < 6 to
obtain non—zero 3—point invariants.

In fact, it is easy to see that for homology classes A such that (¢;(Xx, 4)) = 6, all Gromov—
Witten invariants are equal to zero: let A be such a class, then the only possibly non—trivial
GW invariant would be

VAV Y WAV LV ANAV VD

However, a graph I' such that the integral of these classes over the corresponding fixed point
moduli space Mr is non—zero has to contain the nodes o1, 03 and o3. By looking at figure
22 one immediately sees that such a graph I' would have to have homology class Ar with
(c1(Xx), Ar) > 8 (in this case Ar = 3X; +2A3). Hence, all non-zero Gromov-Witten invariants
of Xy have (¢;(Xx), A) <5.

We can equally exclude all classes A = a1 A1 + agAy with ag > 3. For if (¢1(Xx), 4A) <5 and
ay > 3 we had a; = 0. So let us consider the Gromov—Witten invariant

q)a2/\2 (0417 Qg, 043) .

Since dim Xy = (¢1(Xx,a2)3)) = 34+ az > 6, at least one of the a;’s is of degree six, say
oy = /17374, But there is no graph I' of homology class a multiple of Ay that contains oy.

So we are left with computing the 3—point genus—0 Gromov-Witten invariants for the fol-
lowing classes:

[ A2 A 22 33X M+ 24 A 420 Ai+3X 204 )
virt. dim. | 1 2 2 3 3 4 4 5 5
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e )\y—invariants
° ‘I)’\2(Z1, Zi7 Z]‘Zk) = 0;
o (7, Z; 71 7)) = O;
° (I)A2(Z?>7Z?>7Z4Z5) =

T4 1 g¢ g5 1 Og
= 1,2 3 —I_ 1,2 3
_(rwrHwr w3t ws) = (—wi +wy w3+ wy)
- Wy — Ws
= —1;
e )\ —invariants
o« W1, 20, IaTals) = @@ 1,
° q)Al(Zz‘, Zs, Ly ZaZls) = 0;
« VN2, D70 2 2) = @@ 1,
[ ] ‘I)’\‘l(ZZ',Z]'Z3,Z4Z5) = 0,
e 2)\;—invariants
o (7, 7. pt) = 0;
. @2\2(21,2 o ZkZy) = 0;
o O22(7; I\ Z;, Zn ) = 0;
° ¢2A2(23,Z3Z4,Z4Z5) 1.2 2 .3 i
+ .04 1 .0'6 1 '0'4—|_ '0'4 1 '0'6 1 '0'4—|_ .04 '0'6 '05
1,2 3 1 3 2 1,2 3
+ .04 1 '0'6 1 '0'5—|_ .0'4 1 '0'5 1 'UG—I_ .0'4 '0'5 '0'6
2 3 1 1,2 3 2 1 3
+ ‘0'6 1 ‘0'4 1 'UG—I_ '0'6 1 '0'4 1 '0'5—|_ .0'6 '0'4 .0'5
1,2 3 3 1,2 3 2 1
= —2;

e 3Ao—invariants

° ‘1)3’\2 (Zi7 Z]‘Zk, lelzp) = 0;
o 37,7 7.7, 71 7,) = 0;
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o O (Z3Z4, s, BaZs) =

—e” 2 o7 07, 06”72 0~ 0" 02 "1 @7
1 2 3 3 2 1 2 1 3
g g g g g g ag g a
+ . 5 2 . 4 1 . 6+ . 6 2 ' 5 1 . 4—|_ . 4 2 ' 5 1 . 6
3 1 2 2 3 1 1 3 2
g g g a g g g a
+ ‘ 4 1 ' 5 1 ' 4 1 . 6+ . 4 1 ' 5 1 ' 4 1 ' 6
1 3 2 3 1 2
+ .04 1 .05 1 '06 1 .04—|— .‘74 1 '05 1 .‘76 1 .04
1 3 2 3 2 1
g g g g g g a g
+ . 4 1 ' 5 1 . 6 1 . 5+ . 4 1 . 5 1 ' 6 1 . 5
1 3 2 2 3
+ ‘04 1 'g6 1 '04 1 .g5+ .0'4 1 '06 1 “74 1 '0'5
1 2 2 1 3
ag g g g ag g g a
+ ‘ 4 1 ‘ 6 1 ' 5 1 ‘ 6+ . 4 1 ' 6 1 ‘ 5 1 ' 6
1 2 3 1 3 2
+ ‘0'5 1 ‘0'4 1 '0'5 1 ‘0'6—1_ .0'5 1 '0'4 1 '0'5 1 .0'6
3 1 2 1 3 2
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+ .05 1 .a'4 1 '06 1 .a'5+ .(75 1 T4 1 .(76 1 .0'5
3 1 2 1 2 3
+ .05 1 .06 1 .04 1 .06—1_ .05 1 .06 1 '04 1 .06
3 2 1 3 1 2
+ .‘76 1 .0'4 1 ‘0'5 1 .0'6—1_ ‘0'6 1 T4 1 ‘0'5 1 '0'6
2 1 3 1 3 2
o o
+ 1 + 1
.0'4 1 .0'5 1 '0'6 T4 1 ‘0'5 1 g¢
1 3 2 1 3 2
‘0'4 231
+ 1 + 1
.0'4 1 ‘0'6 1 '0'5 g4 1 gg 1 g5
1 2 3 1 2 3
ox Jg¢
+ 1 + 1
.0'5 1 g4 1 '0'6 g5 1 g4 1 g¢
3 1 2 3 1 2
= — 4,
e (A + Ag)-invariants
g1 1 g4 1 g¢
o OMTN (7 7T T T Ty) = @ ® o — 1,
\ +A 1’30'1 1 T4 1 2 g o1 1 T4 1
D R VAN AV ANAVAV NS 1‘3 ® g + ? ? g
. (ws —w3) + (w1 + wg + w5 + ws)
—w1 + w2 + 2ws
= 1;
o1 74 Jg a1 1 74 1
o ONFN(L Ty, s, ZaTls) = @ e ® 0 1 ®
(ot wrtws +ws) + (ws — wa)
—w1 + w2 + 2ws
= 1;
a1 1 g4 1 g¢
o QNN 75, 21 Zay Zas) = @ ® ® i

06

T6



8. Examples 93

o pMth (Z;, Zh Zis, 21 Zis Zg) = O;

o QNN (737, 4T, ZsZis) = 0;

o MtV (7,75, 71 2y, 21 Zs) = 0;
e 2)\;—invariants are all zero.

The virtual dimension of the corresponding moduli space is seven, so for the invariants
d2M (o1, a2, arg) we have two cases for the classes a;:

e degay =degay =6 and degag = 2
In this cases we can set oy = 717374 and oy = Z1Z475. There is obviously no graph
I’ in the homology class 2A; containing both ¢; and os.

e degay =6 and degay =degasz =4
We can set oy = 71 Z374. For ag we have to choices: ay = Z475 or g = Z1 Z5. Again,
there is no graph I' with homology class 2A; that contains the necessary nodes (o4
and one of the following: o3 or og respectively o, or o3).

e (A1 + 2Xg)—invariants Since the homology class A = Ay 4+ 2); contains only one Aq, all
graphs ' in this homology class contain exactly one of the following nodes: o1, o9 and os.
Therefore the following invariants are all zero:

o OMA2N (7, 7 Ta s T DaTs
Z37 Z1Z3Z4, Z1Z4Z5
Z1Z37 ZBZ47 Z1Z4Z5

ZIZS7 ZIZB7 ZIZ4Z5

o Prt2i

o Prt2i2

o~~~ -

)

)

)
o Prt2A2 ) —
The only Gromov—Witten invariant in this class that remains to be computed is the fol-
lowing:

g1 1 g4 1 gr 1 gg

° q)>\1+2)\2(Z4Z57ZgZ5,ZIZSZ4) = ?

_I_ .‘71 1 ‘0'4 1 .‘76 1 .0'5—}_ 1
3 2

1

o !
3 1
 (rwr Fwrtws 4 ws)(—wi +wy Fws 4 ws)
a (ws — w3)(ws — wa)
(—wi + w2 + w3+ wa) (w1 +wg + 2wy)
(w4 - wg)(w5 - w4)
4 (—w1 4wy + 2w3) (—w1 +wy + w3 + wy)

(w4 — w3)(ws — ws)
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o (A1 4+ 3Ag)—invariants are all zero.
The virtual dimension of the corresponding moduli space is eight, so we can set a; =
I ZsZy and ag = Z1Z4Z5. A graph ' that could give a non—zero integral on Mr had to
contain oy and o3, which is impossible since the class A = Ay + 3y contains only one A;.

e (2X\1 4+ Ag)-invariants
R q>2/\1+A2(Z§, AVAYAWAVAV I

g1 1 T4 1 gg

a a
o o ¢! o
3 2

g4 1 gg 1 g3
L

1 3

(—wi +wa +2ws) — (—wi1 +wa + 2ws)
W3 —Ws

= —2;
o OMNIN(L 7y, In FsZia, Za Da ) =

g4 1 g¢ 1 g3
® L

3

o1 a3 71 1
)2 3 1,2

1

_ (mwr Fwo 4 2ws) + (w3 — ws)
—wi +wy +ws+ws

o Pp2hitro (Z?%’ VAVAYAR 21Z4Z5) =0

o ®2MtA2 (72 4t pt) = 2 — this is a combination of the three previous invariants using
the equality 71 = Z9 + 2Z3;

8.2.2 Quantum cohomology

For completeness, we will also compute the quantum cohomology ring of this manifold, although
it has already been known thanks to Givental’s work [Giv97] where he uses techniques from
mirror symmetry to compute the quantum cohomology ring for Fano toric varieties, obtaining
the same formula postulated by Batyrev in [Bat93].

Since the usual cohomology ring is given by

H*(XZ7Q) = Q[Zh Z?a Z37 Z47Z5]/<Zl - ZZ - 2257Z3 - Z47 Z3 - Z57Z1Z27 Z3Z4Z5>7

it suffices to calculate the quantum products Z; x Z5 and Z3 % Z3 x Z3 to find a representation
of the quantum cohomology ring. Remember that given the Gromov-Witten invariants, the
quantum product satisfies the following determining equalities:

(((ax B)a N, [X]) =835 (o, B,7)
(38)
a*ﬁ: Z (a*ﬁ)/\q/\v

\eH2(X,Z)
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where a, 8,7 € H*(X, Q) are cohomology classes of the manifold X. Thus if 6, ..., 6, is a basis
of H*(X,Q) and 94, ...,9, its dual basis with respect to the cap product plus integration, we
obtain

(axB)r=> @35 (o, B,6:)0;.
=1

Now, for our particular example X = Xy, we will take the following basis with its dual basis:
basis | 1 |z 7 | Zvzs | 72 | 7273
dual basis | 7173 | Z3 | Z1Zs — 2722 | Zs |71 —2Z5| 1.

So, for the first product Z; x Z; we obtain

i1 %Ay = Z1x/1— 271 %73
= (ZL1xZ1)n qu
= q)‘l, since
Iix 7y = ZiP4gh
= 17427 75+ ¢
=

For Z%3 we first calculate the quantum square product of Z3 x Z3:

Z3 * Z3 = Z3 U Z3 + (Zg *Zg))\2 q/\2 + (Zg *Zg))\l q)\l +
N—_— ——’ N—_— ———’
(I)k2 (Zg,Zg,Zg)(Zl—QZ;),) <I>k1 (Z3,Z3,p7f):0

+ (Z3x Z3)an, ¢
——————
®2k2 (Z3 7Z3 ,pt):o

= 72— (7 —273)¢".

So we will also need the products Z; * Z3 and Z§ * Z3. For the first product notice that all
Gromov-Witten invariants ®4 (7, 73, a) are zero for A # 0. So

Zyx Zs =7 U Zs.
For the second product we obtain:
ZixZs = 75+ (73x Za)ng™ + (73 % Z3) g’ +
(723 % Z3)20, 6 + (73 % Z3)30, 0™ + (723 % Z3) 542,41
= (D1 75— 273" — 27 — 273) ¢ + ¢
Summing all up we thus get the following expression for Z*3:
ok Dax Ty = 2% L+ Ly Zaq?

= (222 75+ 472)¢ — M(Zy — 275)¢* + g1

= (2721 x D3+ 473 x 73+ ") ¢

= Zyx Zoq?.

Thus we obtain the same result as Givental in [Giv97], the quantum cohomology ring “pre-
dicted” by Batyrev [Bat93]:
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Proposition 8.1 The quantum cohomology ring of the toric variety Pop2(O(2) & 1) is equal to

QH*(Pgp2(02) @ 1),Q = (%1, Z3, Z3, Z4, Zs, 1, 42]/
< I Zy — quy £324 05 — Z22(]2

2y — Ly — 275,23 — Ly, 23 — Zs, >

=%y, Zs, 1, @) /(75 + 22275 — 1, 73 — Z3q2).



B. The terms for ®3%2( 7374, 7475, Z375)

A The terms for ®*(73, 737,, 7, 7Z5)

(a+ 3ws+ tws)(a + ws + ws)(a + Jws + 3ws)
(wg — w5)2(w4 — %w5 — %wg)

(a+2w3)(a+ w3 + ws)?

th = —4

= (ws — w3)?(wa — ws)
by = (a+2w3)(a+ w3 + ws)?
(w5 — w3)?(wg — ws)
b = _(a—|—2w3)(a—|—w3—|—w4)(a—|—w3—|—w5)
(w3 — ws)(wa — w3) (w5 — wa)
o= _(a—|—2w3)(a—|—w3—|—w4)(a—|—w3—|—w5)
(w3 — ws)(wa — w3) (w5 — wa)
fe — (a +ws+ws)(a+ws+ws)(a+ 2wy)(ws — ws)
(w3 +ws — 2wy) (w5 — wa)? (w3 — wy)
b = (a4 2w4)(a + w3 +wi)(a+wg +ws)
(w3 — wa)(ws — wy)?
f = plat2ws)(atws+ ws)?
(w3 — ws)?(wg — w3)
ly = _(w3+w4 — 2ws)(a+ 2ws)(a+ ws + ws)(a + ws + ws)
(w3 — ws)(wa — ws)?(wa — w3)
o = _(a—|—2w5)(a—|—w4—|—w5)(a—|—w3—|—w5)
(w3 — ws)(wa — ws)? 7
where ¢ = —w; + waq.

B The terms for ®*:(Z37,, 7475, 737;)

Again, in the following terms, a has to be substituted by ¢ = —w; + ws.

i _4(a+2w3)(a+w3 + wa)(a + w3 —I—w5)(a+ ws —I—w5/2)(a+ sws + Jws)
(ws — w3)3(wa — w3) (wg — — Twes)

- Lot 205)(atws +ws)(atws —I—w4)(a+ sws + Jwa)(a+ Jws + Jwy)
(wq — w3)?(ws — w3)(ws — %WS %w4)

_— _4(a +2ws) (a4 ws + w3) (@ + Jws + 2ws) (e + 3ws + Lws) (@ + ws + wy)
(w3 — ws)?(wsg — ws) (wq — %w:a - %ws)

b Lot 2ws)(afws +ws)(afws +ws)(a+ gws + 5wa)(a+ Fws + 50a)
(w1 — ws)3 (w3 — ws) (w3 — —ws %w4)

- Lot 200 (atws +w)(atwy + ws)(a+ jws + ws)(a+ Swy + jws3)
(w3 — wa)3 (w5 — wa) (w5 — 2wy — Fws)
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(a+ 2w4)(a +wq +ws) (a4 jws + Jws) (a4 Sws + 5ws) (a4 ws + wy)

—4
(ws — wq)? (w3 — wy) (w3 — %w4 - %w5)

(@ +ws+ws)i(a+ ws +ws)(a+ 2ws)(a+ 2w,)
(ws + wa — 2ws) (ws — wa)3 (w3 — ws)
(a+ 2w4)(a+ 2ws)(a +ws + ws)?(a+ ws + w3)
(wa — ws)?(ws — ws)?
(a + 2ws3)(a + 2wy) (@ + w3 + wq) (@ + ws + ws5) (@ + w3 + ws)
(w3 — wa)?(ws — wa)?(ws — w3)
(a + 2ws3)(a + 2wy)(a + w3 + ws) (@ + w3 + w4) (@ + wg + w5)
(ws — w3)?(wa — w3)?(ws — wa)
(a+2wq)(a+ 2ws)(a + ws + wp)? (@ + wy + ws)
(ws — wa)?(wq — w3)?
(a+ 2w3)(a+ 2wy (a + ws + wg)? (@ + wy + ws)
(ws + w5 — 2wy) (wg — w3)? (w5 — wa)
(a+ 2w3)(a+ 2ws)(a + ws + ws)? (@ + wy + ws)
(ws + wa — 2ws) (w5 — w3)3(wa — ws)
(a+2w3)(a+ 2ws)(a+ wy + ws)(a+ ws + ws)?
(ws — w3)?(wa — ws)?
(a+2w3)(a+ 2wq)(a+ ws + wq)?(a +ws + ws)
(w3 — wa)?(ws — w3)?
(a4 2w3)(a+ 2wy) (@ + ws + wg)?(a + w3 + ws)
(wa + ws — 2w3) (wg — w3)3(ws — ws)
(a+ 2wq)(a+2ws) (@ + ws + wy) (@ + wyg + ws)?
(ws + w5 — 2wy) (w5 — wa)?(wa — w3)
(a4 2wq)(a+2ws) (@ + wz + wy) (@ + wyq + ws)?
(wa — w5)?(ws — wa)?
(a + 2ws)(a + 2ws) (@ + w3 + ws) (@ + w3 + w4) (@ + wg + ws)
(w3 — ws5)?(wa — w5)?(ws — w3)
(a + 2ws)(a + 2ws3)(a + w3 + ws) (@ + w3 + w4) (@ + wg + ws)
(w4 — ws)(ws — ws)?(ws — w3)?
(a+2ws)(a+ 2ws)(a+ ws + ws)(a + w3z + wa)
(wa — w3)? (w3 — ws)?
(a+2w3)(a+ 2ws)(a+ ws + wyq)(a+ wz + ws)?
(Wi + w5 — 2w3) (wg — w3) (ws — ws)3
(@ + 2wq)(a + 2ws) (@ + wa + ws) (@ + w3 + ws) (¢ + w3 + wa)
(w3 — wa)(ws — wa)?(ws — w3)?

(a4 2wq)(a 4 2ws)(a+ ws + ws)(a+ ws + ws)(a + ws + wa)

(wa — w3)?(ws — wa)?(ws — w3)
(ws + 2ws — 3wyq) (a + 2w4)2(a +wy + w5)2(a + w3 + wa)

(w5 — wa)?(ws — wa)?(ws — w3)
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to7

tog

tog

t30

B (w3 + 2ws — 3wa)(a + 2w4)2(a +wys +ws)(a+ws+ w4)2

(w3 — wq)?(ws — wq)?(ws — ws

(w5 + 2wy — Bws) (a4 2w3)* (a + w3 + ws)?(a + w3 + wy)

(w5 — w3)3(wg — w3)?(ws —wy

(w4 + 205 — 3ws) (a4 2w3)?(a 4 w3 + w4)*(a + w3 + ws)

(w4 + 2wz — Bws) (a4 2ws)*(a + wg + ws5)? (@ + w3 + ws)

(w4 - w5)3(w3 - w5) (w4 — W3

(w3 + 2wy = 3ws) (a4 2ws)*(a + w3 + ws)? (@ + wg + ws)

)
(
)
(
(w4 — w3)?(ws — w3)*(wa — ws)
(
)
(
)

(w3 - w5)3(w4 - w5) (w3 — Wy
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