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Preface

In this thesis, we will discuss two forms of approximation. In the first part, we will dis-
cuss metrical Diophantine approximation. In particular, we will discuss Diophantine
approximation over the field of Laurent series with coefficients from a finite field.

Diophantine approximation is a closer study of the density of the rationals in the
reals. Metrical Diophantine approximation is a subset of this study using measure
theory. The field of Laurent series is a characteristic p locally compact field with
number theoretical properties remarkably similar to the ones found in the reals. In
particular, we have analogues to integers, rationals and irrationals, and the Euclidean
algorithm works over the field. These things and more will be discussed in the course
of Part 1.

In the first chapter, we begin with an introduction to the topic of Diophantine ap-
proximation. Secondly, we introduce the specific setting of this thesis. Namely, we
construct the field of Laurent series with coefficients from a finite field. We also intro-
duce the Haar measure and Hausdorff dimension in this setting. Thirdly, we remark
on some differences and similarities between our setting and the field of p-adic num-
bers, where some previous results in metrical number theory exist. Finally we give a
brief discussion of some previous results in Diophantine approximation in the field of
Laurent series. Most of these are far from the metrical theory.

In the second chapter, we discuss Lüroth series over the field of Laurent series.
Lüroth series are a series expansion of any given element in the field, where each sum-
mand is a rational. Hence, these expansions give some information on the distribution
of the rational elements in the real elements. Using probabilistic methods, we prove a
number of results on subsequences of the coefficients of these expansions.

In the third chapter, we prove the first metrical results regarding the set of elements
which are approximable by rationals with “small” denominators. Also, this is the first
chapter where our setting is expanded from one to several dimensions. We prove the
main theorem of this chapter both in one and multiple dimensions in order to illustrate
the difficulties encountered in this transition. The result is a zero–one law: Almost
all elements are approximable by rational elements with denominators of a certain
magnitude, but when a certain threshold is reached, almost none are approximable in
this way.

In the fourth and fifth chapter, we discuss two exceptional sets of matrices (or
linear forms) arising from the zero–one law of Chapter 3. That is, two sets of measure
zero that are interesting from the point of view of a number theorist. In Chapter 4,

i



Preface

we discuss linear forms that are so close to rationals that the measure of the set of
these is zero. In fact, we study a continuum of such sets, and we are able to calculate
the Hausdorff dimension of the sets as a function of the degree of “approximability”
required.

In Chapter 5, we discuss the converse notion of a set of elements that are so far
from being rational that the measure of the set is zero. In this case, we only discuss
one such set. Again, we are able to calculate the Hausdorff dimension of the set, which
turns out to be full.

In the final chapter of Part 1, we propose a few directions for further research in
the field of metrical Diophantine approximation in the field of Laurent series. Some of
these would require a large amount of work, since preciously little is known about the
setting in which the work would have to be done. Others are less dramatic, and could
probably be worked out over some time given a certain amount of determination. The
list of research proposals are by no means complete. There is still much to be worked
out in this field.

In Part 2, we discuss Gaussian approximation in ergodic theory. This part consists
of discussions about the circumstances under which we can find Gaussian behaviour
in a measure preserving system.

In Chapter 7, we begin with a survey of some previous results, related to the Central
Limit Theorem and the Almost Sure Central Limit Theorem. The survey contains a
result which to some extent builds a bridge between the two parts of this thesis. This
survey culminates in the proof of a tool allowing us to produce quite general results in
Gaussian approximation. This tool involves the construction of Rokhlin towers. It is
applied in Chapter 8 to obtain some such results.

Chapter 9 contains some extensions of the previously known results in this field. In
Chapter 9, we discuss weighted partial sums as opposed to the standard partial sums
discussed previously. It turns out that when we consider weighted sums instead of
the standard partial sums, we may still obtain Gaussian approximation theorems. We
give two different approaches to this. In the first approach, we follow the methods of
Chapter 8. This turns out to produce quite weak results, so we take another approach
involving Abel summation.

In the final chapter of the thesis, we will give some directions for further research
in the field of Gaussian approximation in ergodic theory. As was the case in Chapter 6,
the list is clearly not exhaustive, but some ideas and pointers are mentioned for a few
possible directions of new research.

At this point, some acknowledgements should be made. I would like to express my
thanks to a number of people and organisations. First of all, I thank Institut de Recher-
che Mathématique Avancée, Université Louis Pasteur (Strasbourg I) and Department
of Mathematical Sciences, University of Liverpool for providing me with the physical
framework for the writing of this thesis. Also, I thank my supervisors M. Weber (Stras-
bourg) and R. Nair (Liverpool) for the kind suggestions and encouragement. Without
either of these gentlemen, this thesis would never have come into existence. The short
French abstract of the thesis would have been considerably less readable, had it not
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Introduction, résumé et
conclusion

Cette thèse concerne deux formes d’approximation. Dans le première partie de la
thèse, nous étudions l’approximation diophantienne dans un corps de séries formelles.
Dans la deuxième partie de la thèse, nous étudions l’approximation gaussienne dans la
théorie ergodique. Dans cette introduction, nous décrivons les méthodes et les résultats
de chaque partie de la thèse.

Approximation diophantienne dans un corps des
séries formelles

Le sujet de la première partie de la thèse est l’approximation diophantienne dans
un corps de séries formelles. Soit � un corps fini à k éléments, et posons

L � �
∞

∑
i ��� n

α � iX
� i : n ���
	 α � i � � 	 αn �� 0 ��

Cet ensemble est un corps. On définit une valeur absolue sur L en posant����� ∞

∑
i ��� n

α � iX
� i

����� � kn 
Avec cette valeur absolue, � L 	�������� est un espace de Banach, c’est à dire qu’il est
complet pour la métrique d � x 	 y ����� x � y � . La valeur absolue satisfait la propriété
ultramétrique : � x � y ��� max ��� x ��	�� y ��� pour chaque x 	 y � L 
Dans le chapitre 1, après une introduction à l’approximation diophantienne, nous al-
lons faire la construction de L en détails et démontrer ces propriétés.

A l’aide de la valeur absolue, nous sommes capable de caractériser la mesure de
Haar sur L . L’égalité suivante en est une caractérisation complète :

µ � B � c 	 kr � ��� µ ! x � L : � x � c ��� kr " � kr # 1 
vii



Introduction, résumé et conclusion

En plus, nous sommes capables de définir la dimension de Hausdorff. Soit δ � 0 et
s � 0. Pour chaque recouvrement Cδ d’un ensemble E � L par des boules de rayons� δ, posons

ls � Cδ � � ∑
B � Cδ

ρ � B � s
la s-longueur de C . Comme dans le cas réel, on définit la s-mesure de Hausdorff :

H s � E ��� lim
δ � 0

inf
recouvrements Cδ

ls � Cδ �
et la dimension de Hausdorff :

dimH � E ��� inf ! s � 0 : H s � E ��� 0 "
Ces définitions sont les instruments principaux dans la première partie de la thèse.
Comme dans le cas de la construction de l’espace L , ces définitions seront vues en
détail dans le chapitre 1. Aussi, nous allons décrire des résultats déjà connus dans ce
domaine à la fin du chapitre 1.

Dans le chapitre 2, nous étudierons des expansions de Lüroth. Nous démontrerons
que pour chaque x � L , on peut écrire

x � q0 � 1
q1

� ∞

∑
i � 1

1
q1 � q1 � 1 � � � � qi � 1 � qi � 1 � 1 � qi

	 qi � ���
X � �	�

X � est l’anneau des polynômes à coefficients dans � . On appelle ces expansions des
expansions de Lüroth. Inversement, chaque expansion de cette forme correspond à un
élément de L .

Posons I � ! x � L : � x � � 1 " . Maintenant, � I 	 B 	 µ � est un espace de probabilité, où
B est la famille des ensembles de Borel et µ est la mesure de Haar. Donc les coefficients
dans l’expansion de Lüroth, qi � x � , x � I , sont des variables aléatoires. Dans le chapitre
2, nous allons montrer à l’aide d’une caractérisation dynamique :
Théorème. Les coefficients de l’expansion de Lüroth qi sont des variables aléatoires
indépendantes et identiquement distribuées.

A l’aide de ce théorème, nous sommes capable de démontrer quelques résultats
dans la théorie métrique de ces expansions. A l’aide de la loi forte des grands nombres,
on peut déjà montrer des résultats. En utilisant des théorèmes probabilistes plus fort
(le théorème central limite, la loi du logarithme itéré etc. . .), on peut montrer des théo-
rèmes métriques plus forts. Les démonstrations et les théorèmes métriques se trouvent
dans le chapitre 2.

Dans le chapitre 3, nous étudierons des espaces vectoriels et des matrices à coef-
ficients dans L . Définissons encore quelques valeurs absolues. Pour v � � v1 	    	 vn �
dans Ln, définissons la hauteur de v,� v � ∞ � max ��� v1 ��	    	�� vn ����
viii



Introduction, résumé et conclusion

De plus, définissons la distance au treillis des entiers,���
x � � � min

p ����� X � n � x � p � ∞

Soient m 	 n �
	 , et soit ψ : �	� X � m �� # une fonction telle que ψ � p � � ψ ��� p ��� . Nous
étudions l’ensemble de matrices A � Lm # n,

S � ψ ��� ! A � I mn :
���

qA � � � ψ � q � pour une infinité de q � �	�
X � m " 

Avec ces définitions, nous sommes capables de démontrer un analogue du théorème
de Khintchine et Grošev :
Théorème (Le théorème de Khintchine–Grošev). Soit ψ : �	� X � ��� # une fonction,
décroissante en norme, telle que ψ � p � � ψ ��� p ��� .

1.
Si ∑

q ����� X � m ψ � q � n � ∞ 	 alors µ � S � ψ � � � 0 
2.

Si ∑
q ����� X � m ψ � q � n � ∞ 	 alors µ � S � ψ � � � 1 

La démonstration est assez compliquée. Il faut utiliser la théorie ergodique, quel-
ques outils de théorie des nombres, des probabilités etc. Les détails se trouvent dans le
chapitre 3.

Dans le chapitre 4, nous étudions un ensemble exceptionnel dans le théorème pré-
cédent. Soit v � 0 et soit ψ � q � � � q � � v

∞ . On définit l’ensemble Sv � S � ψ � des formes
linéaires bien approximables. On peut facilement démontrer que µ � Sv ��� 1 si v � m

n et
µ � Sv ��� 0 si v � m

n . Dans le dernier cas, nous sommes capables de calculer la dimension
d’Hausdorff de l’ensemble Sv. Dans le chapitre 4, nous allons démontrer l’analogue
suivant du théorème de Jarník et Besicovitch :
Théorème (Le théorème de Jarník–Besicovitch). Soit v � m

n . Alors,

dimH � Sv ��� � m � 1 � n � m � n
v � 1 

Dans la démonstration de ce théorème, il y a deux parties. Dans la première partie,
on montre que la dimension est inférieure ou égale à � m � 1 � n � m # n

v # 1 . Cette estimation
est une conséquence d’un lemme du type Borel–Cantelli. La deuxième partie de la
démonstration est plus compliquée. En utilisant des systèmes doués d’ubiquité, on
peut montrer que la dimension d’Hausdorff d’un sous-ensemble de Sv est supérieure
ou égale à � m � 1 � n � m # n

v # 1 . Cette partie de la démonstration est assez technique.
Dans le chapitre 5, nous étudions un autre ensemble exceptionnel. Cette fois, nous

considérons l’ensemble,� � m 	 n ��� �
A � Lmn : � K � 0 � q � �	�

X � m ���
qA � � n � K� q � m

∞ � 	
ix



Introduction, résumé et conclusion

des formes linéaires mal approximables. On montre facilement que µ � � � m 	 n � � � 0,
parce que l’ensemble complémentaire à pour mesure ∞. Dans le chapitre 5, nous allons
démontrer un analogue du théorème de Jarník sur les nombres mal approximables.
Théorème (Le théorème de Jarník). Soit m 	 n �
	 . Alors,

dimH
� � m 	 n ��� mn 

Pour la démonstration de ce théorème, on utilise une méthode de Schmidt, en utili-
sant des «jeux � α 	 β � ». Soient α 	 β � � 0 	 1 � . Dans le jeux � α 	 β � , on a deux joueurs, A et
B. Le joueur A commence à prendre une boule fermée A1 � B � C � A1 ��	 ρ � A1 � � � Lmn.
Ensuite, B prend une boule B1 � B � C � B1 ��	 ρ � B1 � � � A1 telle que ρ � B1 � � αρ � A1 � .
Maintenant, A prend une boule A2 � B1, telle que ρ � A2 ��� βρ � B1 � . Le jeux continue à
l’infini. B gagne le jeux, si � ∞

i � 1Bi ��� ∞
i � 1Ai � � � m 	 n � . Sinon, A a gagné. Nous allons

démontrer que pour tout β � � 0 	 1 � et tout α � � 0 	 1
k # 1 � , le jouer A peut toujours gagner

le jeux � α 	 β � . Ensuite, nous allons montrer que cette propriété implique le théorème.
Dans la dernier chapitre de la première partie, nous ébauchons quelques problèmes

d’approximations diophantiennes dans un corps de séries formelles, qui sont dans la
continuité de cette thèse. Nous avons choisi trois problèmes, mais il reste sûrement
beaucoup de questions ouvertes dans ce domaine de recherche.

Approximation gaussienne en théorie ergodique

Le sujet de la deuxième partie de la thèse est l’approximation gaussienne en théorie
ergodique. Nous étudierons quelques aspects gaussiens des systèmes ergodiques.

Dans le chapitre 7, nous allons décrire quelques résultats déjà connus dans ce do-
maine. On commence avec les similarités entre le théorème ergodique et la loi forte
des grandes nombres pour des variables aléatoires indépendantes. Ensuite, nous allons
décrire des résultats pour des variables aléatoires non indépendantes, mais satisfaisant
quelques propriétés plus faibles.

A l’aide de ces résultats, quelques auteurs ont démontré des théorèmes d’existence
de fonctions dans certains systèmes dynamiques, pour lesquels le comportement des
sommes partielles imite celui de variables aléatoires indépendantes. En particulier, le
théorème central limite est satisfait.

Nous allons décrire des éléments de démonstrations de plusieurs résultats de ce
type. Pour la majorité de ces résultats, les outils fondamentaux sont les séries de Fou-
rier et le théorie spectrale. Ces techniques de démonstration s’appliquent donc seule-
ment pour des rotations du tore.

Dans les sections 7.4 et 7.5, nous allons décrire une autre méthode en utilisant
des tours de Rokhlin. Cette méthode s’applique pour tout système ergodique et apé-
riodique, mais l’ergodicité est impérative. La méthode des tours de Rokhlin est notre
méthode principale dans les chapitres suivants. Dans le chapitre 8 nous allons démon-
trer quelques résultats récents en approximation gaussienne due a Volný.
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Introduction, résumé et conclusion

Dans le chapitre 9, nous allons généraliser des résultats dans le chapitre 8 pour
des sommes partielles avec des poids. Soit � an � un suite de réels positifs, bornée par
un nombre M � 0 et T une automorphisme d’un espace de probabilité non-atomique.
Dans chapitre le 9, nous allons démontrer quelques résultats pour des sommes par-
tielles avec des poids définis par

An f � n � 1
∑
l � 0

alT
l f 

Dans le section 9.1, nous essayons de utiliser la méthode de Volný, sans des outils
additionnels. Pour ces méthodes, on a besoin de quelques hypothèses sur la suite des
poids. La première hypothèse est

∆ � ∞

∑
n � 1

�
an � an � 1

� � ∞  (H1)

La deuxième hypothèse est un peu plus technique :�� An � K2 �� � ������� 2 ∑
log3 n � k � log2 n

�
∑n

i � n � 2k # 1 ai � 2

4kk
� K2

������� � O � 1
logn � 	 (H2)

où K � 0 est un nombre réel. La troisième hypothèse est la plus compliquée :

1
n ∑

log3 n � k � log2 n

n � 1
∑

l � � nlog3 2 �

�
∑n � 2k # 2

i � l � 2k # 1 ∑2k � 2
h � 0 � ai # h � ai # h � 1 � � 2

4kk
� O � loglogloglogn

logn � 
(H3)

Avec ces trois hypothèses, on peut démontrer trois généralisations de les théorèmes
de Volný, mais les hypothèses ne sont pas tout a fait naturelles dans la domaine de
probabilités.

Dans le section 9.2, nous allons démontrer une théorème dans l’approximation
gaussienne sous une hypothèse plus naturelle. Soit � al � une suite décroissante des réels
telle que

n loglogloglogn
logn

� o � n � 1
∑
l � 0

a2
l �  (H4)

Sous cette hypothèse, nous allons démontrer :
Théorème. Soit � X 	 B 	 µ � un espace de probabilité non-atomique, et soit T : X �
X un automorphisme apériodique. Il existe f � L2 � X � et des variables aléatoires
Z �l 	 N � 0 	 2 � log log3 � log log2 � � tel que

lim
n � ∞

������� An f�
∑n � 1

l � 0 a2
l � 1 
 2 � Z �n

������� � 0 
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Dans le dernier chapitre de cette thèse, nous ébaucherons quelques problèmes
de recherché dans le domaine des approximations gaussiennes en théorie ergodique.
Comme au chapitre 6, la liste des problèmes n’est pas complète. Les possibilités de
recherches futures sont nombreuses.
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Diophantine approximation in a
field of formal series
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1. Introduction

In this part of the thesis, we will be concerned with so-called metrical (or measure
theoretical) Diophantine approximation. We will be working in a specific setting –
namely in the field of Laurent series with coefficients from a finite field.

This first chapter serves as an introduction to this theory. To get acquainted with
the topic, we begin with a short introduction to Diophantine approximation over the
real numbers. This will include some of the classical theorems like Dirichlet’s The-
orem and Khintchine’s Theorem. This is meant to serve as an informal introduction
to the more abstract parts of the subsequent discussions. For a complete treatment on
Diophantine approximation over the reals, the reader is referred to [7].

Secondly, we construct the setting, we will be working in. We will discuss the
similarities and differences of this setting and the real numbers. Also, we will give
a construction of the Haar measure on our field, as well as a definition of Hausdorff
dimension.

Thirdly, we give a short discussion of the differences and similarities between our
field and another locally compact non-Archimedean field — the p-adics — in which
much more work has been done.

In the final part of the introduction, we will be giving a survey of the previous
results in Diophantine approximation in this setting. It is worth noting, that almost
all of these results are outside of the domain of the metrical theory. The results in the
subsequent sections are hence extending the body of knowledge about fields of Laurent
series.

1.1. An introduction to Diophantine
approximation

Diophantine approximation is a way of studying the density of the rational numbers
in the real numbers. It is a well-known fact that the rationals are dense in the reals.
That is, you can find a rational number p

q in any neighbourhood of a real number x. A
number of questions can be asked to give more precise statements of this density. We
state some of these informally:

� Given a real number x, how can we easily construct rationals p
q close to x?

5



1. Introduction

� How large a neighbourhood of x do we need to take to find a rational number p
q

with q small?

� How many real numbers x have the property of being close to infinitely many
rationals p

q where closeness depends on the magnitude of q?

Quite a few answers have been given to these and similar questions. It is the purpose
of this section to give a brief overview of some of the most important of these.

Starting with the first of the questions, a classical way of constructing rationals
close to a given real number is the continued fraction expansion (for a reference on the
theory of continued fractions, see [29]). Basically, this construction is as follows: Let
x � � . We can write

x � a0 � 1
r1

	
where a0 denotes the greatest integer less than x, and 1

r1
is the fractional part of x. If x

is an integer, we let r1 � ∞. Clearly, r1 � 1, so we can do the same thing again,

r1 � a1 � 1
r2


Continuing in this way, we obtain sequence which can be written as a continued frac-
tion

x � a0 � 1
a1 � 1

a2 #������  (1.1)

In fact, this sequence converges and is unique (Theorem 14 in [29]).
We can express the n’th fraction in the expansion (1.1) – the so-called n’th conver-

gent of x – as a standard fraction pn
qn

, where pn and qn can be calculated by recursive
formulae, which we do not deduce here. Using these recursive formulae yields���� x � pn

qn

���� � 1
q2

n
(1.2)

We have sketched a proof of

Theorem 1.1 (Dirichlet’s Theorem). For any x � � and any N � 	 , there exist p 	 q �� with
�
q
� � N such that ���� x � p

q

���� � 1
q2

This provides an answer to the second question, we posed.

Remark. The above version of Dirichlet’s Theorem is not the original version. The
original version version is slightly stronger, but the above serves just as well as an
introduction to the principle.
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1.1. An introduction to Diophantine approximation

Another construction of rational numbers approximating real numbers is the so-
called Lüroth expansions, discussed in Chapter 2.

Theorem 1.1 provides an answer to the second question, but what about the third
question? An answer to this question has also been given by Khintchine (Theorem 32
in [29]).
Theorem 1.2 (Khintchine’s Theorem). Let ψ : 	 � � # be a decreasing function
such that nψ � n � is non-increasing. Define the set

Kψ � �
x � � :

���� x � p
q

���� � ψ � q �
q

for infinitely many p 	 q � � � 
Then

µ
�
Kψ � � �

0 for ∑∞
i � 1 ψ � i � � ∞ 	

∞ for ∑∞
i � 1 ψ � i � � ∞ 	

where µ denotes the Lebesgue measure on � .

Khintchine’s original proof of this theorem involves the continued fractions ex-
pansion and is rather involved. We will discuss newer approaches to the problem in
Chapter 3, where we will prove a theorem corresponding to the above in a different
setting.

Theorem 1.2 gives us some quantitative information about the density of the ration-
als in the reals. We see that whenever the approximation function ψ decreases slowly,
most reals have many rational neighbours with sufficiently small denominators. How-
ever, the theorem does not distinguish between approximation functions ψ � q � � q � 2

and ψ � � q ��� q � 3. The measures of both Kψ and Kψ � respectively are zero. But surely,
Kψ � is a proper subset of Kψ? To analyse the difference in the sizes of these sets,
we may use Hausdorff dimension. Jarník and Besicovitch independently proved the
following theorem ([25] and [8]):
Theorem 1.3 (The Jarník–Besicovitch Theorem). Let v � 1. Define the set

Kv � �
x � � :

���� x � p
q

���� � 1
q1 # v for infinitely many p 	 q ��� � 

Then

dimH � Kv ��� 2
v � 1


We will return to the discussion of these in Chapter 4, where we will prove corres-

ponding multidimensional results in our setting.
Yet another set of measure zero arises from Theorem 1.2. Namely, we see that the

set� � �
x � � : there is a K � 0 s.t. for any q � � there is a p ��� s.t.

���� x � p
q

���� � K
q2 �

has measure zero, since the complementary set has full measure. Jarník calculated the
Hausdorff dimension of this set ([24]):

7



1. Introduction

Theorem 1.4 (Jarník’s Theorem).

dimH � � ��� 1 
Again, we postpone a discussion of the proof of this theorem to a later chapter. We

will return to the problem in our new setting in Chapter 5.
The above theorems constitute a basis for the metrical theory of Diophantine ap-

proximation. There are plenty of generalisations of the theorems, and it is some of
these we will discuss in this part of the thesis. We will, however, be working in an-
other field than the real numbers. In the next section, we construct this field.

1.2. Laurent series, measure and dimension

In this section, we construct the field, we will be working in. Subsequently, we discuss
some properties of the different norms and norm-like functions, we will be using.
Finally, we will construct an explicit formula for the Haar measure on the field and
define Hausdorff dimension.

1.2.1. Construction of L
We will now construct the field that will replace � in our treatment. First, we will
recall the following construction of the reals. Begin with the integers � . Since � is an
integral domain, we can construct the field of fractions � � ��������� ! 0 " ��� 	 , where	 denotes the equivalence relation � a 	 b � 	 � c 	 d � if and only if ad � cb.

On � , we now introduce the standard norm (or absolute value). Now, it makes
sense to define the set of Cauchy sequences C ��� . It is straightforward to prove, that
this is a ring, and that the set of null-sequences N (that is, sequences converging to
zero) is an ideal in C . We can now complete � in the norm by letting � � C � N . This
set is then shown to be a field. This is a standard construction of the real numbers,
which is carried out in almost any textbook on undergraduate abstract algebra or for
instance, in a more abstract setting, in [39].

Note that the only property needed in order to construct a complete field in this
way, is the fact that the initial ring is an integral domain. One such starting point
would be the polynomial ring over a finite field. Hence, we let � denote the finite field
of k � pl elements, where p is a prime and l is a positive integer. Furthermore, we
let ���

X � denote the polynomial ring over � . Since this is an integral domain, we can
construct the field of fractions denoted � � X � . Elements herein can be expressed as
quotients x � p

q , where p 	 q � �	�
X � . By formally carrying out the division, we obtain a

formal power series

x � ∞

∑
i ��� n

α � iX
� i 	 α � i � � 	 αn �� 0 	 (1.3)

8



1.2. Laurent series, measure and dimension

which is another representation of the elements in � � X � . Note, that not all choices of
sequences � αi � give elements in � � X � . In particular, only eventually periodic (includ-
ing finite) sequences occur in this way.

In order to complete the second step in the construction, we need to define a norm.
For any p � �	�

X � , we define the norm of p to be � p � � kdeg � p � , where deg � p � denotes
the degree of the polynomial p. This induces a norm on � � X � by

��� p
q

��� � �
p
�

�
q
� , or

alternatively ����� ∞

∑
i ��� n

α � iX
� i

����� � kn (1.4)

in the above representation (1.3).
Note that this norm is non-Archimedean. That is, it satisfies the following proper-

ties: � x � � 0 for any x � � � X � and � x � � 0 if and only if x � 0 	 (1.5a)� xy � � � x � � y � for all x 	 y � � � X ��	 (1.5b)� x � y � � max ! � x ��	�� y � " for all x 	 y � � � X �� (1.5c)

That is, we have a stronger triangle inequality (1.5c) than we do for the usual norms.
We define a metric d on L by d � x 	 y � � � x � y � . The metric space obtained in this

fashion is not complete. Indeed, let � αn � � ! 0 	 1 "�� be some sequence which is not
eventually periodic. Since distinct elements corresponding to 0 and 1 exist in every
finite field, this defines a sequence in each such field. Define the sequence � xn � � L by

xn � n

∑
i � 1

αiX
� i

Obviously, this is a Cauchy sequence in � � X � in the norm defined above. However,
the sequence of coefficients is non-periodic, so the limit point does not exist in � � X � .

However, the field can be completed, just as � could be completed to obtain � .
Hence, we let L be the ring of Cauchy sequences modulo the ideal of null sequences.
Clearly, this field contains � � X � as a dense subset, and the norm maintains all proper-
ties (1.5a), (1.5b) and (1.5c). We have obtained three sets, all corresponding to subsets
of the real numbers by construction:

� The polynomial ring �	�
X � corresponds to the integers � .

� The field of fractions � � X � corresponds to the rational numbers � .
� The completion of the field of fractions with respect to the norm (1.4) L corres-

ponds to the real numbers � .

We will now find a suitable representation of the elements in L . It is not surprising
that a representation of the space consists of all formal power series of the form (1.3).

9



1. Introduction

A proof of this can be found in Chapter XII, § 6 of [39]. We have now obtained the
locally compact field,

L � �
∞

∑
i ��� n

α � iX
� i : n ���
	 α � i � � 	 αn �� 0 � 	

with a non-Archimedean norm � � � . The field is locally compact, since any closed
ball with radius kn for some n � � is clearly compact, so any point has a compact
neighbourhood. Since the elements of L are of form of Laurent series, we call the
field L the field of Laurent series with coefficients from

� .
Inside this field, we will need a few additional objects. First, we define the sub-ring

J � ! A � L : � A � � 1 " 
Traditionally, this is called the ring of integers in L . We will further define the integral
part of an element A � L to be�

∞

∑
i ��� n

α � iX
� i � � �

∑0
i ��� n α � iX � i for n � 0 	

0 otherwise,

where αn �� 0 is the leading coefficient of the Laurent polynomial. Now, we take the
maximal ideal I in the ring of integers. Clearly, this has the form

I � ! A � L : � A � � 1 " � ! A � L : � A � � 0 "  (1.6)

This set plays the role of the unit interval in this setting.

1.2.2. Norms and vector spaces

We have already defined the norm in L . An interesting consequence of the ultra-metric
property (1.5c), which will be used repeatedly throughout the thesis, is the following:

Proposition 1.5. Let � X 	�� � � � be an ultra-metric space. That is, a normed space with
the additional property (1.5c). Let B1 	 B2 be both open or both closed balls in X. Then
B1 � B2, B2 � B1 or B1 � B2 � /0.

Proof. Let ci and ρi, denote the centres and radii of Bi, i � 1 	 2. Assume without loss
of generality that ρ1 � ρ2.

Assume the balls are open and that there is an x � � B2 � B1. Let x � B2. We will
prove that x � B1. By (1.5c),� x � c1 � � �� � x � c2 � � � c2 � x � � � � x � � c1 � ��� max ! � x � c2 � 	 �� c2 � x � �� 	 �� x � � c1

�� " � max ! ρ2 	 ρ1 	 ρ1
" � ρ1 

Hence, x � B1. The proof is completely analogous for closed balls.
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1.2. Laurent series, measure and dimension

From Section 3.2 and onwards, we will be working in vector spaces of several
dimensions over L . Hence, we will need a multi-dimensional norm.

Definition 1.1. Let h � 	 and let Lh denote the h-dimensional L-vector space over L .
For any x � Lh, we define the height of x to be � x � ∞ � max1 � i � h � xi � , where xi denotes
the i’th coordinate of x.

Clearly, the height has properties (1.5a) and (1.5c). In particular, Proposition 1.5
holds. Also, we will need the following proposition:

Proposition 1.6. Let h � 	 and let a 	 b � L h. Let a � b denote the usual inner product.
Then � a � b � � � a � ∞ � b � ∞ 
Proof. Let a � � a1 	    	 ah � and b � � b1 	    	 bh � . We have

� a � b � � � a1b1 � � � � � ahbh � � max
1 � i � h

! � ai ��� bi � "� max
1 � i � h

� ai � max
1 � j � h

�� b j
�� � � a � ∞ � b � ∞ 

This completes the proof.

Since we are concerned with Diophantine approximation, it is natural to define
the distance to the nearest “integer”. Recall, that the object replacing the integers in
the construction in Section 1.2.1 was the polynomial ring �	�

X � . This motivates the
following definition:

Definition 1.2. Let n � 	 and let Ln denote the n-dimensional L-vector space over L .
For any x � Ln, we define the distance from x to the integer lattice to be���

x � � � min
p ����� X � n � x � p � ∞

This is the final norm-like function, we will need.
From Section 3.2 and onwards, we will be concerned with linear forms over L .

That is, m � n matrices with entries from L . We will define inner products, matrix
products and determinants in our setting exactly as in the real case. Obviously, where
we would previously expect a real number or vector to result from one of these opera-
tions, we will now obtain an element in L or a vector of such elements.

Since it will cause no ambiguity, we will throughout the thesis identify the set of
m � n matrices over L with Lmn. This immediately extends the definition of the height
of a vector to the height of a matrix.

For lack of a better place for this, we will just introduce a few notational conven-
tions. Given two real quantities x and y, we will write x � y if there exists a constant
K � 0 such that x � Ky. If x � y and y � x, we will write x � y. This notation will be
used throughout the thesis.

11



1. Introduction

1.2.3. Measure and dimension

We will now follow a construction due to Sprindžuk ([59]) of an explicit form of the
Haar measure on L . Let n 	 m � � , m � n and let α �m 	    	 α �n � � . We define cylinders

B � α �m 	    	 α �n ��� �
∞

∑
i ��� n

α � iX
� i � L : αi � α �i for i � m 	    	 n � (1.7)

That is, sets where the first n � m coefficients of the series are fixed.
It is obvious that

B � α �m 	    	 α �n � � B � ω 	 km ��� ! x � L : � x � ω � � km " 	
where ω � α �nXn � � � � � α �nXm. We define a function µ on the set of these balls by

µ � B � α �m 	    	 α �n � ��� km 
We now extend this function to all balls by noting, that given a ball B � c 	 km � , there
exists an element t � L , such that c � t is of the general form ω. Hence, we define
µ � B � c 	 km � ��� km for any ball B � c 	 km � .

We will now extend this function to the finite unions of balls. Let I � 	 be a finite
set, and let Bi be balls for any i � I. By Proposition 1.5, there exists a subset I � � I
such that

B � �
i � I

Bi � �

i � I �
Bi

where the Bi are disjoint for i � I � . Hence, we define

µ � B ��� µ � �
i � I

Bi � � ∑
i � I � µ � Bi ��

Clearly, the function defined in this way is a σ-additive measure on the σ-algebra
generated by the balls in L . That is, the Borel σ-algebra. Since the Haar measure is
unique up to scaling, we have proved the following proposition:

Proposition 1.7. The Haar measure on L is completely characterised by

µ � B � c 	 km � ��� µ � ! x � L : � x � c � � km " ��� km

for any c � L and any m � � .

Remark. Note, that the above scaling of the Haar measure has the property of assigning
measure 1 to the set I . Hence, this a the natural scale of the measure, given the
analogy with the real numbers. Note also that we immediately obtain the measure of
the corresponding closed ball. Indeed, since the norm only assumes values kr, where
r � � ,

µ � ! x � L : � x � c � � km " � � µ
���

x � L : � x � c � � km # 1 � � � km # 1

12



1.2. Laurent series, measure and dimension

We will now define Hausdorff dimension in L . Let E � L mn be some set. For any
countable cover C of E with balls Bi � B � ci 	 ρi � , we define the s-length of C to be the
sum

ls � C ��� ∑
B � C

ρs
i

for any s � 0. Let δ � 0 and restrict to covers Cδ such that ρi
� δ for all Bi � Cδ. We

can define an outer measure,

H s � E ��� lim
δ � 0

inf
covers Cδ

ls � Cδ �� (1.8)

We will prove, that this is indeed an outer measure.

Proposition 1.8. The function H s : 2L � ��� ! ∞ " defined in (1.8) is an outer measure
for any s � 0. That is,

� H s � /0 ��� 0.

� H s is sub-additive.

Proof. The first property is clearly satisfied. Hence, let E1 	 E2 	    be an at most count-
able family of sets and let ε 	 δ � 0 be arbitrary, but fixed numbers. Without loss of
generality, we may assume that

H s
δ � E j � : � inf

Cδ
ls � Cδ � � ∞ for j � 	 

Hence, for each j �
	 there is a δ-cover C � j � of E j such that

ls � C � j � � � H s
δ � E j � � ε

2 j � H s � E j � � ε
2 j

The union of these C � � ∞
j � 1C � j � clearly covers � ∞

j � 1E j; so

H s
δ � ∞�

j � 1
E j � � ∞

∑
j � 1

∑
C � C � j �

ρ � C � s � ∞

∑
j � 1

H s � E j � � ε

by the above calculations.
For small δ, we have

H s
δ � ∞�

j � 1
E j � � H s � ∞�

j � 1
E j � � ε 	

so in conclusion

H s � ∞�
j � 1

E j � � ∞

∑
j � 1

H s � E j � � 2ε 
Since ε was arbitrary, this proves sub-additivity of H s.
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1. Introduction

Proposition 1.9. For any set E � L , there is an s � � 0 such that

H s � E � � �
∞ for s � s � 	
0 for s � s � 

The value of H s � � E � may be any number in � # � ! 0 	 ∞ " .

Proof. Let E � L and let ε � 0 be some arbitrary, but fixed number. We may without
loss of generality assume that H s � E � � ∞. First, we prove that H s # ε � 0 and sub-
sequently that if H s � E � � 0, then H s � ε � ∞. This will imply the proposition.

By definition, we may choose a δ-cover Cδ of E such that

ls � Cδ � � H s
δ � E � � 1 � H s � E � � 1 � ∞ 

Now, we consider some set C � Cδ. By definition ρ � C � � δ, so ρ � C � s # ε � δερ � C � s.
Hence,

H s # ε
δ � E � � ls # ε � Cδ � � δεls � Cδ � � δε � H s � E � � 1 ��

Letting δ tend to zero in the above, we obtain

H s # ε � E � � � H s � E � � 1 � lim
δ � 0

δε � 0 	
since ε � 0.

To prove the second claim, let E � L be a set such that H s � E � � 0. We assume that
H s � ε � E � � ∞. The above implies that H s � E � � 0, which is clearly a contradiction.
This completes the proof.

In the light of Proposition 1.9, we make the following definition:

Definition 1.3. Let E � L . The Hausdorff dimension of E is defined as

dimH � E ��� inf
�
s � 0 : H s � E � � 0 � 

1.3. p-adic numbers

The reader may have noticed some similarities between our field L and the p-adic
numbers � p . We remind the reader of the construction of the p-adic numbers.

Let p � 	 be a prime. As in the construction of the reals, we begin with the integers� and construct the field of fractions � . We introduce a norm on this field: First, for
any a

b � � , we reduce the number a
b � pn a �

b � such that p � � a � and p � � b � . Now, we define
the norm

�� a
b

�� � p � n. We take the completion of � in the metric induced by this norm
and obtain the p-adic numbers � p . The p-adic integers � p are the p-adic numbers
with norm less than or equal to one. For an extensive treatment on the p-adic numbers,
the reader is referred to [52].
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1.4. Previous results in L

Both the field of p-adic numbers and L are ultra-metric spaces. That is, the norm
on each of the spaces has properties (1.5a), (1.5b) and (1.5c). They are, however,
not the same objects. For one thing, there are more L-spaces than there are spaces
� p , and their algebraic structures are different. Still, it is possible to do Diophantine
approximation in the field of p-adics, and many of the results, we will prove in this
part of the thesis already have analogues in the p-adic setting.

Regarding the well-approximable matrices, Abercrombie proved a partial result to-
wards the most general form of the Jarník-Besicovitch Theorem in [2]. This result was
subsequently completed by Dodson, Dickinson and Yuan in [17], where they showed

Theorem 1.10. Let m 	 n � 	 and v � 0. Define the set

W � v ��� �
X � � mn

p :
�
qX
�
∞ � p � �

q
� � v
∞ for infinitely many q � � m � 	

where
� � �∞ � p and

� � � ∞ denotes the height in p-adic and standard norm respectively. Then

dimH � W � v � ��� � � m � 1 � n � m
v for v � m

n 	
mn otherwise.

We will prove a Laurent analogue of this theorem in Chapter 4, but in our setting
we will look at distances to the integer lattice instead of the distance to the origin. This
means that the Hausdorff dimension in our setting is different than the one obtained
here.

Also, the set of badly approximable matrices has been examined by Abercrombie
in [1], albeit only in one dimension. Abercrombie proved that the Hausdorff dimen-
sion of this set is one. This is the analogous result to Jarník’s Theorem (Theorem 1.4).
His method was largely measure theoretic and failed to generalise to multiple dimen-
sions. In Chapter 5, we prove a multi-dimensional analogue of Jarník’s Theorem for L .
Our method relies mostly on the fact that L is an ultra-metric space, and it should be
possible to adapt this method to the p-adic setting, though some additional difficulties
inevitably will arise.

1.4. Previous results in L
Previous results in Diophantine approximation have mainly been about properties of
the continued fraction expansion and it’s relationship with certain algebraic properties
of elements in L . Until now, the only results in metrical Diophantine approximation in
L were analogues of Dirichlet’s Theorem and Khintchine’s Theorem. A large number
of results have been found in the non-metrical setting, but a complete discussion of
these would be too extensive to complete here. Instead, the reader is referred to [40],
[57] and the works cited therein. We discuss the continued fractions map and some
consequences, relevant to the subsequent questions in this thesis.
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Development of the continued fraction expansion in L goes back to Artin ([4]). In
§ 12 of his paper, Artin defines the continued fractions algorithm for any x � L :

x � �
x � � ! x " 	 a0 � �

x � 	 x1 � 1�
x �

x1 � �
x1 � � ! x1

" 	 a1 � �
x1 � 	 x2 � 1�

x1 �
...
xn � �

xn � � ! xn
" 	 an � �

xn � 	 xn # 1 � 1�
xn �

and so on. He proves, that the continued fractions expansion

x � a0 � 1
a1 � 1

a2 #������
is convergent and that it terminates if and only if x � � � X � .

Furthermore, he shows that as in the real case, we get a recursively defined system
of convergents

pn � pn � 1an � 1 � pn � 2 	 qn � qn � 1an � 1 � qn � 2 	
where p0 � 1, p1 � a0, q0 � 0 and q1 � 1. For this system,���� x � pn

qn

���� � 1� qnqn # 1 � � 1� qn � 2 (1.9)

for any n � 	 . Hence, the analogue of Dirichlet’s Theorem (Theorem 1.1) holds in L .
With a little more care, it can be shown that p

q is a convergent to x if and only if (1.9)
holds with pn 	 qn replaced with p 	 q.

A certain way of classifying the interesting elements in L is a result of the contin-
ued fractions expansion. For any x � L and any α � � , we define numbers

A � x 	 α ��� liminf�
q
� � ∞

� q � α
���� x � p

q

���� 	
where � p 	 q � runs over all elements in � �

X � � � �	� X � ��! 0 " � . This makes it possible to
define the approximation exponent of x:

ν � x ��� sup ! α � � : A � x 	 α � � ∞ " 
These two functions enables us to classify the elements of L :

� x � L is badly approximable if ν � x � � 2 and A � x 	 2 � � 0. Performing deductions
from the continued fractions algorithm analogously to the ones leading to The-
orem 23 in [29], this can be seen to be equivalent to the property that the partial
coefficients are bounded.
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1.4. Previous results in L

� x � L is normally approximable if ν � x ��� 2 and A � x 	 2 ��� 0.
� x � L is well-approximable if ν � x �	� 2.

A large number of results are known about the relationship between the above classi-
fication, the continued fractions map and certain algebraic equations. For a reference
on these, see [57] and [40]. In this thesis, we will be interested in “counting” the ele-
ments of the above types. That is, finding the Haar measure of the sets of elements of
each type, and – whenever the measure is zero – finding the Hausdorff dimension of
the sets.

One previous result involving measuring the sets in question is known. Namely,
de Mathan proved an adelic version of Khintchine’s Theorem in his thesis ([16]). Just
stating his theorem requires a bit of work, since the norms, de Mathan was working
with, differ from ours.

For any prime ideal
�
P � � �	�

X � , we can write any rational polynomial

p � X �
q � X � � Pl p � � X �

q � � X � 	 for some l �
	 , where P � � p � � X � 	 P � � q � � X ��
We can now define an alternative norm on the rationals by���� p � X �

q � X � ����
P
� ���� Pl p � � X �

q � � X � ����
P
� �

kdeg � P � � l 
Completing � � X � in this norm instead of the norm defined in (1.4), we obtain a new
field LP. This field is related to L in approximately the same fashion as the p-adic
numbers are related to the reals. In this setting, de Mathan proved the following:

Theorem 1.11. Let I be a finite subset of the prime ideals in
�	�

X � and let for any
P � I, ψP be a real function on the set of all non-zero powers of k. Let ψ � ∏P � I ψP.
Furthermore, let VI � ∏P � I LP equipped with the product measure of the normalised
Haar measures on each LP. Consider the inequalities for x � � xi � i � I � VI,���� xP � p

q

����
P

� ψP � max ! � p � 	�� q � " � for any P � I  (1.10)

If the series ∑∞
n � 0 k2nψ � kn � converges, then (1.10) has only finitely many solutions� p 	 q � for almost all x � VI. If the series diverges, the sequence k2nψ � kn � decreases

and there exists a K � 0 such that for any P � I, ψ � kn � � Kψ � km � whenever m � n,
then there are infinitely many solutions � p 	 q � to (1.10) for almost all x � V I.

This is de Mathan’s version of Khintchine’s Theorem (Theorem 1.2) in L . Another
version of this theorem will be given in Chapter 3.

We will not give a complete discussion of the constructions involved in de Mathan’s
proof, since this will lead us in an entirely different direction to the one we wish to
follow. The results and constructions are, however, interesting in their own right, and
certainly deserve mention in this place.
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2. Lüroth expansions

In this chapter, we prove some metric results on approaching any element in L with
rational elements by a certain method. The approximation obtained via the continued
fractions expansion has been extensively studied, and in Section 1.4 we gave some of
the results and arguments involved in the study of this algorithm. The approximation
we examine in this case, is the approximation by the so-called Lüroth expansions of
the elements. It is at a first glance slightly less elegant than the continued fractions
algorithm, but on the other hand this algorithm has virtues which allow us to obtain
quite beautiful results on the coefficients. In particular, it is easy to examine using
probability theory.

We begin with the construction of the Lüroth expansions. Then we prove the the-
orem which allows us to obtain the metrical results of this chapter. Finally, we prove
these metrical results. The results in this chapter are published in [36].

2.1. Construction of the Lüroth expansions

We will follow the construction of the Lüroth expansions from the reals used by Perron
in [49]. In fact, Perron constructs both the Lüroth series, the Sylvester series and the
Engel series here, since these are quite similar. We will only construct the Lüroth
series. The metrical theory of these series over the reals has been discussed among
other places in [23]. For previous results in L , see [31] and [32].

Lüroth series are a way of approximating irrationals with rationals given by a re-
cursive algorithm. We construct the algorithm. Let x � L , and let q0 � �

x � . If x � q0 � 0,
x is already rational in which case the recursion stops. That is, we let ai � qi � ∞ for
i � 1 as we did in the case of the continued fractions expansion. We can now write

x � q0 � 1
a1

where � a1 � � 1 
We now define q1 � �

a1 � � 1. If q1 � 0, x is rational and the recursion stops. Otherwise,���� 1
q1

���� � ���� 1
a1

���� � ���� 1
q1 � 1

���� � ���� 1
q1

� 1� q1 � 1 � q1

����  (2.1)

If q1 � a1 � 0, x is rational and the recursion stops. If not, we write
1
a1

� 1
q1

� 1� q1 � 1 � q1

1
a2

where � a2 � � 1 
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2. Lüroth expansions

Continuing in this fashion, we define (possibly finite) sequences � qi � and � ai � such that

1
ai

� 1
qi

� 1� qi � 1 � qi

1
ai # 1

for i � 1 	 2 	     (2.2a)

qi � �	�
X � 	�� qi � � 1 for i � 0 	 1 	    	 (2.2b)� ai � � 1 for i � 1 	 2 	    	 (2.2c)

If x is rational, the recursion stops at some point. If x is irrational, the recursion con-
tinues ad infinitum. In either case, bearing in mind that 1

∞ � 0 by convention, this
construction gives an expansion of x on the form

x � q0 � 1
q1

� ∞

∑
i � 1

1
q1 � q1 � 1 � � � � qi � 1 � qi � 1 � 1 � qi

	 qi � ���
X �  (2.3)

This expansion is called the Lüroth expansion of x. Note, that the series is convergent
by (2.2b), since the radius of convergence of ∑∞

n � 0 zn is 1, and this series majorises the
Lüroth series for an appropriate z with

�
z
� � 1.

Proposition 2.1. There is a one-to-one correspondence between the series on the form
(2.3) and the elements of L .

Proof. We have already seen that all elements in L have an expansion of the form
(2.3). Also, convergence has been proved for each expansion, so each such series is
convergent. Hence, we need only prove that the expansions are unique.

Assume that an element x � L has two distinct Lüroth series:

x � q0 � 1
q1

� ∞

∑
i � 1

1
q1 � q1 � 1 � � � � qi � 1 � qi � 1 � 1 � qi� q �0 � 1

q �1 � ∞

∑
i � 1

1
q �1 � q �1 � 1 � � � � q �i � 1 � q �i � 1 � 1 � q �i 

Now, we define elements γ j 	 γ � j by the equations

1
γ j

� 1
q j

� ∞

∑
i � 1

1
q j � q j � 1 � � � � q j # i � 1 � q j # i � 1 � 1 � q j # i

	
1
γ � j � 1

q � j � ∞

∑
i � 1

1
q � j � q � j � 1 � � � � q � j # i � 1 � q � j # i � 1 � 1 � q � j # i


Clearly, x � q0 � 1

γ1
� q �0 � 1

γ �1 . By calculations as the ones leading to (2.1),���� 1
q j

���� � ���� 1
γ j

���� � ���� 1
q j � 1

���� � 1

����� 1
q � j

����� � ����� 1
γ � j

����� � ����� 1
q � j � 1

����� � 1 	 (2.4)
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2.1. Construction of the Lüroth expansions

so we have that q0 � q �0 � �
x � and γ1 � γ �1.

We now see that
1
γ j

� 1
q j

� 1
q j � q j � 1 � 1

γ j # 1
	 1

γ � j � 1
q � j � 1

q � j � q � j � 1 � 1
γ � j # 1

(2.5)

for any j � 	 . Hence by (2.4) we get

� q1 � γ1 � � ���� γ1
q1 � 1

���� ���� 1
γ2

���� � � γ1 �� q1 � 1 � � 1 
Since � q1 � � � γ1 � , we have that q1 � �

γ1 � . Similarly, q �1 � �
γ �1 � � �

γ1 � . Uniqueness
follows by induction with the above as the basis, using (2.5) at each step.

Clearly, the above construction gives us a way of approximating arbitrary ele-
ments with rational elements, since the summands in the series expansion are rationals.
Hence, it is interesting to examine the coefficients of the expansion to obtain further in-
formation on how well the algorithm works. The coefficients of the Lüroth expansions
turn out to be particularly easy to examine, since they have nice probabilistic proper-
ties. To prove these, we will need a dynamical interpretation of the construction.

We will only consider the dynamics of elements in the ideal I , since our results
will generalise to all of L by translation. Also, the normalised Haar measure induces a
probability measure on I by restriction, thus allowing us to use tools from probability
theory directly on I . On this ideal, we define the two operators q : I � ! 0 " � �	�

X � and
T : I � I by

q � x ��� �
1
x � � 1 	 T � x � � �

0 for x � 0 	� q � x ��� 1 � � xq � x ��� 1 � otherwise.

Clearly, q maps I into �	�
X � . We need to check that T maps I into I . Since

� T � x � � � � x � � 1 � x � ���� q � x ��� 1
x

���� � 1 	
this is also true.

We now claim that with the operators above, the coefficients of the Lüroth expan-
sion of an element x � I are of the form qr � q � T r � 1 � x � � . To prove this, it is sufficient
to prove that T r � 1 � x ��� 1

ar
, where ar is the element in (2.2a). Since x � I , this certainly

holds for r � 1. Assume, that the claim holds for some r � 0. By (2.2a),

T r � x � � T � 1
ar � � � qr � 1 � � 1

ar
qr � 1 � � 1

ar
� qr � 1 � qr � qr � 1 � 1

ar # 1


Hence, this is indeed a dynamical description of the expansion.
With these tools in place, we can prove that the coefficients of the Lüroth expan-

sions are as nice as we could possibly hope for from a probabilistic point of view.
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2. Lüroth expansions

Theorem 2.2. The coefficients qi of the Lüroth expansion of an element A � L are
independent, identically distributed random variables.

Proof. For any n � 	 and any p1 	    	 pn � � �
X � � � , we define the set

In � In � p1 	    	 pn ��� ! x � I : q1 � x ��� p1 	    	 qn � x � � pn
"

along with the ball I0 � I , where qi � x ��� q � T r � 1 � x � � denotes the i’th coefficient in the
Lüroth expansion of x. We call these sets Lüroth cylinders.

Now, let x � In for some Lüroth cylinder. Since x � I , q0 � x ��� 0. Defining elements

d0 � 1 	 di � 1
p1 � p1 � 1 � � � � pi � pi � 1 � 	 cn � n

∑
i � 1

di � 1
pi

	
we can even find a general form of any x � In. Indeed,

x � cn � dn

∞

∑
i � 1

1
qn # 1 � qn # 1 � 1 � � � � qn # i � 1 � qn # i � 1 � 1 � qn # i

	 (2.6)

where the qn # i are the last coefficients from the Lüroth expansion of x.
We recognise the sum appearing in (2.6) as the tail of the Lüroth expansion of x.

That is, the sum is equal to 1
an � 1

from the construction. By our dynamical description
of the expansion, we see that the function φn : I � In defined by φn � x � � cn � dnx is
a left inverse of the restriction of T n to the Lüroth cylinder In. That is, for any x � In,
φn � T n � x � ��� x.

Obviously, φn is surjective. This gives us an alternative characterisation of In,

In � φn � I ��� cn � dnI � B � cn 	�� dn ����
Now, we immediately have the measure of the Lüroth cylinders. Indeed, from the
characterisation in Section 1.2.3,

µ � In � p1 	    	 pn � ��� 1� p1 � p1 � 1 � � � � pn � pn � 1 � � � 1� p1 � � � pn � 2 
From this, it follows directly that the coefficients are identically distributed and in-
dependent. In fact, we have calculated the probability of a given coefficient taking a
given value:

µ ! x � I : qr � p " � 1� p � 2 	 (2.7)

where r � 	 and p � �	�
X � � � .
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2.2. Metrical subsequence results

2.2. Metrical subsequence results

Using Theorem 2.2, we may deduce a number of results about the coefficients of the
Lüroth expansions from the classical theorems of probability theory. In the following,
this is exactly what we will do. Our results are subsequence results. In particular, they
imply some results by John and Arnold Knopfmacher ([31] and [32]), who proved
similar results for the sequence nk � k.

The first couple of results are simple consequences of the Strong Law of Large
Numbers.
Proposition 2.3. Let � ni � � 	 be a strictly increasing sequence and let p � �	�

X � � � .

lim
i � ∞

1
i

� ! r � i : qnr � x ��� p " � � � p � � 2

for almost every x � I .

Proof. We define random variables Xi � � �
x � I :qni � x � � p � . By Theorem 2.2, these are

independent and identically distributed. By (2.7), � � X1 ��� � p � � 2. The Strong Law of
Large Numbers (Theorem 3.30 in [11]) now says,

lim
i � ∞

1
i

� ! r � i : qnr � x ��� p " � � lim
i � ∞

∑i
j � 1 X j

i
��� � X1 ��� � p � � 2

for almost every x � I . This completes the proof.

We are also able to obtain an estimate on the average of the degree of the coeffi-
cients.
Proposition 2.4. Let � ni � � 	 be a strictly increasing sequence. For almost every
x � I ,

lim
i � ∞

1
i

i

∑
r � 1

deg � qnr � x � � � k
k � 1 

Proof. We define random variables Yi � deg � qnr � . By Theorem 2.2, these are inde-
pendent and identically distributed. We calculate the expectation of Y1.

� � Y1 ��� �
I

deg � qn1 � x � � dµ � x � � ∑
p ����� X ��

p
���

1

�
�
x � I :qn1 � x � � p �

deg � qn1 � x � � dµ � x �
� ∑

p ����� X ��
p
���

1

deg � p � � p � � 2 � ∞

∑
r � 1

r � k � 1 � krk � 2r � k
k � 1 

Now, the Strong Law of Large Numbers yields,

lim
i � ∞

1
i

i

∑
r � 1

deg � qnr � x � ��� lim
i � ∞

∑i
j � 1Yj � x �

i
��� � Y1 � � k

k � 1

for almost every x � I .
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2. Lüroth expansions

We immediately have the following corollary:

Corollary 2.5. Let � ni ��� 	 be a strictly increasing sequence. For almost every x � I ,

lim
i � ∞

� qn1 � x � � � � qni � x � � 1 
 i � kk 
 � k � 1 � 
Proof. Note that deg � p � � logk � p � . Inserting this in Proposition 2.4, we obtain the
corollary.

These were just a few easy results following from the Strong Law of Large Num-
bers. Fortunately, there are more probabilistic theorems, stating beautiful results on in-
dependent, identically distributed random variables, which allow us to deduce stronger
results from Theorem 2.2. We begin with the following proposition, strengthening Pro-
position 2.3.

Proposition 2.6. Let � ni � � 	 be a strictly increasing sequence, let p � �	�
X � � � and

define for all r �
	 random variables Zr� p � � ! i � r : qni � p " � . For almost all x � I ,

limsup
r � ∞

Zr� p � r � p � � 2�
r log logr

� � 2 � p � � 2
�
1 � � p � � 2 � 

Furthermore, for any s � � ,

lim
r � ∞

µ

�
x � I : Zr� p � r � p � � 2 � s� p � � r

�
1 � � p � 2 � � � 1�

2π

� s� ∞
e � u2 
 2du 

Proof. We let p � �	�
X � � � be fixed but arbitrary and consider the random variables

Xi � � �
x � I :qni � x � � p � . By Theorem 2.2, these are independent and identically distributed.

We need the variance of these, so we calculate the first and second moments. Since the
random variables are indicator functions, Xi � X2

i . Hence by (2.7),

� �
X2

i � � � � Xi ��� �
I

Xidµ � �
I
� �

x � I :qni � x � � p � � � p � � 2 
By a standard result in probability theory,

σ2 � Xi ����� �
X2

i � � � � Xi � 2 � � p � � 2
�
1 � � p � � 2 � 

If we centre the random variables and calculate the partial sums Sr of the centred
random variables, we see that

Sr � r

∑
i � 1

� X1 � � � Xi � ��� r

∑
i � 1

� � �
x � I :qni � x � � p � � � p � � 2 � � Zr� p � r � p � � 2 

Clearly, the variance is preserved under the translation, so by the Law of the Iterated
Logarithm (Theorem 13.25 in [11]),

limsup
r � ∞

Zr� p � r � p � � 2�
r loglogr

� limsup
r � ∞

Sr�
r loglogr

��� 2σ2 � Xi ��� � 2 � p � � 2
�
1 � � p � � 2 �
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2.2. Metrical subsequence results

for almost every x � I . This is the first statement of the proposition.
To prove the second claim, we see that the Central Limit Theorem (Corollary 8.23

in [11]) states that

Zr� p � r � p � � 2

� p � � 1
�

r
�
1 � � p � � 2 � � Sn

σ � Xi � � r
D��� � �

r � ∞
N � 0 	 1 ��	

where N � 0 	 1 � denotes the standard normal distribution and the convergence is in dis-
tribution. But this is the second statement by definition of convergence in distribu-
tion.

A generalisation of Proposition 2.4 using the Law of the Iterated Logarithm is also
possible.

Proposition 2.7. Let � ni � � 	 be a strictly increasing sequence. For almost every
x � I ,

limsup
r � ∞

∑r
i � 1 deg � qni � x � � � � k � � k � 1 � � r�

r log logr
� � 2k

k � 1 
Proof. We truncate the interesting random variables in order to obtain more precise
estimates:

Y �i � x � � �
deg � qni � x � � for � qni � x ����� i2 	
0 otherwise.

Once again, we calculate the first and second moment of these variables. A calculation
similar to the one performed in the proof of Proposition 2.4 yields

� �
Y �i � � ∑

p ����� X �
1 � �

p
� � i2

�
�
x � I :qni � x � � k �

deg � qni � x � � dµ

� ∑
r:kr � i2

k � 2rkr � k � 1 � r � � � deg � qni � x � � � � O � log i
i2 � 

Similarly,

�
�
Y �i 2 � � �

�
deg � qni � x � � 2 � � O � log2 i

i2 � 
Hence,

σ2 � Y �i �����
�
Y �i 2 � � � �

Y �i � 2 � σ2 � deg � qni � x � � � � O � log2 i
i2 � 

Now, we define a new quantity

Br : � r

∑
i � 1

σ2 � Y �i ��� r

∑
i � 1

σ2 � deg � qni � x � � � � O � 1 ��� kr� k � 1 � 2 � O � 1 ��	
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2. Lüroth expansions

where the calculation of σ2 � deg � qni � x � � � in the last equality is performed completely
analogously to the calculation of the expectation in the proof of Proposition 2.4. Also,

Y �i � x � � 2logk i � O � Bi

loglogBi
� 

Now, we can use the Law of the Iterated Logarithm, since the Y �i are independent by
Theorem 2.2.

limsup
r � ∞

∑r
i � 1 � Y �i � � � Y �i � ��

2Br log logBr
� 1 (2.8)

for almost every x � I .
Asymptotically, we have Br loglogBr 	 k

� k � 1 � 2 r loglogr. Hence, (2.8) implies,

limsup
r � ∞

∑r
i � 1 � Y �i � � � deg � qni � x � � � �
� 2 k

� k � 1 � 2 r log logr
� limsup

r � ∞

∑r
i � 1Y �i � k � � k � 1 � r
� 2 k

� k � 1 � 2 r log logr
� 1 (2.9)

for almost every x � I .
This is almost the required result, except that the random variables Y �i are not

necessarily equal to deg � qni � x � � . However, this is easily repaired. We define sets
Ui � ! x � I : Y �i � x � �� deg � qni � x � � " . We calculate the sum of the measures of all these
sets:

∞

∑
i � 1

µ � Ui ��� ∞

∑
i � 1

∑�
p
���

i2
� p � � 2 � ∞

∑
i � 1

1
i2
� ∞ 

The Borel–Cantelli Lemma (Lemma 3.14 in [11]) implies that for almost every x � I ,
there exists an i0 � 	 such that for i � i0, Y �i � x ��� deg � qni � x � � . Hence, (2.9) does
indeed imply the proposition.

Just as was the case with Proposition 2.4, where we were able to obtain Corollary
2.5 by a simple substitution, we can obtain a stronger corollary from the stronger
Proposition 2.7.

Corollary 2.8. Let � ni ��� 	 be a strictly increasing sequence. For almost every x � I ,

� qn1 � x � � � � qnr � x � � 1 
 r � kk 
 � k � 1 � � O � � loglogr
r � 

Proof. Once again, observe that deg � qnr � x � � � � logk � qnr � x � � . Inserting this in Propos-
ition 2.7 yields the corollary. The error term arises when we estimate the multiplicative
error from Proposition 2.7 in terms of an additive one.

The final result of this chapter tells us that the norms of the partial coefficients in
the Lüroth expansions are bounded in a certain sense for almost all x � I . Once again,
it is a result about convergence in probability.
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2.2. Metrical subsequence results

Proposition 2.9. Let � ni � � 	 be a strictly increasing sequence. For any ε � 0,

lim
i � ∞

µ

�
x � I : 1

i logk i

����� i

∑
r � 1

� qnr � x � � � � k � 1 � ����� � ε � � 0 
Proof. Let i � 	 be fixed but arbitrary. We split the sum of the norms of the partial
coefficients up into two random variables. For r � i, we define

Vr � x ��� � � qnr � x � � when � qnr � x ����� i logk i 	
0 otherwise,

Wr � x ��� �
0 when � qnr � x ����� i logk i 	� qnr � x � � otherwise.

Clearly,

µ

�
x � I : 1

i logk i

����� i

∑
r � 1

� qnr � x � � � � q � 1 � ����� � ε �
� µ

�
x � I :

����� i

∑
r � 1

Vr � � k � 1 � i logk i

����� � εi logk i ��� µ

�
x � I :

i

∑
r � 1

Wr �� 0 �� (2.10)

We will treat the measure of each of the sets on the right hand side separately, proving
that the measures tend to zero as i tends to infinity.

By Theorem 2.2, the Vr are independent and identically distributed. Hence by
standard probability theory, � �

∑i
r � 1Vr � � i � � V1 � and σ2 �

∑i
r � 1Vr � � iσ2 � V1 � . We

calculate estimates of these quantities. First the expectation:

� � V1 ��� �
I

V1dµ � ∑
p ����� X �

1 � �
p
� � i logk i

�
�
x � I :qn1 � x � � p �

� qn1 � x ��� dµ

� ∑
p ����� X �

1 � �
p
� � i logk i

� p � � 1 � ∑
r:1 � kr � i logk i

k � r � k � 1 � kr � � k � 1 � � logk � i logk i � ��	
where � � � denotes the integral value function. Similarly, for the variance we get,

σ2 � V1 � � � �
V 2

1 � � ∑
p ����� X �

1 � �
p
� � i logk i

1 � ∑
r:1 � kr � i logk i

� k � 1 � kr � ki logk i 
We apply Chebychev’s Inequality (Proposition 1.7 in [11]) and the independence and
identical distribution of the Vi to these estimates,

µ

�
x � I :

����� i

∑
r � 1

Vr � i � � V1 � ����� � εi � � V1 � � � � �
∑i

r � 1Vr � i � � V1 � �� εi � � V1 � � 2

� iσ2 � V1 �� εi � � V1 � � 2
� ki2 logk i� ε � k � 1 � i � logk � i logk i � � � 2  (2.11)
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2. Lüroth expansions

This quantity tends to zero as i tends to infinity. Also, � � V1 � 	 � k � 1 � logk i when i
tends to infinity, so the first summand in (2.10) tends to zero.

For the second summand, not quite as much work is needed. It suffices to observe
that by Theorem 2.2,

µ

�
x � I :

i

∑
r � 1

Wr �� 0 � � iµ ! x � I : � qn1 � x � � � i logk i "
� i ∑

p ����� X ��
p
���

i logk i

� p � � 2 � 1
logk i


This also tends to zero as i tends to infinity, so the expression in (2.10) tends to zero.
This completes the proof.
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3. Approximation and Haar
measure

In this section, we will calculate the Haar measure of certain subsets of L and subsets
of the matrices over L . It turns out that the interesting sets – speaking in the context
of metrical Diophantine approximation – have either null or full measure. This is our
main result in this section, which also serves to motivate the next two chapters, where
we examine the null-sets more closely.

We will begin with a one-dimensional result, which is subsequently generalised to
linear forms. Clearly, the multidimensional result implies the one-dimensional result,
but the proof of the multidimensional result is much more complicated. The inclusion
of both proofs serves to illustrate the kind of difficulties one encounters when passing
from one to several dimensions in the examination of these questions. This will be
the only chapter of this part of the thesis, where we will have results both in one
dimension and several dimensions. For the remaining theorems, even the simple, one-
dimensional proofs are quite extensive and since the results are included in the multi-
dimensional results and the methods of proof are very similar, the one-dimensional
proofs are omitted.

3.1. Approximation and measure in one
dimension

The goal of this section is to prove the following theorem, a sketch of which is found
in [33]:

Theorem 3.1. Let ψ : � �
X � � � # be some function decreasing with respect to the

norm and only dependent on the norm. Then,

1. If ∑q ����� X � ψ � q � � ∞, then

µ ! x � L :
� �

qx � � � ψ � q � for infinitely many q � �	�
X � " � 0 
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3. Approximation and Haar measure

2. If ∑q ����� X � 1
deg � q � ψ � q ��� ∞, then

µ ! x � L :
���

qx � � � ψ � q � for infinitely many q � �	�
X � " � ∞ 

The reader will notice that this theorem is similar to Khintchine’s Theorem (The-
orem 1.2) and de Mathan’s Theorem (Theorem 1.11), and this is no coincidence. The-
orem 3.1 is the first version of Khintchine’s Theorem discussed in this thesis. In Sec-
tion 3.2, we will prove a multi-dimensional version of the theorem. This involves
considerably more intricate arguments, but of course the resulting theorem implies
Theorem 3.1.

Note, that there is a “hole” in Theorem 3.1. For instance, for ψ � q � � ��� q � degq � � 1,
we get ∑q ����� X � ψ � q � � ∞, so the first case does not apply. However, we also have
∑q ����� X � 1

deg � q � ψ � q � � ∞, so neither does the second case. We conjecture that the condi-
tion ∑q ����� X � ψ � q � � ∞ is sufficient to ensure full measure, and that this may be shown
with some extra care in the calculations. However, for the purposes of the sets to be
examined in this thesis, the above gives the required results.

Proof of Theorem 3.1. First, we note that it suffices to consider the restriction of the
set in question to the unit ball, since L can be written as disjoint translates of I . This
has the advantage that we may use tools from probability theory, since the normalised
Haar measure induces a probability measure on I . To simplify notation, we define the
set

S � ψ ��� �
x � I

�� ��� qx � � � ψ � q � for infinitely many q � �	�
X � �  (3.1)

We wish to prove that

1.
If ∑

q ����� X � ψ � q � � ∞ 	 then µ � S � ψ � � � 0 
2.

If ∑
q ����� X � ψ � q ��� ∞ 	 then µ � S � ψ � � � 1 

We begin with a proof of (1). For any q � � �
X � , we define sets

B � q ��� ! x � I :
���

qx � � � ψ � q � "  (3.2)
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3.1. Approximation and measure in one dimension

Since we have restricted ourselves to considering the unit ball, we immediately see
that

B � q ��� �

p ����� X ��
p
� � �

q
�
! x � I : � qx � p � � ψ � q � "

� �

p ����� X ��
p
� � �

q
�

�
x � I :

���� x � p
q

���� � ψ � q �� q � � � �

p ����� X ��
p
� � �

q
�
B � p

q
	 ψ � q �� q � �  (3.3)

Since B � q � is the union of balls, we know how to calculate an upper bound on the
measure of B � q � :

µ � B � q � ��� µ

���
� �

p ����� X ��
p
� � �

q
�
B � p

q 	 ψ � q �� q � �
����
� � ∑

p ����� X ��
p
� � �

q
�
k

ψ � q �� q � � ψ � q �� (3.4)

Hence,
∑

q ����� X � µ � B � q � � � ∑
q ����� X � ψ � q � � ∞ 	

and since by definition of B � q � ,
S � ψ ��� �

x � I
�� x � B � q � for infinitely many q � �	�

X � � 	 (3.5)

the Borel–Cantelli Lemma implies (1).
We now prove (2). This requires a bit more finesse. We will use a little ergodic

theory. For any q � �	�
X � , we define the function Tq : I � I by Tq � x � � ! qx " , where! � " denotes the fractional part, ! x " � x � �

x � . We claim that for any q � �	�
X � , the

transformation Tq is ergodic. That is, any Tq-invariant set has measure either 1 or 0.
Let q � �	�

X � be fixed and let E � I be some Tq-invariant set. Assume that µ � E � � 0,
and let x0 be a point of metric density for E. For any h � 	 , we define the open balls
Bh � B � x0 	�� q � � h � . Using the invariance of E, we see that by substitution,

µ � E � Bh ��� �
Bh

�
E � x � dµ � x ��� �

Bh

�
E � T h

q x � dµ � x �
� � q � � h

�
I
�

E � x � dµ � x ��� µ � Bh � µ � E ��
Since x0 is a point of metric density for E, we see that µ � E � � 1 by letting h tend to
infinity, so the transformation is ergodic.

Clearly, for any q � �	�
X � , the set B � q � defined in (3.2) is invariant under Tq. Hence,

it has measure 0 or 1. From (3.5), we see that S � ψ � can be written as an intersection of
unions of the sets B � q � . Hence, S � ψ � has measure 0 or 1. Thus, it is sufficient to prove
that µ � S � ψ � �	� 0.
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3. Approximation and Haar measure

We prove this for a suitable subset. Let I � ! q � � �
X � : q irreducible and monic " .

We define the set

Sirr. � ψ � � ! x � I : x � B � q � for infinitely many q � I " � S � ψ ��
For q 	 q � � I, we clearly have

µ � B � q � � B � q � � � � µ � B � q � � µ � B � q � � �� (3.6)

We now prove that ∑q � I ψ � q � � ∞. For this task, we need the Möbius function µ : 	 �! � 1 	 0 	 1 " defined by:

µ � d ��� � � � 1 � r for d a product of r distinct primes,
0 otherwise.

It should cause no ambiguity that both the Haar measure and the Möbius function are
denoted µ, since they will never be used in the same calculation.

Since we know that the number of monic irreducible polynomials of degree r in�	�
X � is 1

r ∑d � r µ � r
d � kd , we get

∑
q � I

ψ � q ��� ∞

∑
r � 1

� 1
r ∑

d � r
µ � r

d
� � ψ � kr � � ∑

q ����� X � 1
deg � q � ψ � q ��	

which diverges.
From (3.3) and (3.4) it follows that µ � B � q � � � ψ � q � . Hence, for any N � 	 ,

0 � ∑
q � q � � I�

q
� � � q � � � N

µ � B � q � � B � q � � � � ∑
q � q � � I�

q
� � � q � � � N

ψ � q � ψ � q � �
� c � ∑

q � I�
q
� � N

ψ � q � � 2

� c � ∑
q � I�
q
� � N

µ � B � q � � � 2 
A converse to the Borel–Cantelli Lemma (see Lemma 2.3 in [22]) tells us,

µ � S � ψ � � µ � Sirr. � ψ � �	� limsup
N � ∞

� ∑ q � I�
q
� � N

µ � B � q � � � 2

∑ q � q � � I�
q
� � � q � � � N

µ � B � q � � B � q � � � � c � 1 � 0 
This completes the proof.

The sets discussed in Theorem 3.1 are a little more general than the ones we will
be discussing in the subsequent chapters. The sets, we will be interested in, correspond
to the special functions ψ � q � � � q � � v, where v � 0. However, we will not prove any
results specific to these specialised sets until we have passed to multiple dimensions.
In multiple dimensions we will also need to impose extra assumptions on ψ.
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3.2. Approximation and measure of linear forms

3.2. Approximation and measure of linear forms

In this section, we generalise Theorem 3.1 to several dimensions. In fact, we prove a
version of the theorem for m � n-matrices over L . First, we define the sets replacing
the one-dimensional sets defined in (3.1). Let ψ : �	� X � m �� # be some function. We
define

S � ψ ��� ! A � I mn :
� �

qA � � � ψ � q � for infinitely many q � �	�
X � m "  (3.7)

That is, the set of matrices A where for all entries ai j, we have ai j � I .
The real analogue of the multi-dimensional theorem was proved by Grošev in [21].

The methods used here to prove the theorem are for the most part the ones used by
Dodson ([18]). The multidimensional generalisation of Theorem 3.1, which is to ap-
pear in [35], is the following:

Theorem 3.2. Let ψ : �	� X � m ��� # be a function such that ψ � q ��� ψ � � q � ∞ � , which is
decreasing with respect to the height.

1.
If ∑

q ����� X � m ψ � q � n � ∞ 	 then µ � S � ψ � � � 0 
2. a)

If m � 1 and ∑
q ����� X � m ψ � q � n � ∞ 	 then µ � S � ψ � ��� 1 

b)

If m � 1 and ∑
q ����� X � 1

deg � q � ψ � q � n 	 then µ � S � ψ � � � 1 
Note, that the “hole” from the one dimensional case also appears here, but only for

m � 1. The multidimensional case is much easier from a geometric point of view, so
there is no “hole” here. Before proving the theorem, we will prove an easy lemma,
which will turn out to be extremely useful in the remainder of Part 1 of the thesis.

Lemma 3.3. Let m 	 r �
	 .� ! q � �	�
X � m : � q � ∞ � kr " � � m

k � 1
k

krm 
Proof. There are m coordinates, so obviously there are m possibilities for choosing the
norm bearing coordinate. The leading coefficient of the norm bearing polynomial can
be chosen freely in � � ! 0 " , so there are k � 1 possibilities. For each of the remaining
r � 1 coefficients, there are

� � � � k possible choices, so in total, there are kr � 1. The
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3. Approximation and Haar measure

remaining m � 1 coordinates can be chosen arbitrarily with norms less than or equal to
kr. Hence, there are kr � m � 1 � possibilities. These calculations give� ! q � �	�

X � m : � q � ∞ � kr " � � m � k � 1 � kr � 1kr � m � 1 � � m
k � 1

k
krm 

We now specialise the setting a bit further. Let ψ : �	� X � m � � # be a decreasing
function, taking only values in the set ! kr : r � � " . We define for any q � �	�

X � m the
resonant set

Rq � ! A � I mn : qA � p for some p � �	�
X � n "  (3.8)

The term resonant set comes from physics, where the resonance frequencies of for
example a string can be found by solving Diophantine equations. Given our function
ψ, we define some neighbourhoods of the Rq:

Bψ � q � � Rq ��� ! A � I mn :
� �

qA � � � ψ � q � "  (3.9)

We will prove the following propositions:

Proposition 3.4.
µ

�
Bψ � q � � Rq � � � ψ � q � n

Proposition 3.5. Let q 	 q � � ���
X � m be linearly independent over L . Then

µ
�
Bψ � q � � Rq � � Bψ � q � � � Rq � � � � µ

�
Bψ � q � � Rq � � µ

�
Bψ � q � � � Rq � � � 

In both proofs, we follow the method from [18].

Proof of Proposition 3.4. By the rank equation, the solution curves to the equations
qA � p are � m � 1 � n dimensional affine spaces over L . We begin by calculating the
number of affine spaces which pass through the unit ball. First, note that if there is a
solution to the equation qA � p with A � I mn, then� p � ∞ � � qA � ∞ � � q � ∞ � A � ∞

� � q � ∞ 	 (3.10)

so certainly, the condition � p � ∞
� � q � ∞ is necessary. We claim that it is also sufficient.

To see this, it suffices to find a solution A � I mn which satisfies the equation. Sup-
pose that � p � ∞

� � q � ∞. Assume without loss of generality that � q � ∞ � � q1 � . Now,

qA � q

����
�

p1
q1

� � � pn
qn

0 � � � 0
... ...
0 � � � 0

� ���
� � p (3.11)

and A � I mn.
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3.2. Approximation and measure of linear forms

As in [18], we consider the simplest non-trivial case (m � 2 	 n � 1) and sub-
sequently extend this to the general case. In this case, the solution curves to the equa-
tions qA � p define � q � ∞ affine 1-dimensional spaces in I 2. These partition I 2 into� q � ∞ sets, S̃i say. The distance between each affine 1-space is 1�

q
�

∞
. The measure of

each such strip may be calculated using a characterisation of a translation invariant
measure due to Mahler (see [42]).

Using a method more geometric than the one in Chapter 1, Mahler constructs
a translation invariant measure on Lh, such that the measure of the parallelepiped
spanned by the linearly independent vectors q1 	    	 qh is equal to the reciprocal of
the determinant of the matrix having the qi as it’s columns. Since Mahler’s measure
and the one we constructed in Chapter 1 agree on the set I h, they must be the same
measures by uniqueness of the Haar measure.

Hence, the solution curves partition I 2 into sets of equal size, µ � S̃ ��� 1�
q
�

∞
. By the

same characterisation, we find that around each solution curve we have a component,
Si say, of the set Bψ � q � � Rq � of measure ψ � q ����� q � ∞. Hence

µ
�
Bψ � q � � Rq � � � µ

�
Bψ � q � � Rq � �

µ � I2 � � µ � � Si �
µ

� � S̃i � � µ � Si �
µ � S̃i � � ψ � q ��

q
�

∞
1�

q
�

∞

� ψ � q �� (3.12)

To obtain the proposition for general m 	 n � 	 , consider n copies of the span of q
and apply the above argument to resulting prisms in I mn. This implies the proposition.

Proof of Proposition 3.5. Again, we consider the simplest non-trivial case, so let m �
2 and n � 1. Let q 	 q � � �	�

X � 2 be linearly independent over L . We calculate the number
of intersections between the solution curves to the equations qA � p and the equations
q � A � p � , where p 	 p � run over the possible values. This amounts to solving the system

� q1 q2
q �1 q �2 � � a1

a2 � � � p
p � � 	 � p � ∞

� � q � ∞ 	 �� p � �� ∞
� �� q � �� ∞ 

There are exactly
��� det

� q1 q2
q �1 q �2 �

��� such solutions. Indeed, by Cramer’s rule (Theorem 4.4
in [39]) we may find at least this number of solutions. To each such solution, we may
assign a parallelogram of measure 1 �

��� det
� q1 q2

q �1 q �2 �
��� , defined by the four corresponding

intersection points of parallel consecutive resonant sets. The measure is calculated by
Mahler’s method ([42]).

It remains to be shown that each of the parallelograms defined above is a proper
subset of I2. But this must be the case, since any parallelogram may be written as

�
x � L2 : x � q̂1t1 � q̂2t2 � p 	 t1 	 t2 � I �

for some q̂1 	 q̂2 � L2. Clearly,
�
x � L2 : x � q̂1t1 � q̂2t2 � p 	 t1 	 t2 � I � � B � p 	 max � � q̂1 � ∞ 	�� q̂2 � ∞ � � 	
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3. Approximation and Haar measure

so by the ultra-metric property (1.5c), the parallelogram is either fully contained in
I2 or disjoint with I2. Since the parallelograms bounded by the solution curves are
disjoint, there can be no more than the required number.

Furthermore, around each intersection point, there is another parallelogram of
measure ψ � q � ψ � q � ��� ��� det

� q1 q2
q �1 q �2 �

��� which forms a part of Bψ � q � � Rq � � Bψ � q � � � Rq � � if it
is a subset of I2.

With the above tools, we may apply a proportional argument analogous to (3.12)
to obtain the proposition in this case. For the general case, we consider n copies of
the span of q and q � and apply the above to the mn dimensional prisms to obtain the
proposition.

We are now ready to embark on the proof of the main theorem of this chapter.

Proof of Theorem 3.2. Again, we consider the solution curves to certain Diophantine
equations. From equations (3.8) and (3.9), we see that

S � ψ � � �
A � I mn : A � Bψ � q � � Rq � for infinitely many q � �	�

X � m � 
As in the proof of Theorem 3.1, we use the Borel–Cantelli Lemma for the first part. We
no longer have the restriction on the possible values for ψ � q � , but clearly Proposition
3.4 implies that µ � Bψ � q � � Rq � � � ψ � q � n. Just as in the one-dimensional case, the Borel–
Cantelli Lemma now yields (1).

As in the proof of Theorem 3.1, proving the second part is more difficult. Further-
more, in the multi-dimensional setting we need to distinguish between the cases m � 1
and m � 1. For m � 1, we use the same method as in the proof of Theorem 3.1. For
m � 1, this method breaks down and we need a different approach.

Assume first that m � 1. As in the proof of Theorem 3.1, we define for any q � �	�
X �

an automorphism Tq : I n � I n by Tq � A � � ! A " . Once again, ! A " denotes the fractional
part, but this time the fractional part is taken in each coordinate.

This transformation is ergodic for any q � �	�
X � . Indeed, let q � �	�

X � , let E � I n

be some Tq-invariant set with µ � E � � 0 and let A0 be a point of metric density for E.
Furthermore, define for any h � 	 , Bh � B � A0 	�� q � � h

∞ � . Now, by substitution

µ � E � Bh ��� �
Bh

�
E � x � dµ � x � � �

Bh

�
E � T h

q x � dµ � x �
� � q � � hn

∞

�
I
�

E � x � dµ � x ��� µ � Bh � µ � E ��
Once again, letting h tend to infinity reveals that µ � E � � 1 by choice of A0 as a point
of metric density. Hence the transformation is ergodic, and the same argument used in
the proof of Theorem 3.1 reveals that since Bψ � q � � Rq � is Tq-invariant for any q � �	�

X � ,
we have µ � S � ψ � � � ! 0 	 1 " .

We now apply the same trick used in the one dimensional case. As before, we let
I be the set of monic, irreducible polynomials and consider the set Sirr. � ψ � , such that
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3.2. Approximation and measure of linear forms

the desired inequality has infinitely many solutions q � I. Again, we easily see that for
q1 	 q2 � I,

µ
�
Bψ � q1 � � Rq1 � � Bψ � q2 � � Rq2 � � � µ

�
Bψ � q1 � � Rq1 � � µ

�
Bψ � q2 � � Rq2 � � 

Divergence of the series ∑q � I ψ � q � n follows by the same argument as in the one di-
mensional case, using the strengthened assumption for this case. Using Proposition
3.4, we obtain

0 � ∑
q1 � q2 � I�

q1
� � � q2

� � N

µ
�
Bψ � q1 � � Rq1 � � Bψ � q2 � � Rq2 � � � ∑

q1 � q2 � I�
q1
� � � q2

� � N

� ψ � q1 � ψ � q2 � � n

� c
�

∑
q � I�
q
� � N

ψ � q � n � 2
� c

�
∑
q � I�
q
� � N

µ
�
Bψ � q � � Rq � � � 2

for some c � 0. Hence, by the converse Borel–Cantelli Lemma used in the proof of
Theorem 3.1,

µ � S � ψ � � � limsup
N � ∞

� ∑ q � I�
q
� � N

µ
�
Bψ � q � � Rq � � � 2

∑ q1 � q2 � I�
q1
� � � q2

� � N
µ

�
Bψ � q1 � � Rq1 � � Bψ � q2 � � Rq2 � � � c � 1 � 0 

Now, (2) follows for m � 1.
Now, assume that m � 1. The function Tq defined in the proof for m � 1 fails to

be an automorphism, and the obvious automorphisms which may be constructed on
the basis of Tq fail to be ergodic. Hence, another method is needed. Fortunately, the
independence of events proved in Proposition 3.5 gives us the possibility of using a
stronger version of the converse Borel–Cantelli Lemma (Lemma 3.14, II in [11]).

For any r � 	 , we define sets

Sr � ! � q1 	    	 qm � � �	�
X � m : gcd � q1 	    	 qm ��� 1 	�� q � ∞ � kr 	 qm monic " 

Here, gcd denotes the greatest norm of the common divisors of the arguments, so we
require the coordinates of each element in Sr to be relatively prime. We also define
PN ��� N

i � 1 Si and P∞ ��� ∞
i � 1 Si.

Let N � 	 and let q 	 q ��� PN with q �� q � . We claim that q and q � are linearly
independent over L . Indeed, assume that αq � α � q � for some α 	 α � � L . Since q 	 q � ��	�

X � m, there is no loss of generality in assuming that α 	 α � � �	�
X � and that they are

relative prime. Hence, α divides each coordinate of q � and vice versa. By the condition
on the greatest common divisor, α 	 α � � � . Since qm and q �m are monic, this means that
α � α � , so q � q � . This contradiction proves the claim.
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3. Approximation and Haar measure

We now count the elements in Sr. We recall that the Möbius function has the
property that

∑
d � k

µ � d ��� �
1 for k � 1 	
0 otherwise.

Using Lemma 3.3, we get�
Sr
� � ∑�

q
�

∞ � kr

gcd � q1 ������� � qm � � 1
qm monic

1 � ∑�
q
�
∞ � kr

gcd � q1 ������� � qm � � p
qm monic

∑
d � p

µ � d ��� r

∑
d � 0

µ � kd � ∑�
v
�

∞ � kr � d

vm monic

1

� r

∑
d � 0

µ � kd � � m � 1 � k � 1
k

k � r � d � � m � 1 � � r � d � 1
∑
i � 1

ki �
� r

∑
d � 0

µ � kd � � m � 1 � 1
k

�
km � r � d � � k � r � d � � m � 1 � # 1 � 

We think of this expression as a polynomial in k. The dominating term of the polyno-
mial is � m � 1 � kmr � 1, so asymptotically,

�
Sr
� 	 � m � 1 � kmr � 1 for r tending to infinity.

Hence, using Lemma 3.3 and the fact that ψ � q � depends solely on � q � ∞,

∑
q � P∞

ψ � q � n � ∞

∑
r � 1

∑
q � Sr

ψ � q � n �
∞

∑
r � 1

� m � 1 � kmr � 1ψ � kr � n �
m � 1

m � k � 1 � � m
k � 1

k

∞

∑
r � 1

kmrψ � kr � n � � m � 1
m � k � 1 � ∑

q ����� X � m�
q
�

∞
�

k

ψ � q � n 
Hence, if the series ∑q ����� X � m ψ � q � n diverges then the series ∑q � P∞ ψ � q � n diverges.
Since also,

�
A � Lmn : A � Bψ � q � � Rq � for infinitely many q � P∞

� � S � ψ ��	
the strong converse Borel–Cantelli Lemma (Lemma 3.14, II in [11]) implies the the-
orem for m � 1.

Now, we will define the sets to be discussed in the remainder of Part 1 of this thesis.
These are special cases of S � ψ � , but they have the advantage of being technically easier
to deal with.

Definition 3.1. Let v � 0. The set of matrices

Sv � �
A � I mn :

���
qA � � � � q � � v

∞ for infinitely many q � �	�
X � m �

is called the set of v-approximable elements in I mn.
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3.2. Approximation and measure of linear forms

As a corollary to Theorem 3.2, we obtain the following:

Corollary 3.6.

µ � Sv ��� �
1 for v � m

n 	
0 for v � m

n 
Proof. Let ψ � q � � � q � � v

∞ . Consider first the case m � 1. By Lemma 3.3,

∑
q ����� X � m � q � � vn

∞ � ∞

∑
r � 0

∑
q ����� X � m�
q
�

∞ � kr

k � rnv � m
k � 1

k

∞

∑
r � 0

�
km � nv � r 

This series converges if and only if v � m
n . Now, the corollary follows in this case from

Theorem 3.2.
Now, consider the case m � 1. In this case,

∑
q ����� X � 1

deg � q � � q � � vn
∞ � k � 1

k

∞

∑
r � 0

1
r

�
k1 � nv � r 

This certainly converges for v � 1
n and diverges for v � 1

n . For v � 1
n , it degenerates to

∑∞
r � 0

1
r , which is also divergent. Hence, the corollary follows from Theorem 3.2.
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4. Well-approximable linear forms
over L

In this chapter, we calculate the Hausdorff dimension of the first obvious exceptional
set resulting from Corollary 3.6. We will first find an upper bound on the Hausdorff
dimension, using methods quite similar to the ones used to prove the easy part of
Theorem 3.2. In particular, we need to prove a Hausdorff version of the Borel–Cantelli
Lemma, which is valid for our definition of Hausdorff dimension in L . The results of
this chapter are to appear in [35].

Subsequently, we will use a method due to Dodson, Rynne and Vickers ([19]),
which in turn uses a result due to Frostman ([20]) to calculate a lower bound on the
Hausdorff dimension. This is by far the most difficult part of the chapter, and indeed
of the thesis so far.

4.1. An upper bound on the Hausdorff dimension

The sets we are concerned with in this section are the sets Sv of v-approximable
matrices from Definition 3.1. In fact, we will prove the following theorem:

Theorem 4.1. Let v � m
n . Then

dimH � Sv ��� � m � 1 � n � m � n
v � 1


The one-dimensional real analogue of this theorem was originally proved by Jarník

([25]). Subsequently, Besicovitch found another proof ([8]) independent of Jarník.
The real analogue of Theorem 4.1 is thus known as the general Jarník-Besicovitch
Theorem.

We begin with the lemma, which will allow us to compute an upper bound on the
Hausdorff dimension.

Lemma 4.2 (The Hausdorff–Cantelli–Laurent Lemma). Let E � Lmn be some set
and let C � � Bi � � B � ci 	 ρi � , i � 	 be some sequence of � ��� ∞-balls in Lmn. Assume
that

E � ! A � Lmn : A � Bi for infinitely many i �
	 " 
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4. Well-approximable linear forms over L

If for some s � 0,
∞

∑
i � 1

ρs
i
� ∞ 	

then H s � E ��� 0 and dimH � E � � s.

The reader will note some similarity with the Borel–Cantelli Lemma, and indeed,
this lemma takes the place of the Borel–Cantelli lemma in the proof of Theorem 3.2
and is the key to obtaining the upper bound. By expressing Sv as a limsup set of
an appropriate cover, we can obtain the required upper bound. First, we prove the
Hausdorff–Cantelli–Laurent Lemma.

Proof of Lemma 4.2. By assumption, E is contained in the limsup set of the B i,

E �
∞�

N � 1

∞�
i � N

Bi 
Hence, for any N � 	 , CN � ! Bi : i � N " is a cover of E.

Let δ � 0. Since ∑∞
i � 1 ρs

i
� ∞, we have ρi

� 0 as i � ∞. Hence, there exists an
N0 � N0 � δ � � 	 such that ρi

� δ for i � N0. Furthermore, for any ε � 0, there exists
an N1 � N1 � ε � � 	 such that for N � N1, ∑∞

i � N ρs
i
� ε. But then, for any N � N1:

H s
δ � E � � ls � CN ��� ∞

∑
i � N

ρs
i
� ε 

Letting δ tend to zero corresponds by the above to letting N0 tend to infinity, so we
can make the Hausdorff-δ-s-measure arbitrarily small. Hence, H s � E � � 0 and thus
dimH � E � � s.

Lemma 4.3. Let v � m
n . Then,

dimH � Sv � � � m � 1 � n � m � n
v � 1


Proof. We consider the resonant sets Rq as in (3.8), and neighbourhoods of these,
Bv � Rq ��� Bψ � q � � Rq � for ψ � q ��� � q � � v

∞ , defined as in (3.9). The Bv � Rq � cover Sv.
We will now construct a cover Cq of each of the Bv � Rq � with balls. As in the proof

of Theorem 3.2 in the last chapter, we see that each resonant set is contained in a union
of � m � 1 � n-dimensional affine spaces. Furthermore, since A � Imn, each resonant set
Rq will be contained in the affine spaces

Rq � r � ! A � Imn � qA � r " with � r � ∞
� � q � ∞ 

There are precisely � q � n
∞ such r, so Rq is contained in this number of affine spaces

Rq � r.
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4.2. A lower bound on the Hausdorff dimension

We proceed to cover each of these affine spaces with balls. First, we choose the
centres of these at distances of integer multiples of � q � � v � 1

∞ from each other. In this
way, we choose � � q � � v � 1

∞ � � dim � Rq � r � � � q � � 1 # v � � m � 1 � n
∞

centres. Now, take balls with these centres and radii 2 � q � � v � 1
∞ . These define a cover

Cq of Bv � Rq � . Calculating the s-length, we see that

ls � Cq � � 2s � q � n # � 1 # v � � m � 1 � n � s � 1 # v �
∞ 

Finally, we let C be the cover of Sv obtained by taking the union of all the Cq and
calculate an upper bound on the s-length of C from this estimate and Lemma 3.3,

ls � C � � ∑
q ����� X � m � �

0 �
ls � Cq �

� 2s ∑
q ����� X � m � �

0 �
� q � n # � 1 # v � � m � 1 � n � s � 1 # v �

∞

� 2sm
k � 1

k

∞

∑
r � 0

�
km # n # � 1 # v � � m � 1 � n � s � 1 # v � � r 	

which converges for any s � � m � 1 � n � m # n
v # 1 . Now, the lemma follows directly from

Lemma 4.2.

4.2. A lower bound on the Hausdorff dimension

In this section, we will prove that the upper bound for the Hausdorff dimension of
Sv given in Lemma 4.3 is optimal. That is, we will calculate a lower bound for the
Hausdorff dimension, which is equal to the upper bound. In order to do this, we use
a method due to Dodson, Rynne and Vickers ([19]), using the so-called ubiquitous
systems.

We begin with some definitions. Let

ρN ��� � 1 � m
n � N � 	 (4.1)

where � x � denotes the integral part of the real number x. We also define the sets

B � Rq;k � ρN ��� �
A � Imn : dist∞ � A 	 Rq � � k � ρN � 	 (4.2)

where the Rq are the resonant sets defined in (3.8), and dist∞ denotes the distance in
the height-norm ��� � ∞. Finally, we define the sets

A � N � � �
�
q
�

∞ � kN

B � Rq;k � ρN �� (4.3)
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4. Well-approximable linear forms over L

This system of sets is an example of an ubiquitous system. We will not define ubiquity
in full generality, but in informal terms, ubiquity means that we can find rational ele-
ments in L with “small” denominators “close” to any element in L . Here, the meaning
of the term “small” depends on the “closeness” required. Thus, the property contains
somewhat more information than density of the rationals in L . The following lemma
formalises the above discussion in this particular case.

Lemma 4.4.
lim

N � ∞
µ � Imn � A � N � ��� 0 

Proof. Let ε � 0 be fixed but arbitrary. By Corollary 3.6, we can choose N � 	 so
large that

µ

�� Imn � �

1 � �
q
�

∞ � kN

B �
q
�

∞k � � 1 � m � n � N � Rq � �� � ε  (4.4)

This follows since there are infinitely many solutions to
���

qA � � � � q � � m 
 n
∞ for almost

all A � I mn. Using this, we may fill out the unit ball with sets as above. However, for� q � ∞ � kN we also have

B �
q
�

∞k � � 1 � m � n � N � Rq � � B � Rq;k � � 1 # m 
 n � N � � B � Rq;k � ρN �� (4.5)

Indeed, let A � B �
q
� � m � n

∞
� Rq � and p � �	�

X � n be such that

� qA � p � ∞
� � q � ∞ k � � 1 # m 
 n � N

Then, � q � ∞ dist∞ � A 	 Rq � � inf
A � � Rq

�� qA � qA � �� ∞ � � qA � p � ∞
� � q � ∞ k � � 1 # m 
 n � N 

Dividing by � q � ∞ reveals that A � B � Rq;k � � 1 # m 
 n � N � . The second inclusion is trivial,
since k � � 1 # m 
 n � N � k � ρN .

Hence by (4.5),

Imn � A � N �	� Imn � �

1 � �
q
�
∞ � kN

B �
q
� � m � n

∞
� Rq ��

Since ε was arbitrary, the result follows from (4.4).

We will now use this property to calculate the Hausdorff dimension of a certain
subset of Sv. Once again, we consider an arbitrary approximation function. Hence,
we take an arbitrary decreasing function ψ : � # � � # , such that ψ � kN � � k � ρN . We
define the set

Λ � ψ ��� �
A � Imn : dist∞ � A 	 Rq � � ψ ��� q � ∞ � for infinitely many q � �	�

X � m � 
44



4.2. A lower bound on the Hausdorff dimension

Also, we define
γ � limsup

N � ∞

� ρN logk
logψ � kN � � 0 

We will find a lower bound on the Hausdorff dimension of Λ � ψ � . This will enable us to
compute a lower bound on the Hausdorff dimension of S � ψ � � for appropriate functions
ψ � : � � X � m � � # . In particular, for a clever choice of ψ, we will have that Λ � ψ � � Sv

and thus obtain the required lower bound on the set under examination.
In order to calculate a lower bound on dimH � Λ � ψ � � , we will use a version of the

easy half of Frostman’s Lemma, adapted to the field of Laurent series.

Lemma 4.5 (Frostman’s Lemma, Easy Half). Let E � L mn be a Borel set and let
s � 0. If there exists a probability measure ν with support supp � ν �	� E, which has the
property that for any ball B � B � c 	 ρ �	� L mn, ν � B � � ρs, then H s � E �	� 0.

Proof. Assume that ν is a measure as in the statement of the lemma. That is, for any
ball B � Lmn we have ν � B � � Kρ � B � s for some K � 0. Let Cδ be a cover of E with
balls of radius less than some arbitrary but fixed δ � 0.

0 � ν � E � � ν

�� �
B � Cδ

B

�� � ∑
B � Cδ

ν � B � � K ∑
B � Cδ

ρ � B � s 
Taking the infimum over such covers and letting δ tend to zero yields,

0 � lim
δ � 0

inf
covers Cδ

K ∑
B � Cδ

ρ � B � s � KH s � E ��
This completes the proof.

Remark. Note, that it suffices to prove that there is a probability measure with support
on E such that ν � B � � ρ � B � s for all sufficiently small balls B. This is the property, we
will use.

Lemma 4.6.
dimH � Λ � ψ � � � � m � 1 � n � γn 

Proof. This proof falls into four different parts. First, we define some partitions and
families of sets in Imn. Secondly, we construct a Cantor set in Imn based on these
families and partitions. Thirdly, we construct a measure on Imn with support on our
Cantor set. Finally, we prove that this measure is sufficiently nice to allow us to apply
Frostman’s Lemma.

Step 1: We begin with the construction of the partitions and families. For this,
we need to define a family of lattices in Lmn. Namely, we define for any N � 	 the
lattice Γ � N ��� X � N �	�

X � mn. It is a straightforward matter to prove that for x 	 y � Γ � N � ,� x � y � ∞ � k � N .
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4. Well-approximable linear forms over L

For each N � 	 , we define the partition HN of Imn to be the family of ����� ∞-balls
B � c 	 k � ρN � , where c � Γ � ρN � . By the Proposition 1.5, these balls are disjoint. By
Proposition 1.7, we can calculate the Haar measure of these balls. In our normalisation,
each has measure k � ρN mn. By counting, we see that there are exactly kρN mn of these
balls, so since the balls are disjoint, they do indeed define a partition of Imn.

For any ball B � B � c 	 ρ � and any positive number α, we let αB denote the ball
B � c 	 αρ � . Now, we define the family of bad balls in HN ,

EN � �
H � HN

� 1
k H � A � N ��� /0 � 

These are bad, because they still have not been completely caught by the ubiquitous
system A � N � . The rest of the balls have been caught, so we define the family of good
balls, GN � HN � EN .

We see that EN � Imn � A � N � , so by Lemma 4.4,
�EN

� � k � ρNmn � µ � EN � � 0 as
N � ∞. Hence, again by Lemma 4.4,�GN

� � �� HN
�� � �EN

�
� kmnρN

for N large enough. For any subset X � Imn, we let GN � X � be the family of good balls
in X as induced by GN .

Let H � GN and take a q � �	�
X � m such that � q � ∞ � kN and 1

k H � B � Rq;k � ρN � �� /0.
We construct a family D � H � of subsets of H as follows:

1. First, we choose points ci in Rq such that for i �� j,�� ci � c j

��
∞ � kmnψ

�
kN � 

2. Choose balls Di with centres ci and radii ψ � kN �
k .

3. Remove all points belonging to Rq from the sets obtained in the above fashion.
This is to ensure, that we use different q � �	�

X � m at each step of the construction
of the Cantor set.

Note, that for each u � D � D � H � , we have

0 � dist∞ � u 	 Rq � � ψ
�
kN �
k

� ψ ��� q � ∞ �� (4.6)

We proceed with counting the number of sets in D � H � . By the Proposition 1.5, we
can find an A � � Rq such that 1

k H � B � A � 	 k � ρN � . Let Rq � r be the � m � 1 � n-dimensional
affine space from Rq containing A � . The intersection between B � A � 	 k � ρN � and this
plane is isometric with a ball in I � m � 1 � n with measure

�
k � ρN # 1 � � m � 1 � n. It is not difficult

to count the maximal number of elements herein with distances as (1) in the above
construction.
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Indeed, by translation invariance of the Haar measure, it suffices to consider the ball
in L � m � 1 � n with centre 0 and radius k � ρN . Counting points in this ball with distances
greater than or equal to kmnψ

�
kN � corresponds to counting points of a certain lattice in

the ball. Let N � � � be maximal such that ψ
�
kN � � kN � . We scale the whole setting by

XρN , and now we note that
�D � H � � is approximately equal to the number of elements

in
Xmn # N � # ρN

�	�
X � � m � 1 � n �

I � m � 1 � n 
But this is essentially the same calculation as the one performed in the beginning of
the proof, so

�D � H � � � k � � mn � N � � ρN � � m � 1 � n � � k � ρN

ψ � kN � � � m � 1 � n 
Finally, we define the sets

TN � �
H � GN

�

D � D � H �
D 	

and the numbers

tN � ∑
H � GN

∑
D � D � H �

1 � kmnρN � k � ρN

ψ � kN � � � m � 1 � n � knρN

ψ � kN � � m � 1 � n 
To complete step one, we need an additional technical lemma.

Lemma 4.7. Let X � Imn be a � � � ∞-ball. There exists an N0 � 	 such that for any
N � N0,

µ � X � TN � � tNµ � X � 
Proof of Lemma 4.7. Let GX � N � � ! H � GN : H � X " and X � N � � � H � GX � N � H. It is
immediate that µ � X � X � N � � � 0 as N � ∞. Hence,

µ � X � TN ��� ∑
H � GX � N �

∑
D � D � H �

µ � D ��� tNµ � X �
for N large enough.

For the converse inequality, we let G �X � N � � ! H � GN : H � X �� /0 " and define
X ��� N ��� � H � G �X � N � H. Again, µ � X � X ��� N � � � 0 as N � ∞. Hence,

µ � X � TN � � ∑
H � G �X � N �

∑
D � D � H �

µ � D � � tNµ � X �
for N large enough.
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4. Well-approximable linear forms over L

Step 2: Now, we construct the Cantor set. First, we choose an increasing sequence� Mr �	� 	 such that
γ � lim

r � ∞

� ρMr logk
logψ � kMr � 	

and an N1 � � Mr � such that Lemma 4.7 holds for X � Imn. Let

TN1 � �
H � GN1

�

D � D � H �
D 	 tN1 �

knρN1

ψ � kN1 � � m � 1 � n 
This completes the first step in the construction of the Cantor set.

Let N2 � � Mr � be such that N2 � N1, such that Lemma 4.7 holds for every set in the
family TN1 — that is, every X � D � TN1 — and such that

�GN2 � D � � � k � mnρN2 µ � D � .
Let

TN2 � �

H � GN2 � TN1 �

�

D � D � H �
D 

The choice of N2 immediately implies that

tN2 �
knρN2

ψ � kN2 � � m � 1 � n tN1µ � D � �
knρN2 ψ

�
kN1 � mn

ψ � kN2 � � m � 1 � n tN1 
We repeat this construction to obtain

#GNr � D ��� k � mnρNr ψ
�
kNr � 1 � mn for D � TNr � 1 	 (4.7a)

ψ � kNr � � r � 1
∏
i � 1

�
ψ

�
kNi � kρNi � rn  (4.7b)

Also, we define
TNr � �

H � GNr � TNr � 1 �

�

D � D � H �
D 	 (4.7c)

tNr � ∑
H � GNr � TNr � 1 �

∑
D � D � H �

1 � k � mnρNr � k � ρNr

ψ � kNr � � � m � 1 � n
tNr � 1ψ

�
kNr � 1 � mn  (4.7d)

Calculating backwards, since by (4.7d) for any i �
	 ,

tNiψ
�
kNi � mn � � k � ρNi

ψ � kNi � � � n

tNi � 1ψ
�
kNi � 1 � mn 	

we get

tNr �
r

∏
i � 1

� k � ρNi

ψ � kNi � � � n

ψ
�
kNr � � mn  (4.8)

We define our Cantor set to be T∞ � � ∞
i � 1TNi . By (4.6), T∞ � Λ � ψ � .
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4.2. A lower bound on the Hausdorff dimension

Step 3: We now construct a probability measure on I mn with support on T∞. For
any r � 	 and any D � TNr , we define the auxiliary measure νr � D � � 1

tNr
, and extend

this measure in the natural way to the Borel σ-algebra of I mn (that is, letting it be
arbitrary with legal values on subsets of each D and zero on subsets of the complement
to TNr ).

This gives us a sequence of probability measures � νr � on I mn which correspond
to linear functionals on I mn. Hence, we obtain a sequence in the unit ball of the dual
space of I mn. This sequence is inside the unit ball in � I mn � � , since the measures are
probability measures. By Alaoglu’s Theorem (Theorem 2.5.2 in [48]), the unit ball in
the dual space is weakly compact, so this sequence has a weak � -limit point ν, which
itself corresponds to a probability measure. Clearly, this measure has its support on
T∞.

Step 4: The final part of the proof consists in proving that for any η � 0 and any
sufficiently small ��� � ∞-ball C � I mn with radius ρ � C � , we have ν � C � � ρ � C � s, where
s � � m � 1 � n � γn � η. By (4.7b) and (4.8), we can calculate νr � D � for D � TNr :

νr � D ��� 1
tNr

�
r

∏
i � 1

� k � ρNi

ψ � kNi � � n

ψ
�
kNr � mn

� k � ρNr nψ
�
kNr � � n ψ

�
kNr � nm

r � 1
∏
i � 1

� k � ρNi

ψ � kNi � � n

� k � ρNr nψ
�
kNr � � m � 1 � n � 1

r

� ψ
�
kNr � sr 	

where

sr � � nρNr logk � � � m � 1 � n � 1
r � logψ

�
kNr �

logψ � kNr � � � m � 1 � n � 1
r
� n

� ρNr logk
logψ � kNr � 

By choice of Nr, we see that limN � ∞ sr � � m � 1 � n � nγ. Hence, we can choose r such
that

ν � D � � ψ
�
kNr � s for any D � TNr  (4.9)

Now, let C be a ����� ∞-ball. To calculate the ν-measure of C, we must count the
number of D � TNr such that D � C for r large enough. We do this in the same way we
estimated tN initially. For k � ρNr

� ρ � C � , we take the maximal number of good balls H
in C and estimate the number

�D � H � � to get the total:

ν � C � � � ρ � C �
k � ρNr � mn � k � ρNr

ψ � kNr � � � m � 1 � n
ν � D ��

Otherwise, we only need to be concerned with the maximal number of D-sets inside
C, so

ν � C � � � ρ � C �
ψ � kNr � � � m � 1 � n

ν � D ��
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4. Well-approximable linear forms over L

Now, let C be so small that the r for which ψ
�
kNr � � ρ � C � � ψ

�
kNr � 1 � is so large

that (4.9) holds for r and r � 1. In the first case,

ν � C � �
tNr

tNr � 1
� ρ � C �

ψ � kNr � 1 � � mn

ν � D � �
1

tNr � 1
� ρ � C �

ψ � kNr � 1 � � mn

� ρ � C � mnψ
�
kNr � 1 � s � mn � ρ � C � s

by (4.9). In the second case (also by (4.9)),

ν � C � � ρ � C � � m � 1 � nψ
�
kNr � s � � m � 1 � n � ρ � C � s 

Hence, Frostman’s Lemma (Lemma 4.5) implies

dimHΛ � ψ � � s � � m � 1 � n � γn � η 
Since η � 0 was arbitrary, this completes the proof.

This lemma allows us to find a lower bound on the Hausdorff dimension of Sv. We
complete the proof of Theorem 4.1.

Proof of Theorem 4.1. We let ψ � N ��� N � v � 1. It is easy to see that

B � Rq;ψ ��� q � ∞ � �	� B �
q
� � v

∞
� Rq �� (4.10)

Indeed, let A � � Rq be such that �� A � A � �� ∞
� � q � � v � 1

∞ 
Then for some p � �	�

X � n we have by Proposition 1.6,� q � � v
∞ � � q � ∞

�� A � A � �� ∞ � �� qA � qA � �� ∞ � � qA � p � ∞ � � �
qA � � 	

so A � B �
q
� � v

∞
� Rq � . Hence, Λ � ψ � � Sv. We now calculate a lower bound for the Haus-

dorff dimension of Λ � ψ � .
We see, that

limsup
N � ∞

� ρN logk

log
� � kN � � v � 1 � � limsup

N � ∞

� � � 1 � m
n � N � logk� � v � 1 � N logk

� �
1 � m

n � 1
v � 1 

It follows from Lemma 4.6 that the lower bound is the right one. The upper bound was
calculated in Lemma 4.3. This completes the proof.

Remark. Theorem 4.1 implies the classical Jarník–Besicovitch Theorem (Theorem
1.3) for L , when we let m � n � 1. This theorem was announced with a sketched
proof in [33].
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5. Badly approximable linear forms
over L

In this chapter, we will be considering a notion complementary (in a certain informal
sense) to the well-approximable linear forms, discussed in Chapter 4 – namely the set
of badly approximable linear forms.

We will first define this set and prove that it’s Haar measure is zero. Also, we will
prove some auxiliary results, regarding the geometry of numbers in L . Secondly, we
will discuss the so-called � α 	 β � -games, which is the tool that allows us to calculate the
Hausdorff dimension of the set. Thirdly, we will prove that the set of badly approx-
imable linear forms has non-zero winning dimension. In the final section, we prove
that this implies that the Hausdorff dimension of the set of badly approximable linear
forms is full.

The one-dimensional analogue of the main theorem about the Hausdorff dimension
of the set of badly approximable real numbers was proved by Jarník in [24]. The
methods used here to calculate the Hausdorff dimension were developed by Schmidt
in [55] to prove the analogous real one-dimensional result along with other results in
number theory. Subsequently, he used the method to prove the real analogue of the
main theorem of this chapter in [56]. The results of this chapter are to appear in [34].

5.1. Definitions and preliminaries

Well-approximable linear forms are the matrices that infinitely often send points in the
integer lattice in their domain to points “close” to the integer lattice in the image of the
matrices. A converse notion to this one would be the set of linear forms such that all
points in the integer lattice of the domain have images bounded away from the integer
lattice in the image, for some appropriate notion of being bounded away. In precise
terms, the set we will be interested in in this chapter is the following.

Definition 5.1. The set of matrices,� � m 	 n ��� �
A � Lmn : � K � 0 	 � q � �	�

X � m 	 � � qA � � n � K� q � m
∞ � 	

is called the set of badly approximable elements in L mn.
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5. Badly approximable linear forms over L

We begin with a proof of the following consequence of Corollary 3.6:

Theorem 5.1.
µ � � � m 	 n � ��� 0 

Proof. Clearly,
� � m 	 n � is contained in the complementary set of

S � �
A � Lmn :

� �
qA � � � � q � � m 
 n

∞ for infinitely many q � �	�
X � m � 

Hence, it is sufficient to prove, that µ � S � � ∞. But this follows from Corollary 3.6,
since Lmn can be written as the disjoint union of translates of I .

With Theorem 5.1 in place, it is once again natural to enquire about the Hausdorff
dimension of the set

� � m 	 n � . We will prove the following:

Theorem 5.2.
dimH � � � m 	 n � ��� mn 

The proof of this is quite lengthy, and uses a variety of different methods. One of
these is an extension of parts of the theory known as the geometry of numbers to L .
For an extensive treatment on the geometry of numbers over the reals, see [14]. The
corresponding theory over L has been extensively developed by Mahler in [42]. Here,
we provide simple proofs of the results we will need in order to obtain the Hausdorff
dimension of

� � m 	 n � .
We consider the possible integer solutions to some inequalities defined by slightly

different matrices. Namely, we define for any A � Lmn the matrices
�

A � � A Im

In 0 � 	 �

A � � � AT In

Im 0 � 	
where Im and In denotes the m � m and n � n identity matrices respectively. Let A � j �
denote the j’th column of the matrix A. We note, that A � � � m 	 n � if and only if there
exists a K � 0 such that

max
1 � j � n

� ��� q � �

A � j �
��� � n � K

max1 � i � m � � qi ��� m (5.1)

for any q � �	�
X � m # n with q1 	    	 qm �� 0.

These matrix inequalities enable us to examine the situation in terms of paral-
lelepipeds in Lm # n. That is, sets of x � Lm # n defined by inequalities� � xA � i � � ci 	 A � L � m # n � 2 invertible, ci � 0 	 i � 1 	    	 m � n  (5.2)

Equivalently, we can define these sets in terms of distance functions

FA � x � : � max
1 � j � m # n

1
c j

����� m # n

∑
i � 1

xiai j

����� � 1  (5.3)

52



5.1. Definitions and preliminaries

We define for any λ � 0, the sets

PA � λ ��� �
x � Lm # n : FA � x � � λ � 

Clearly, PA � 1 � is the set defined by (5.2). Also, for λ � � λ, PA � λ � � � PA � λ � .
Definition 5.2. Let A � L � m # n � 2 . We define the j’th successive minimum λ j of FA as

λ j � inf
�
λ � 0 : PA � λ � contains j linearly independent a1 	    	 a j � �	�

X � m # n � 
First, we prove that if λi is the i’th successive minimum of FA then there exists

an ai � �	�
X � m # n such that FA � ai � � λi. Indeed, assume to the contrary that for any

ε � 0, ! x � Lm # n : FA � x � � λi � ε " does not contain i linearly independent points from�	�
X � m # n, but that ! x � Lm # n : FA � x � � λi

" does contain such points. By the pigeon
hole principle, for any ε � 0, there exists an ai � ���

X � m # n such that

ai � �
x � Lm # n : λi � ε � FA � x � � λi

� 
Letting ε tend to zero proves the claim.

We will need some bounds on these minima. Clearly,

λm # n � 1  (5.4)

Also, we have

Lemma 5.3. For any invertible A � L � m # n � 2 ,

λ1 � � � λm # n � 1 
Proof. Let ei � Lm # n, i � 1 	    	 m � n denote the i’th unit vector. There is a K � 0
such that

max
1 � i � m # n

FA � ei � � K
1

m � n 
Hence,

λ1 � � � λm # n � λm # n
m # n � � max

1 � i � m # n
FA � ei � � m # n � K 

Lemma 5.4. Let A � L � m # n � 2 be invertible and let λ1 	    	 λm # n denote the successive
minima of FA and let σ1 	    	 σm # n denote the successive minima of the function F �A
defined by

F �A � y � � sup
x

�� 0

� x � y �
FA � x � 

Then,
λmσn # 1 � 1 
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5. Badly approximable linear forms over L

Proof. We choose ai 	 a � j � �	�
X � m # n such that FA � ai ��� λi and F �A � a � j ��� σ j. By defini-

tion of F �A ,
FA � x � F �A � x � � � �� x � x � �� for any x 	 x � � Lm # n 

Hence, for any i 	 j � ! 1 	    	 m � n " ,

λiσ j �
�� ai � a � j �� 

We will prove that
�� am � a �n # 1

�� �� 0.
We consider the set

S � �
x � Lm # n : x � a � j � 0 	 j � 1 	    	 n � 1 � 

Clearly by the rank equation, this is an � m � 1 � -dimensional subspace, so by the pigeon
hole principle, there is an ai, i � ! 1 	    	 m " such that ai �� S. Hence, for appropriate
i � m, j � n � 1, we have

��� ai � a � j ��� �� 0. Now, λm � λi and σn # 1 � σ j, so

λmσn # 1 � λiσ j �
�� ai � a j

�� � 0 
Finally, since ai 	 a � j � �	�

X � m # n,
��� ai � a � j ��� � 1.

5.2.
�
α � β � -games

A useful tool for proving that a set has full Hausdorff dimension is the � α 	 β � -games.
We will define these in quite an abstract setting. Let Ω � L mn � ��# . We call Ω the
space of balls in L , where ω � � c 	 ρ � � Ω is said to have centre c and radius ρ. We
define the map φ from Ω to the subsets of L mn, assigning a closed ��� � ∞-ball to the
abstract one defined above. That is, for ω � � c 	 ρ � � Ω,

φ � ω ��� ! x � Lmn : � x � c � ∞ � ρ " 
Remark. Note, that we are now considering closed balls as opposed to the preceding
chapters, where all the balls, we considered, were open. The reason for this becomes
apparent in a moment. It should not cause much confusion.

Definition 5.3. Let B1 	 B2 � Ω. We say that B1 � B2 if ρ1 � d � c1 	 c2 � � ρ2.

Also, we define for every γ � � 0 	 1 � and B � Ω:

Bγ � �
B � � B : ρ � B � � � γρ � B � � 

We can now define the following game:

Definition 5.4. Let S � Lmn, and let α 	 β � � 0 	 1 � . Let Black and White be two players.
The � α 	 β;S � -game is played as follows:

54



5.2. � α 	 β � -games

� Black chooses a ball B1 � Ω.
� White chooses a ball W1 � Bα

1 � Ω.

� Black chooses a ball B2 � W β
1 � Ω.

� And so on ad infinitum.

In the end, we let B �i � φ � Bi � and W �i � φ � Wi � . If � ∞
i � 1 B �i ��� ∞

i � 1W �i � S, then White
wins the game. Otherwise Black wins the game.

Our game can be understood in the following way: Initially, Black chooses a closed
ball with radius ρ1. Then, White chooses a ball inside the first one with radius αρ1.
Now, Black chooses a ball inside the one chosen by White with radius βαρ1, and so
on. In the end, the intersection of these balls will be non-empty by a simple corollary
of Baire’s Category Theorem. White wins the game if this intersection is a subset of
S. Otherwise Black wins.

Note that because of the somewhat counter-intuitive metric on L mn, we might have
a situation where for instance � c 	 ρ � � Ω and � c � 	 αρ � � Ω maps to the same ball in L mn

under the map φ. Therefore, we need to keep track of the formal radii throughout the
following sections. Hence the distinction between Ω and the space of balls in L mn.

We will first be looking at the � α 	 β;S � -game from the point of view of White
player. We need to define strategies:

Definition 5.5. Let α � � 0 	 1 � and define for any n � 	 :

Fα
n � ! f : Ωn � Ω

�
f � B1 	    	 Bn � � Bα

n
" 

A sequence � fn � n � � where fi � Fα
n is said to be a strategy. A strategy � fn � is said to be� α 	 β;S � -winning if for any set of balls B1 	 B2 	    	 W1 	 W2 	    where

Bn � W β
n � 1 	 n � 2 	 3 	    (5.5a)

Wn � fn � B1 	    	 Bn ��	 n � 1 	 2 	    (5.5b)

we have that � ∞
i � 1 B �n � S.

The sets of particular interest to us, are sets S such that White can always win the� α 	 β;S � -game.

Definition 5.6. A set S � L is said to be � α 	 β � -winning if White can always win an� α 	 β;S � -game, or equivalently, if there exists an � α 	 β;S � -winning strategy. S is said to
be α-winning if S is � α 	 β � -winning for any β � � 0 	 1 � .

It is a fairly straightforward matter to see that if S is α-winning for some α and
α � � � 0 	 α � , then S is α � -winning.
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5. Badly approximable linear forms over L

Proposition 5.5. Let S � Lmn be α-winning for some α � � 0 	 1 � . Let α � � � 0 	 α � . Then
S is α � -winning.

Proof. First, let α, α � and S be as in the statement of the proposition. Let β � � 0 	 1 � be
arbitrary and let β� � αβ

α � . We will first prove that S is � α � 	 β � � -winning.
Let � hn � be an � α 	 β;S � -winning strategy. We will construct an � α � 	 β � ;S � -winning

strategy � fn � . Given B1 	    	 Bn � Ω, we let W̃n � h � B1 	    	 Bn � and take some ball
Wn � W̃ α � 
 α. We now define a strategy by fn � B1 	    	 Bn � � Wn. We claim that this
strategy is � α � 	 β � ;S � -winning.

Indeed, assume that (5.5a) and (5.5b) hold for α � and β � . We have

Bn � W β �
n � 1 � W̃

β � α �
α

n � 1 � W̃ β
n � 1 

Also, by construction
W̃n � h � B1 	    	 Bn ��

Since � hn � was an � α 	 β;S � -winning strategy, this implies that � iB �i � S. Hence, � fn �
is � α � 	 β � ;S � -winning.

To see that this implies the proposition, note that if β � � � 0 	 1 � and α � � α then
α � β �

α � � 0 	 1 � . Since S is α-winning, the above implies that S is α � -winning.

In the light of the above proposition, we make another definition.

Definition 5.7. Let S � Lmn and define S � � ! α � � 0 	 1 � : S is α-winning " . The win-
ning dimension of S is defined as

windimS � �
0 if S � � /0 	
supS � otherwise.

Our final tool in this long series of definitions is the concept of chains. Chains are
series of legal Black moves given a White strategy.

Definition 5.8. Let � fn � be an � α 	 β;S � -winning strategy. A sequence � Bi � i � � � Ω is
said to be an � fn � -chain if there exists a sequence � Wi � i � � such that we have (5.5a)
and (5.5b) from Definition 5.5. An ordered set � B1 	    	 Bk � � Ω is said to be a finite� fn � -chain if there exist � Bk # i � i � � � Ω such that � Bi � is an � fn � -chain.

From this point and onwards, we will not make the careful distinction between the
formal balls B � � c 	 ρ � � Ω and the images of these

B � � φ � B ��� ! A � Lmn : � A � c � ∞ � ρ " � Lmn 
However, we will take care to use the proper ρ from the formal representation in the
set notation of φ � B � . Bearing this in mind, there is no difference between the two
representations, and we are in fact considering the formal balls.
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5.3. The winning dimension of � � m 	 n �
5.3. The winning dimension of �

�
m � n �

In this section, we will prove that for appropriate α 	 β � � 0 	 1 � , White can always win
the � α 	 β;

� � m 	 n � � -game. In fact, we will prove:

Theorem 5.6. Let α 	 β � � 0 	 1 � be such that γ � k � 1 � αβ � � k � 1 � 1 � α � 0 and let
m 	 n � 	 . Then,

� � m 	 n � is � α 	 β � -winning.

Immediately, we have the following corollary to Theorem 5.6:

Corollary 5.7.
windim � � � m 	 n � � � 1

k # 1 
Proof. Note that

sup
�
α � � 0 	 1 � : k � 1 � αβ � � k � 1 � 1 � α � 0 � β � � 0 	 1 � � � 1

k # 1 
Now, the Corollary is immediate from Theorem 5.6.

For the rest of this section, let n 	 m � 	 be fixed and let α 	 β � � 0 	 1 � be such that
γ � k � 1 � αβ � � k � 1 � 1 � α � 0.

Now, we start the game. Black begins, so let B1 be the first ball, and let ρ � ρ � B1 � .
Furthermore, we let σ � 0 be such that for any A � B1, � A � ∞ � σ. The strategy, White
will be using, depends on a constant R � R0 � m 	 n 	 α 	 β 	 ρ 	 σ � � 1 to be chosen later. We
will also need constants

δ � R � m � m # n � 2 	 δ � � R � n � m # n � 2 	 λ � m
m � n

	 λ � � 1 
For i 	 j � 	 , we let Bk 	 Bh � Lmn be balls occurring in the � α 	 β � -game chosen by

Black such that ρ � Bk � � R � � m # n � � λ # i � and ρ � Bh � � R � � m # n � � λ � # j � . We will show that
White can play in such a way that the following properties hold for i 	 j � 	 :

(a) For A � Bk, there are no q � �	�
X � m # n such that

0 � max
1 � l � m

! � ql � " � δRn � λ # i � 	 (5.6a)

max
1 � l � � n

� ��� q � �

A � l � � ��� � � δR � m � λ # i ��� n  (5.6b)

(b) For A � Bh, there are no q � �	�
X � m # n such that

0 � max
1 � l � � n

! � ql � � " � δ � Rm � λ � # j � 	 (5.7a)

max
1 � l � m

� ���� q � �

A � � l �
���� � � δ � R � n � λ � # j ��� m  (5.7b)
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Such a strategy will be � α 	 β;
� � m 	 n � � -winning. Indeed, given a q � ���

X � m # n with
q1 	    	 qm �� 0, we can find an i � 	 such that

δRn � λ # i � 1 � � max
1 � l � m

! � ql � " � δRn � λ # i � 	 (5.8)

which immediately implies that (5.6a) holds. Hence by (5.6b),

max
1 � l � � n

� ��� q � �

A � l � � ��� � � δR � m � λ # i � � n 	
so by (5.8),

max
1 � l � � n

� ��� q � �

A � l � � ��� � n � δm # nR � mn � λ # i ��� n2 # mn � λ # i ��� mn

max1 � l � m ! � ql � " m

� δm # nR � n2 � mn

max1 � l � m ! � ql � " m

� K
max1 � l � m ! � ql � " m

for any K � � 0 	 δm # nR � n2 � mn � . By (5.1), we are done.
Now, we define for any i �
	 :

� Bki to be the first ball chosen by Black with ρ � Bki � � R � � m # n � � λ # i � .

� Bhi to be the first ball chosen by Black with ρ � Bhi � � R � � m # n � � λ � # i � .

Since λ � λ � , these balls occur such that Bk0 � Bh0 � Bk1 � Bh1 � � � � . By choosing R
large enough, we can ensure that the inclusions are proper.

Since
δRnλ � R � m � m # n � 2 # nm � m # n � � 1 � R � m � � m # n � 2 � n

m � n � � 1 	
(5.6a) has no solutions for i � 0. Hence, White can certainly play in such a way
that the system (5.6a) and (5.6b) has no solutions in �	�

X � m # n when A � Bk0 . We will
recursively construct White’s strategy in such a way that

1. Given the beginning of a game B1 � W1 � � � � � Bk0 � � � � � Bki such that (5.6a)
and (5.6b) have no integer solutions for any A � Bki , White can play in such a
way that (5.7a) and (5.7b) have no solutions in �	�

X � m # n for any A � Bhi .

2. Given the beginning of a game B1 � W1 � � � � � Bk0 � � � � � Bhi such that (5.7a)
and (5.7b) have no integer solutions for any A � Bhi , White can play in such a
way that (5.6a) and (5.6b) have no solutions in �	�

X � m # n for any A � Bki � 1 .

Our first lemma guarantees that we need only worry about solutions to the equa-
tions in certain subspaces of Lm # n.
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Lemma 5.8. Let B1 � W1 � � � � � Bki be the start of a game such that (5.6a) and (5.6b)
have no solutions in

�	�
X � m # n for any A � Bki . Let A � Bki be fixed. The set

�
q � �	�

X � m # n : (5.7a) and (5.7b) hold �

contains at most m linearly independent points.

Proof. Assume that q1 	    	 qm # 1 � �	�
X � m # n are linearly independent points such that

(5.7a) and (5.7b) hold. Clearly,� qu � ∞ � δ � Rm � λ � # i � for 1 � u � m � 1  (5.9)

Let Cki be the centre of Bki . For any A � Bki ,���� �

A � � v � � �

C � � v �
����

∞
� ρ � Bki � � R � � m # n � � λ # i � for 1 � v � n  (5.10)

Hence, there is an A � Bki such that (5.10) holds and such that (5.7b) holds for each
q1 	    	 qm # 1. Now,

max
1 � l � m

1 � u � m # 1

� ���� qu � �

C � � l �
���� � � max

1 � l � m
1 � u � m # 1

� ���� qu � �

A � � l �
���� 	 ���� qu � � �

C � � l � � �

A � � l � � ���� �
� max

�
δ � R � n � λ � # i ��� m 	 δ � Rm � λ � # i � R � � m # n � � λ # i � �

� δ � R � n � λ � # i � 
(5.11)

We define the parallelepipeds

P � �
y � Lm # n : max

1 � l � � n
! � yl � � " � Rm � λ � # i � 	 max

1 � l � m

� ���� y � �

C � � l �
���� � � R � n � λ � # i � � 	

with the corresponding distance function FC and successive minima σ1 	    	 σm # n. By
(5.11), σm # 1 � δ � . For n � 1, (5.4) and (5.11) imply that 1 � R � � m # 1 � 2 , which gives
a contradiction by choosing R large enough, so in this case we are done.

Now we assume that n � 1. Let

P � � �
x � Lm # n : max

1 � l � m
! � xl � " � Rn � λ � # i � 	 max

1 � l � � n

� ��� x � �

C � l � � ��� � � R � m � λ � # i � � 
This set admits the distance function F �C defined in Lemma 5.4. Indeed, if we insert FC

in the definition from Lemma 5.4 and calculate the value of the resulting function under
each of the possible assumptions of the form of FC, when the supremum is attained,
we get for each coordinate exactly the distance function for the set P � . One needs to
take into account the specific form of

�

C and
�

C � .
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Let τ1 	    	 τm # n denote the successive minima of F �C . By Lemma 5.3 and Lemma
5.4,

τ1 � � τ1 � � � τn � 1 � 1
n � 1 � � τn � � � τm # n � � 1

n � 1 � τ
� m � 1

n � 1
n

� σ
m � 1
n � 1
m # 1 � � δ � � m � 1

n � 1 � R � � m # n � 2 � m # 1 � � δR � � m # n � 2  (5.12)

Hence, there is a q � �	�
X � m # n � ! 0 " with

max
1 � l � m

! � ql � " � δR � � m # n � 2Rn � λ � # i �

and
max

1 � l � � n

� ���� q � �

C � � l
� � ���� � � δR � � m # n � 2R � m � λ � # i � 	

when we choose R large enough to absorb the implicit constant in (5.12). This gives a
contradiction, since a further modification of R yields a solution to (5.6a) and (5.6b).

In a completely analogous way, we can prove:

Lemma 5.9. Let B1 � W1 � � � � � Bhi be the start of a game such that (5.7a) and (5.7b)
have no solutions in

�	�
X � m # n for any A � Bhi . Let A � Bhi be fixed. The set
�
q � �	�

X � m # n : (5.6a) and (5.6b) hold �

contains at most n linearly independent points.

We will now reduce the statement that White has a strategy such that Step 1 on
page 58 is possible, to the statement that White can win a certain finite game. The
converse Step 2 is completely analogous.

Once again, we assume that B1 � W1 � � � � � Bki is the beginning of a game such
that we have avoided solutions in �	�

X � m # n to all relevant inequalities so far. Now, it is
sufficient for White to avoid solutions q � � �

X � m # n to (5.7a) and (5.7b) with

δ � Rm � λ � # i � 1 � � max
1 � l � � n

! � ql � � " � δ � Rm � λ � # i � 
Since all relevant q � �	�

X � mn are required to satisfy (5.7b), we need only consider the
situation

δ � Rm � λ � # i � 1 � � � q � ∞
� cδ � Rm � λ � # i � (5.13)

for some c � 0.
By Lemma 5.8, the set of q � �	�

X � m # n satisfying (5.7a) and (5.7b) is contained in
some m-dimensional subspace for any fixed A � Bki . Let ! y1 	    	 ym

" be an orthonor-
mal basis for this space and write all q � �	�

X � m # n in this subspace satisfying (5.13) on
the form q � t1y1 � � � � � tmym, t1 	    	 tm � L . Immediately,

δ � Rm � λ � # i � 1 � � max
1 � l � � m

! � tl � � " � cδ � Rm � λ � # i �  (5.14)
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White only needs to avoid solutions to the inequalities

max
1 � l � m

����� m

∑
l � � 1

tl � � yl � � �

A � � l � � ����� � δ � R � n � λ � # i ��� m 
This is a matrix inequality and Cramer’s Rule (Theorem 4.4 in [39]) yields a solution
set for v � 1 	    	 m,� tv ��� D � � � tvD � � mδ � R � n � λ � # i ��� m max

1 � l � � m

� �� Dl � � v �� � 	
where D denotes the determinant of the matrix with entries yl � �

A � � l � �
and Di � j denotes

the � i 	 j � ’th co-factor of this determinant. By (5.14), it is sufficient to avoid� D � � R � n � λ � # i � � m � m � λ � # i � max
1 � l � l � m

� �� Dl � l � �� � � R � � m # n � � λ � # i � max
1 � l � l � m

� �� Dl � l � �� � 
(5.15)

We define the following finite game:

Definition 5.9. Let y1 	    	 ym � Lm # n be a set of orthonormal vectors. Let B � Lmn be
a ball with ρ � B � � 1 such that for any A � B, � A � ∞ � σ. Let ψ 	 µ � 0 and let α 	 β be as
in the statement of Theorem 5.6. White and Black take turns according to the rules of
the game in Definition 5.4, but the game terminates when ρ � Bt � � µρ � B � . White wins
the game if � D � � ψρ � B � µ max

1 � l � l � m

� �� Dl � l � �� �
for any A � Bt .

If White can win the game in Definition 5.9 for any µ � � 0 	 µ � � for some appropriate
µ � � µ � � m 	 n 	 α 	 β 	 σ 	 ψ � � 0, then White can guarantee that (5.15) does not hold for
A � Bhi . To see this, let B � Bki , ψ be the constant implicit in (5.15) and

µ � R � � m # n � � λ � # i �

ρ � B � � � αβ � � 1R � n 
Choosing R large enough, this will be less than µ � . Inserting in the winning condition in
Definition 5.9 proves that White has a strategy such that solutions to 5.15 are avoided.
It remains to be shown that such a µ � exists. We will do this by induction.

Let A � Lmn, v � ! 1 	    	 m " and let � y1 	    	 ym � be the orthonormal system from
Definition 5.9. Taking all possible choices of numbers, 1 � i1

� � � � � iv � m and
1 � j1

� � � � � jv � m, we obtain
� m

v � 2 matrices���
� yi1 � �

A � � j1 � � � � yi1 � �

A � � jv �
... ...

yiv � �

A � � j1 � � � � yiv � �

A � � jv �

����
� (5.16)
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For each v � ! 1 	    	 m " , we define the function Mv : Lmn � L � m
v � 2

to have as it’s
coordinates the determinants of the matrices in (5.16) in some arbitrary but fixed order.
Furthermore, define

M � 1 � A ��� M0 � A ��� 1 
For K � Lmn, we define

Mv � K ��� max
A � K

� Mv � A � � ∞ 
We will prove the following complicated lemma.

Lemma 5.10. Let � y1 	    	 ym � � Lmn be an orthonormal system. Let B � L mn be a
ball, ρ � B � � ρ0

� 1, such that for some σ � 0, � A � ∞
� σ for any A � B. Let ψ � 0,

and let α 	 β � � 0 	 1 � with k � 1 � αβ � � k � 1 � 1 � α � 0. Assume that 0 � v � m.
There exists a µv � µv � m 	 n 	 α 	 β 	 σ 	 ψ � � 0 for which White can play the game in

Definition 5.9 in such a way that for the first ball B iv with ρ � Biv � � ρ0µv,� Mv � A � � ∞ � ψρ0µvMv � 1 � Biv �
for any A � Biv .

Note that this immediately implies:

Corollary 5.11. Let α 	 β � � 0 	 1 � with k � 1 � αβ � � k � 1 � 1 � α � 0. White can win the
game in Definition 5.9 and hence the � α 	 β � -game.

Proof. Use Lemma 5.10 with v � m.

Proof of Lemma 5.10. We will prove the lemma by induction. Clearly, the lemma
holds for v � 0. Hence, we may assume that v � 0 and that there exists a µv � 1 such
that � Mv � 1 � A ��� ∞ � ψρ0µv � 1Mv � 2 � Biv � 1 � (5.17)
for all A � Biv � 1 for an appropriate Biv � 1 occurring in the game. We will prove that
White has a strategy such that the lemma holds for some appropriate Biv . This will
require a number of lemmas.
Lemma 5.12. Let ε � 0 and let B � � Biv � 1 be a ball, ρ � B � � � εC1 � m 	 n � ρ � Biv � 1 � , where
C1 � m 	 n �	� 0 is to be fixed later. Then�� Mv � 1 � A � � Mv � 1 � A � � �� ∞

� ερ0µv � 1Mv � 2 � Biv � 1 �
for any A 	 A � � B � .
Proof of Lemma 5.12. Consider the norm of each coordinate of the vector on the left
hand side. These have the form�������� det

���
� yi1 � �

A � � j1 � � � � yi1 � �

A � � jv �
... ...

yiv � �

A � � j1 � � � � yiv � �

A � � jv �

����
� � det

���
� yi1 � �

A � � � j1 � � � � yi1 � �

A � � � jv �
... ...

yiv � �

A � � � j1 � � � � yiv � �

A � � � jv �
����
�

��������
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Expanding the determinants by the first row, we see that by Proposition 1.6, this ex-
pression is

� ���� yi1 � � � �

A � � j1 � � �

A � � � j1 � � � � � � � � �

A � � jv � � �

A � � � jv � � � ���� Mv � 2 � Biv � 1 �
� � yi1 � ∞ max

1 � h � v

� ���� �

A � � jv � � �

A � � � jv � ����
∞ � Mv � 2 � Biv � 1 �

� ερ � Biv � 1 � Mv � 2 � Biv � 1 � � ερ0Mv � 2 � Biv � 1 ��
By an appropriate choice of C1 � m 	 n � , this completes the proof.

Corollary 5.13. Assume that B � � Biv � 1 is a ball with ρ � B � � � 1
2C1 � m 	 n � ρ � Biv � 1 � . Then,�� Mv � 1 � A � � �� ∞ � 1

2Mv � 1 � B � �
for any A � � B � .
Proof of Corollary 5.13. Just apply Lemma 5.12 with ε � 1

2ψ. By induction hypo-
thesis (5.17) and this lemma, for any A 	 A � � B � ,� Mv � 1 � A � � ∞ � ψρ0µv � 1Mv � 2 � Biv � 1 �� 2ερ0µv � 1Mv � 2 � Biv � 1 �

� 1
2
�� Mv � 1 � A � � Mv � 1 � A � � �� ∞ 

Holding A fixed and maximising over A � , we obtain the result.

Now, we define the simplest co-factor,

Dv � A ��� det

���
� y1 � �

A � � 1 � � � � y1 � �

A � � v �
... ...

yv � �

A � � 1 � � � � yv � �

A � � v �

����
� 

Clearly, this is a function of the mv variables a11 	    	 am1 	    	 amv. We define the dis-
crete gradient of Dv to be the vector

∇Dv � A � � ��
� Dv � A � e11 � � Dv � A �

...
Dv � A � emn � � Dv � A ��	

� �
� � Lmn 	

where ei j � Lmn denotes the vector having 1 as the i j’th coordinate and 0 elsewhere.
Hence, ∇Dv � A � has at most mv non-zero coordinates.
Corollary 5.14. With ε and B � as in Lemma 5.12 and A � 	 A � � � B � ,�� ∇Dv � A � � � ∇Dv � A � � � �� ∞ � C2 � m 	 n � �� Mv � 1 � A � ��� Mv � 1 � A � � � �� ∞

for some C2 � m 	 n � .
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Proof. Note, that the coordinates of ∇Dv � A � are linear combinations of the coordinates
of Mv � 1 � A � for any A. Indeed, if we expand the determinants at each coordinate along
the column containing emn we obtain exactly this. Now, apply Lemma 5.12 and choose
C2 � m 	 n � as an upper bound on the coefficients from the linear combinations.

The discrete gradient turns out to be the key ingredient in the proof. We will need
the following lemma:

Lemma 5.15. Let B � � Biv � 1 be such that

ρ � B � � � 1
2ψC1 � m 	 n � ρ � Biv � 1 �� (5.18)

Let A � � B � be such that �� Mv � A � � �� ∞
� C3 � n 	 ψ � ψMv � 1 � B � ��	 (5.19)

where C3 � n 	 ψ � is to be chosen later. Furthermore, assume that

dv : � �� Mv � 1 � A � � �� ∞ �
�������� det

���
� y1 � �

A � � � 1 � � � � y1 � �

A � � � v � 1 �

...
...

yv � 1 � �

A � � � 1 � � � � yv � 1 � �

A � � � v � 1 �

����
�

�������� 
Then �� ∇Dv � A � � �� ∞ � C4 � m 	 n 	 σ � Mv � 1 � B � �
for some C4 � m 	 n 	 σ �	� 0.

Proof of Lemma 5.15. We will consider the norm of the discrete directional derivative
in the direction of a vector Z. Discrete directional derivatives are defined in a way
analogous to the discrete gradient. That is, for f : Lm # n � L and Z � Lm # n, we define
the discrete directional derivative of f along Z to be

∇Z f � A ��� f � A � Z � � f � A ��
For Z � Lm # n, we consider � ∇ZDv � A � � . This may be written�����������

det

������
�

y1 � �

A � � � 1 � � � � y1 � � �

A � � � v � � Z �
... ...

yv � �

A � � � 1 � � � � yv � � �

A � � � v � � Z �
� �����
� � det

���
� y1 � �

A � � � 1 � � � � y1 � �

A � � � v �
... ...

yv � �

A � � � 1 � � � � yv � �

A � � � v �
����
�

�����������
which is equal to � � d1y1 � � � � � dvyv � � Z � by expanding the two determinants in the
last column. The di are coordinates of Mvi � 1 � A � � .
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Let Z1 � d �1y1 � � � � � d �vyv, where d �i � di for i � 1 	    	 v � 1 and d �v � Xdv. Or-

thonormality of the yi implies,

� ∇Z1Dv � A � � � ����� v

∑
i � 1

d �i2
����� � k2 � dv � 2 � k2 �� Mv � 1 � A � � �� 2

∞ � k2

4 Mv � 1 � B � � 2

by Corollary 5.13. The second equality is true since for all i � 1 	    	 v � 1, we have� d �i � � � d �v � . Hence, the function Dv grows rather rapidly in the direction of Z1. Unfor-

tunately, we cannot guarantee that
�

A � � � v � � Z1 is on the required form. That is, it may
not be on the form � v1 	    	 vm 	 0 	    	 1 	 0 	    	 0 � . It needs to have this form in order to
correspond to an element Z � � Lmn, so further work is needed to obtain an estimate on
the discrete gradient.

We now write
yi � y0

i � λi1
�

A � � � 1 � � � � � � λin

�

A � � � n � 	
where y0

i has zeros on the last n coordinates. This is possible because of the form of

the
�

A � � � i � . Since the yi are orthonormal,
n

∑
j � 1

�� λi j

�� 2 � 1 	 �� y0
i

��
∞ � C4 � m 	 n 	 σ �

for some C4 � m 	 n 	 σ � � 0. Now, let Z2 � d �1y0
1 � � � � � d �vy0

v . Certainly,
�

A � � � v � � Z2 is on
the right form. Furthermore,� ∇Z2Dv � A ��� � � � d1y1 � � � � � dvyv � � Z2 �� � � d1y1 � � � � � dvyv � � � Z2 � Z1 � Z1 � �

� k2

4 Mv � 1 � K � � 2 � � � d1y1 � � � � � dvyv ����� Z1 � Z2 ��� 
We know that

Z1 � Z2 � v

∑
j � 1

� v

∑
i � 1

d �iλi j � �

A � � � j � 
Furthermore,���� � d1y1 � � � � � dvyv ��� �

A � � � v � ���� �
�������� det

���
� y1 � �

A � � � 1 � � � � y1 � �

A � � � v �
... ...

yv � �

A � � � 1 � � � � yv � �

A � � � v �
����
�

��������� �� Mv � A � � �� ∞
� C3 � n 	 ψ � ψMv � 1 � B � �

by choice of A � .
Now, � d �i � � kMv � 1 � B � � , so� ∇Z2Dv � A � � � k2

4 Mv � 1 � B � � 2 � kv2C3 � n 	 ψ � ψMv � 1 � B � � 2 
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5. Badly approximable linear forms over L

We now choose C3 � n 	 ψ � so small that� ∇Z2Dv � A � � � C5 � n � Mv � 1 � B � � 2 	
for some C5 � n � � 0. Since � Z2 � ∞ � kMv � 1 � B � � , this implies that the discrete direc-
tional derivative is large enough in this direction. But surely, the norm of the dis-
crete gradient is larger than norm of the discrete directional derivative ∇ZDv � A � along
any vector Z of magnitude one. Indeed, if we write a vector of magnitude one as
Z � � z1 	    	 zm # n � , we see that � zi � � 1 for all i. This implies that the gradient has
greater norm, because of the special form of D � A � . This proves the lemma.

With all of the above in place, we can complete the proof of Lemma 5.10. We let

γ � k � 1 � αβ � � k � 1 � 1 � α � 0 	 ε � γ
8

C4 � m 	 n 	 σ �
C2 � m 	 n � � 0 

Furthermore, we let

jv � min
�
i � 	 : i � iv � 1 	 ρ � Bi � � min � 1

2ψ 	 ε � C1 � m 	 n � ρ � Biv � 1 � �  (5.20)

Clearly,
ρ � B jv � � C6 � m 	 n 	 α 	 β 	 σ 	 ψ � ρ0 (5.21)

for an appropriate constant C6 � m 	 n 	 α 	 β 	 σ 	 ψ � � 0.
By induction hypothesis and Corollary 5.14, for any A � 	 A � � � B jv ,�� ∇Dv � A � � � ∇Dv � A � � � �� ∞

� C2 � m 	 n � ερ0µv � 1Mv � 2 � Biv � 1 �� γ
8C4 � m 	 n 	 σ � Mv � 1 � B jv ��

We now let

µv
� min

�
C3 � n 	 ψ ��	 γ

8αβC6 � m 	 n 	 α 	 β 	 σ 	 ψ ��	 1
ψ

γ
4C4 � m 	 n 	 σ � C6 � m 	 n 	 α 	 β 	 σ 	 ψ � �

C7 � m 	 n 	 σ � 	
where C7 � m 	 n 	 σ � � 0 is to be chosen later. Assume that there exists an A � � B jv for
which the lemma does not hold. That is,�� Mv � A � � �� ∞ � ψρ0µvMv � 1 � B jv �� (5.22)

In this case, we will prove that White has a strategy which will eliminate such elements
in a finite number of moves.

By choice of jv, (5.18) holds. Since ρ0
� 1, (5.19) holds. By rearranging the yi, we

can without loss of generality assume that the condition on the determinant in Lemma
5.15 holds. Hence, �� ∇Dv � A � � �� ∞ � C4 � m 	 n 	 σ � Mv � 1 � B jv �� (5.23)
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Let D � � ∇Dv � A � � , and let di and ci denote the centres of Wi and Bi respectively.

White can play in such a way that�� � ci � di ��� D � �� � k � 1 � 1 � α � ρ � Bi � �� D � �� ∞  (5.24)

Indeed, White may certainly choose di such that � ci � di � ∞ � k � 1 � 1 � α � ρ � Bi � . By
Proposition 1.5, we have Wi � Bi for such di, so the choice is allowed. Examining each
coordinate, we see that in fact White may choose di such that for any j � ! 1 	    	 mn " ,
we have

��� c � j �i � d � j �i

��� � k � 1 � 1 � α � ρ � Bi � . Now, for any j � ! 1 	    	 mn " ,

k � 1 � 1 � α � ρ � Bi � �� D � �� ∞ � ��� c � j �i � d � j �i

��� �� D � �� ∞ � ��� �
c � j �i � d � j �i � D � ���

∞

Since this is valid for any j, it guarantees (5.24).
Also, no matter how Black plays�� � ci # 1 � di ��� D � �� � � 1 � β � ρ � Wi � �� D � �� ∞ 	 (5.25)

since � � ci # 1 � di � � D � � � � ci # 1 � di � ∞ � D � � ∞ by Proposition 1.6 and since Bi # 1 � Wi

implies that � ci # 1 � di � ∞ � � 1 � β � ρ � Wi � . Hence,�� � ci # 1 � ci � � D � �� � �
k � 1 � 1 � α � � α � 1 � β � � ρ � Bi � �� D � �� ∞ � γρ � Bi � �� D � �� ∞ � 0 

We choose t0 � 	 such that αβ γ
2
� � αβ � t0 � γ

2 . Clearly,�� � ci # t0 � ci � � D � �� � γρ � Bi � �� D � �� ∞ � 0  (5.26)

Since furthermore ρ � Bi # t0 � � γ
2ρ � Bi � , for any A � Bi # t0 ,�� � A � ci � � D � �� � �� � A � ci # t0 ��� D � �� � �� � ci # t0 � ci � � D � �� � γ

2ρ � Bi � �� D � �� ∞  (5.27)

White will play according to such a strategy.
A simple calculation shows that for any A � L mn,

A � ∇Dv � A ��� v

∑
h � 1

Dv � A ��
Indeed, in calculating the inner product on the right hand side, each coordinate ai j of A
contributes with a factor that the sum of v copies of the appropriate cofactor of Dv � A �
times ai j times a sign. This is revealed by expanding the determinants in the right
column. The sign is the right one in the expansion of Dv � A � , so this proves the claim.
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Now, repeated use of the ultra-metric property (1.5c) yields:� Dv � A � � � C7 � m 	 n 	 σ � �� Dv � A � c jv � ��
� C7 � m 	 n 	 σ � ����� v

∑
h � 1

Dv � A � c jv � ������ C7 � m 	 n 	 σ � �� � A � c jv � � ∇Dv � A � c jv � ��
� C7 � m 	 n 	 σ � � �� � A � c jv � � D� ��� �� � A � c jv � � � ∇Dv � A � c jv ��� ∇Dv � A � � � �� �
� C7 � m 	 n 	 σ � � γ

2ρ � B jv � �� D � �� ∞ � 2ρ � B jv � γ
8C4 � m 	 n 	 σ � Mv � 1 � B jv � �

� C7 � m 	 n 	 σ � � γ
2ρ � B jv � C4 � m 	 n 	 σ � Mv � 1 � B jv �� γ

4ρ � B jv � C4 � m 	 n 	 σ � Mv � 1 � B jv � �
� ψµvρ0Mv � 1 � B jv ��	

where C7 � m 	 n 	 σ � � 0 is chosen such that the first inequality holds (which is clearly
possible). This completes the proof of Lemma 5.10 and hence the proof of Theorem
5.6.

5.4. The Hausdorff dimension of �
�
m � n �

In this final section of the chapter, we will prove that if α � 0 then any α-winning set in
Lmn has full Hausdorff dimension. By Corollary 5.7, this will imply Theorem 5.2. To
do this, we change our viewpoint to that of Black player. We will need one additional
definition:

Definition 5.10. Let S � Lmn be � α 	 β � -winning and let � fn � be a winning strategy. Let� En � n � � be a sequence of balls in Lmn and t � 	 . � En � is said to be a t- � fn � -chain if
there exists an � fn � -chain with Ei � B � i � 1 � t # 1.

We now state a rather lengthy hypothesis, which is the basis of the following three
results:

Hypothesis 5.1. Let α 	 β � � 0 	 1 � . Assume that there exist t 	 u � 	 such that: Given
h1 	    	 ht , hi � Fα

i and a ball C1 � L , there exist g � 0 � 	    	 g � u � 1 � � Fβ
1 , such that for

C � j �
2 	    	 C � j �

t # 1 and D � j �
1 	    	 D � j �

t defined for j � 0 	    	 u � 1 recursively by the relations

C � j �
i � g � j �

�
D � j �

i � 1 � 	 i � 2 	    	 t � 1 	 (5.28a)

D � j �
i � hi

�
C1 	 C � j �

2 	    	 C � j �
i � 	 i � 1 	    	 t 	 (5.28b)

we have that C � j �
t # 1 � C � k �

t # 1 � /0 for j �� k.
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Roughly speaking, this hypothesis says that if Black knows the strategy of White,

she can choose a strategy such that after t moves, the game is in one of u entirely
different states.

Lemma 5.16. Under Hypothesis 5.1, if E1 	    	 Ek is a t- � fn � -chain, there exist pair-

wise disjoint E � 0 �
k # 1 	    	 E � u � 1 �

k # 1 , such that E1 	    	 Ek 	 E � i �
k # 1 is a t- � fn � -chain for every

i � 0 	    	 u � 1.

Proof. Let B1 	    	 B � k � 1 � t # 1 be an � fn � -chain with Ei � B � i � 1 � t # 1. We define functions
hi, i � 1 	    	 t by

hi � C1 	    	 Ci ��� f � k � 1 � t # i

�
B1 	    	 B � k � 1 � t 	 C1 	    	 Ci � 

Let C1 � Ek � B � k � 1 � t # 1 and define E � j �
k # 1 � C � j �

t # 1, where the C � j �
t # 1 are the ones from

Hypothesis 5.1. These fulfil the requirements of the lemma. Indeed, the sets form a
finite � fn � -chain for each i � 0 	    	 u � 1„ since the equations (5.28a) and (5.28b) are
fulfilled, and hence (5.5a) and (5.5b) are fulfilled. By Hypothesis 5.1, the last sets are
disjoint.

Lemma 5.17. Under Hypothesis 5.1, there exist balls C1 � i1 ��	 C2 � i1 	 i2 ��	    for any
choice of i j � ! 0 	    	 u � 1 " , j � 	 , such that for each sequence � i j � , the corresponding
sets C1 � i1 ��	 C2 � i1 	 i2 ��	    form a t- � fn � -chain.

Furthermore, for any k � 	 , the uk balls Ck � i1 	    	 ik � corresponding to different
choices of � i1 	    	 ik � are pairwise disjoint and have radii � αβ � kt .

Proof. Let C1 � i1 � be u disjoint balls of radius � αβ � t . Obviously, these are finite � fn � -
chains, so the next u2 balls can be chosen using Lemma 5.16. In this way, we continue
to obtain the disjoint balls at each step of the t- � fn � -chain. By the construction of
Lemma 5.16, these balls will have the required radii, so they fulfil the requirements of
the lemma.

These lemmas allows us to prove a theorem giving a lower bound on the Hausdorff
dimension of � α 	 β � -winning sets.

Theorem 5.18. Under Hypothesis 5.1, if S � L mn is an � α 	 β � -winning set, then

dimH � S �	� logu�
t logαβ

� 
Proof. Let Λ � ! 0 	    	 u � 1 " � and let � i j � � Λ. Clearly, � ∞

j � 1C j � i1 	    	 i j � � ! x " �! x � λ � " � S. We define
S � � �

λ � Λ
! x � λ � " � S 

We define a surjective function (possibly multi-valued) f : S � � � 0 	 1 � by

x �� y � 0 	 i1i2    where x � x � i1 	 i2 	    �
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5. Badly approximable linear forms over L

where we have scaled everything by u, so that f is actually onto � 0 	 1 � . We extend this
function to all subsets of L mn in the following way: For T � S � , let f � T � � � x � T f � x � .
For R � Lmn, let f � R ��� f � R � S � � .

Let C � � Bl � l � � be a cover of S with balls, where Bl has radius ρl. Clearly, the fam-
ily C � � � Bl � S � � l � � is a cover of S � , whence f � C � ��� � f � Bl � S � � � l � � � � f � Bl � � l � �
is a cover of � 0 	 1 � . Thus, the union of the sets f � Bl � has outer Lebesgue measure µ
greater than 1, so by sub-additivity

∞

∑
l � 1

µ � f � Bl � �	� 1  (5.29)

Now, let
jl � �

log2ρl

t logαβ � 
For ρl sufficiently small, we have that jl � 0 and ρl

� � αβ � t jl . Hence, by the Propos-
ition 1.5, Bl is contained in at most one ball of the form C jl � i1 	    	 i jl � from Lemma
5.17. But such a ball clearly maps into an interval of length u � jl , since the image of
the ball is consists of all numbers of the form 0 	 i1 � � � i jv

� in base u, where � denotes
any sequence of elements in ! 0 	    	 u � 1 " . Hence, µ � f � Bl � � � u � jl . By (5.29), we
have

1 � ∞

∑
l � 1

µ � f � Bl � � � ∞

∑
l � 1

u � jl � ∞

∑
l � 1

u
� �

log2ρl
t logαβ � � 2

logu
� t logαβ �

∞

∑
l � 1

ρ
logu

� t logαβ �
l 

Now, for any such cover C of S with small enough balls, the s-length ls � C � is strictly
positive for s � logu

� t logαβ � . This implies that H s � ε � S �	� 0 for any ε � 0, so

dimH � S �	� logu�
t logαβ

� 
Theorem 5.18 allows us to prove that dimH � � � m 	 n � � � mn. First, we have a co-

rollary:

Corollary 5.19. Let β � � 0 	 1 � and let N � β � � 	 be such that for any ball B � Ω, φ � Bβ �
contains N � β � pairwise disjoint balls. Let S � L be � α 	 β � -winning. Then

dimH � S � � log � N � β � ��
logαβ

� 
Proof. This is just Theorem 5.18 with t � 1 and u � N � β � .

We can now complete the proof of Theorem 5.2:
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5.4. The Hausdorff dimension of � � m 	 n �
Proof of Theorem 5.2. By Corollary 5.19, we need only estimate the number N � β �
to get a lower bound for the Hausdorff dimension. This is a simple combinatorial
problem. By scaling and translation, we note that it suffices to consider the ��� � ∞-ball
B � 0 	 1 ��� Imn.

We choose the number i � � such that ki � 1 � β � ki and consider the family of
balls B � c 	 β � � Imn where c � X i # 1 �	� X � mn. By choice of i and Proposition 1.5, these
are clearly disjoint. Furthermore, counting these balls we see that

N � β ��� �
k � i � 1 � mn � 1

kmn

1� ki � mn �
1

βmn 
Hence, by Corollary 5.19,

dimH � � � m 	 n � � � mn
�
logβ

��
logα

� � �
logβ

� � � � �
β � 0

mn 
This completes the proof.

Remark. Note, that for m � n � 1, this is an analogue of Jarník’s Theorem (Theorem
1.4) in L . This result was announced in [33] with a sketch of the proof. The Theorem
given here is an analogue of Schmidt’s Theorem on badly approximable linear forms,
as mentioned in the beginning of this chapter.
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6. Further research problems

The results of this first part of the thesis contributes to the development of a field
previously neglected to a large extent. However, they only form a basis of a potentially
larger body of knowledge concerning metrical Diophantine approximation over L . It
is the purpose of this chapter to state problems that could form a basis for further
research in this field.

6.1. Continued fractions

In Chapter 1, we discussed among other thing the continued fractions algorithm. It
was mentioned that the algorithm works over L , and that most previous results in
Diophantine approximation over L are related to this algorithm. In Chapter 2, we
discussed another type of expansion of real elements in L , and we obtained a number
of metrical results on the coefficients of this expansion. A natural question would be:
Is it possible to obtain similar results for the coefficients of the continued fractions
expansion?

This question can be further motivated by the analogous question in the reals. In
this setting, a lot of estimates have been found, and the methods used to obtain these
results were quite similar to the ones we used in Chapter 2. Defining maps T : � 0 	 1 � �� 0 	 1 � and a : � 0 	 1 � � 	 by

T � x ��� � � 1
x
� for x �� 0 	

0 for x � 0 	 a � x ��� �
� 1x � for x �� 0 	
∞ for x � 0 

Now, the partial coefficients an of the continued fractions expansion of any number
x � � 0 	 1 � are easily seen to be an � x � � a � T n � 1 � x � � . So far, so good. This also works
for I � L , where it is just an easy consequence of Artin’s algorithm (see Section 1.4).

This is where the trouble starts, because unlike the Lüroth expansions, the coef-
ficients of the continued fractions expansion are not independent and identically dis-
tributed with respect to the Lebesgue measure (or the Haar measure in the L-case).
However, in the real case, it has been shown (see for example [10]) that T is ergodic
with respect to the Gauss measure ν defined by

ν � A ��� 1
log2

�
A

1
1 � x

dx for A � B � � 0 	 1 � �� (6.1)
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Birkhoff’s Ergodic Theorem (Theorem 1.3 in [10]) now allows us to derive results of
the type given in Chapter 2 for Lüroth expansions. For instance,

lim
i � ∞

� a1 � x �    ai � x � � 1 
 i � ∞

∏
j � 1

� 1 � 1
j2 � 2 j � log j 
 log2 

To derive subsequence results, one would have to use subsequence ergodic theory —
for instance by using Proposition 4 in [43]. This would impose additional restrictions
on the permissible subsequences.

In L , much less is known. In three notes ([45], [46], [47]), Paysant-Leroux and
Dubois study the Jacobi–Perron algorithm in L . This is a multidimensional analogue
of the continued fractions algorithm, and hence, results about this algorithm implies
results about the continued fractions algorithm.

Paysant-Leroux and Dubois introduce (in [47]) a dynamical system, which can be
used to calculate the partial coefficients of this algorithm. Also, they prove that there
exists a measure ν for which this system is ergodic, and that this measure is absolutely
continuous with respect to the Haar measure. Hence, by the Radon–Nikodym Theorem
(Theorem 6.5.4 in [48]), it is possible to express this measure as ν ��� f dµ for some
Borel function f . However, a closed form of f is not given, and this author has so far
been unable to find one. Finding such a function would immediately put all the tools
from ergodic theory at our disposal.

6.2. Algebraic elements

In the Chapter 4, we were examining approximation of real elements by rational ele-
ments. In particular, we were looking at the sets of real elements that were well-
approximable by rationals. Another large area of research is concerned with approx-
imating real elements with algebraic elements of degree n �
	 . That is, elements that
are roots in polynomials of degree n with integer coefficients.

We define the following:

An � ! y � L : P � y ��� 0 for some polynomial P � �	�
X � �Y � 	 degP � n " 

Here, �	� X � �Y � denotes the ring of polynomials in Y with coefficients from �	�
X � . It can

be shown that for each element a in the set An, there exists a primitive polynomial
Pa � cnXn � � � � c1X � C0 with a as a root. Define the height H � a � of a � An to be the
unique number

H � a ��� H � Pa � : � max
1 � i � n

� ci ��
Let ψ : 	 � � # be a decreasing function. We define the sets

Kn � ψ ��� ! x � L : � x � a � � ψ � H � a � � for infinitely many a � An
" 
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Sprindžuk examined this set, as well as the analogous real and p-adic sets in [59]
for a special ψ. He showed that for λ � 1 and ψ � N � � N � � n # 1 � λ, the Haar measure
(Lebesgue measure in the real case) of Kn � ψ � is zero.

In Chapter 3, we proved a similar result, and proceeded to calculate the Hausdorff
dimension of the sets. This has been done in the real case by Baker and Schmidt ([5])
for the same function ψ, but no result exists for L .

Also, we have results for arbitrary functions ψ over the reals. In particular, if
∑∞

m � 1 mnψ � m � � ∞, Beresnevich showed ([6]) that the measure of Kn � ψ � is zero. He
also proved that the measure is full whenever the series diverges. Jarník calculated
the Hausdorff measure of this set in the case when n � 1 ([26]), and recently Bugeaud
extended this result to arbitrary n � 	 ([12]). Clearly, a calculation of the Hausdorff
measure yields the Hausdorff dimension.

None of these results have analogues in L , but it seems reasonable to conjecture
that similar results hold.

6.3. Inhomogeneous linear forms

This final research proposal is somewhat more ambitious than the previous ones. In-
deed, the obvious way to start looking for a solution involves extending deep theory
from various parts of mathematics to L , which at least the present author has no idea
of how to go about, save sheer will, determination and effort.

The problem itself looks innocent enough. We have already seen that the set of
badly approximable linear forms in Lmn has full Hausdorff dimension (Theorem 5.2).
How about affine forms? We first define the space of these. For any set of points� A 	 b ��� Lmn � Ln, we obtain an affine function q �� qA � b, q � �	�

X � m. An affine
form is badly approximable if

liminf
p ����� X � n
q ����� X � n�
q
�

∞ � ∞

� qA � b � p � n
∞ � q � m

∞ � 0 
For b � 0, this is equivalent to Definition 5.1. The property is defined analogously for
the reals.

We make another definition. Let h � 	 . A set E � � h is said to be thick if for
any open subset W � � h , dimH � W � E � � dimH � E � . Clearly, this implies full Haus-
dorff dimension of E. In fact, it implies full Hausdorff dimension at any point in � h .
Since thickness is defined solely in terms of Hausdorff dimension, the notion extends
naturally to Lh.

Kleinbock examined the set of badly approximable affine forms in [30], where he
proved that the set is thick. This leads to the question of whether or not the same is
true for L . The obvious way of proving this would be to extend Kleinbock’s method
to L . However, Kleinbock uses methods involving flows on real Lie groups, and the
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corresponding tools would be very difficult to extend to L . It might be possible, but it
would surely be a lot of work.
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Part II.

Gaussian approximation in
ergodic theory
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7. Introduction

In this part of the thesis, we discuss Gaussian approximation in ergodic theory. We
begin with a discussion of the setting itself. An important element in the discussion
is the links between probability theory and ergodic theory. In particular, we will em-
phasise the possible uses of Gaussian random variables in ergodic theory and some of
the possible forms of the Central Limit Theorem in the setting of ergodic theory. The
aim of this discussion is to clarify the topic of this part of the thesis.

Following this preliminary discussion, we will discuss the several approaches to
Gaussian approximation in ergodic theory. We will discuss the methods in turn. Along
the way, we will also give some results obtained by these methods. In most cases, we
spare the reader a number of technical details of the proofs of the results. The full
details are given in cited papers. The only cases where we do in fact complete the
proofs are the ones where the original paper left some doubt — at least in the mind of
the present author — as to the validity of the method.

We begin with some results relating to sequences of random variables, that are
not independent, but which do fulfil the Central Limit Theorem. Namely lacunary
trigonometric series. Here, we will discuss two different approaches to the problem.
One is solely related to the Central Limit Theorem, and the other to the more general
setting of Gaussian approximation.

The first approach related directly to dynamical systems involves spectral theory.
This method forms the basis of a large number of the previous results in the field. Here,
one construct functions such that the appropriate form of the Central Limit Theorem
is fulfilled by it’s partial sums solely by considering the Fourier coefficients of the
function. This gives good control over the moments and correlations of the partial
sums, and since Fourier series are trigonometric, the results in the preceding section
can be applied to this setting. However, only a limited number of dynamical systems
may be examined in this way.

In Section 7.4, we will discuss one way of moving from the limited number of
possible systems that can be treated by the method from spectral theory to more general
systems. This construction involves the so-called Rokhlin towers, which is a classical
construction in ergodic theory.

Using Rokhlin towers, it is possible to obtain more general results than the ones
obtained solely by spectral theory. We introduce some fundamental tools in Section
7.5, which we will need in Chapter 8.
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7. Introduction

7.1. The Central Limit Theorem and Gaussian
random variables

We will begin with a brief discussion on the similarities between ergodic theory and
the theory of independent and identically distributed random variables. We state two
classical theorems from each setting.

Theorem 7.1 (Birkhoff’s Ergodic Theorem). Let � X 	 B 	 µ � be a probability space, let
T : X � X be an ergodic measure preserving transformation and let f � L1 � X 	 B 	 µ � .

lim
m � ∞

∑m � 1
j � 0 f � T jx �

m
� �

f dµ a  e 
Theorem 7.2 (The Strong Law of Large Numbers). Let � Xj � ∞

j � 0 be a sequence of
independent and identically distributed random variables on some probability space� X 	 B 	 µ � .

lim
m � ∞

∑m � 1
j � 0 X j

m
� � � X0 � a  e 

We note that even though we do not necessarily have independence in the ergodic
case, the Strong Law of Large Numbers does indeed hold for the sequence of random
variables � f � T j � ∞

j � 0 in an ergodic system for any L1-function f . This poses the nat-
ural question: Do other classical results from probability theory transfer to (ergodic)
dynamical systems?

The probabilistic theorem, we are especially interested in, is the Central Limit
Theorem. We state the following form:

Theorem 7.3 (The Central Limit Theorem). Let � Xj � ∞
j � 0 be a sequence of independ-

ent and identically distributed random variables on some probability space � X 	 B 	 µ �
with � � X0 ��� 0, σ2 � � �

X2
0 � � ∞.

∑m � 1
j � 0 X j

σ
�

m
D� � N � 0 	 1 ��	

where the convergence is in distribution as m tends to infinity and N � 0 	 1 � denotes the
standard normal (Gaussian) distribution.

A related theorem is the Almost Sure Central Limit Theorem:

Theorem 7.4 (The Almost Sure Central Limit Theorem). Let � Xj � ∞
j � 1 be a sequence

of independent and identically distributed random variables on some probability space� X 	 B 	 µ � with � � X1 ��� 0, σ2 � � �
X2

1 � � 1. Let Sm � X1 � � � � � Xm. Then

1
logm

m

∑
j � 1

1
j
δ �

S j 
 �
j �

D����� �
m � ∞

N � 0 	 1 � a  s 
where δz is the Dirac point-measure at the point z.
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7.2. Lacunary trigonometric series

Whereas the Central Limit Theorem is a theorem about the overall Gaussian be-
haviour of random variables, the Almost Sure Central Limit Theorem is about the
Gaussian behaviour of the orbits of points in the space on which the random variables
are defined.

We do not prove these theorems for random variables. It is sufficient for the pur-
poses of this thesis to make the reader aware of their existence and validity. What we
are interested in, is the analogous results in measure preserving systems.

Throughout this part of the thesis, we will denote the distribution function of the
standard normal distribution by Φ � u � .

A few questions are natural following Theorem 7.3. First of all, can the independ-
ence condition be weakened or omitted? This question has been extensively examined
by Philipp and Stout ([51]), who developed a method allowing them to make conclu-
sions of this form for a number of sequences of random variables in terms of Brownian
motions. The results obtained by Philipp and Stout concerns a number of specific
cases of dependent random variables for which these results hold. Another question
along the same lines would be to ask, whether or not similar results hold in dynamical
systems, and if so, what conditions are needed on the dynamical system (ergodicity,
mixing, aperiodicity etc.).

7.2. Lacunary trigonometric series

One of the first interesting papers in the context of Gaussian approximation and the
Central Limit Theorem for non-independent random variables is a paper in two parts
by Salem and Zygmund ([53], [54]). In this paper, the authors consider the particular
random variables on the unit interval � � � 0 	 1 � which are trigonometric series:

Yk � ak cos2πlkx � bk sin2πlkx 	 where k �
	  (7.1)

Not surprisingly, some assumptions on the sequences involved are needed in order to
prove the Central Limit Theorem for these random variables. In particular, the case
that Salem and Zygmund examined was the case where the sequence � li � is lacunary.

The partial sums of the functions in (7.1) are Fourier series, and hence they cover
quite a lot of territory. This is the reason why their theorem has been used a lot in the
subsequent work on the Central Limit Theorem in dynamical systems. We will return
to some applications of their theorem in the next section. Also, their methods are based
on calculations on Fourier series. This is in analogy with one of the methods used in
subsequent sections.

We will begin with noting that for the examination of the partial sums of random
variables on the form (7.1), it is sufficient to consider random variables that only de-
pend on cosine. Indeed,

ak cos2πlkx � bk sin2πlkx � � a2
k � b2

k cos � 2πlkx � ωk �
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7. Introduction

for appropriate choice of ωk. Hence, if we can we prove the Central Limit Theorem
for the random variables

Xk � ak cos2πlkx (7.2)
with certain assumptions on the lk and ak, we will obtain an analogous theorem for the
Yk as defined in (7.1). Salem and Zygmund proved the following:
Theorem 7.5 (The Central Limit Theorem for Lacunary Trigonometric Series).
Let � lk � � � # be a sequence such that lk � 1

lk
� q � 1 for some q. Let � ak � � � � ! 0 " be

some sequence and define for m �
	
Sm � x ��� m

∑
k � 1

ak cos2πlkx 	 Am � � 1
2

m

∑
k � 1

a2
k � 1 
 2 

Suppose that Am
� ∞ and

�
am
� � Am

� 0 as m tends to infinity. Then

Sm

Am

D� � N � 0 	 1 ��
Sketch of proof. First, we reduce the theorem to a simpler statement. It is sufficient to
prove that for E � B � � 0 	 1 � � with µ � E � � 0,

µ � E � � 1
�

E
eiλ Sm � x �

Am dx ��� � �
m � ∞

eλ2 
 2 (7.3)

uniformly for a finite range of λ. That is, we may assume that λ � O � 1 � . Since the
intervals generate B � � 0 	 1 � � , we assume without loss of generality that E � � a 	 b � .

Now, let η � 0 and define the function

Kη � x � �
������ �����

x � a
η for x � � a 	 a � η ��	

1 for x � �
a � η 	 b � η � 	

b � x
η for x � � b � η 	 b ��	

0 otherwise.

Letting kη � � Kη � x � dx, we see that it is sufficient to prove

k � 1
η

� b

a
Kη � x � eiλ Sm � x �

Am dx ��� � �
m � ∞

eλ2 
 2 (7.4)

uniformly, since letting η tend to zero yields (7.3).
Let fk � m � x � � iλA � 1

m ak cos � 2πlkx � for 1 � k � m and note that since
�
am
� � Am

� 0,�
fk � x � � � 0 as m tends to infinity. Since ez � � 1 � z � ez2 
 2 # o � � z � 2 � as z � 0, we can write
� b

a
Kη � x � eiλ Sm � x �

Am dx � � b

a
Kη � x � m

∏
k � 1

e fk � x � dx

� � b

a
eo � 1 � Kη � x � � m

∏
k � 1

� 1 � iλak

Am
cos � 2πlkx � � � e � � λ2

2A2
m

∑m
k � 1

a2
k

A2
m

cos2 � 2πlkx ���
dx  (7.5)
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7.2. Lacunary trigonometric series

By the various assumptions, eo � 1 � tends to one uniformly. Consider now the argument
of the exponential function in (7.5). A double angle formula gives

m

∑
k � 1

a2
k

A2
m

cos2 � 2πlkx ��� 1 � m

∑
k � 1

a2
k

2A2
m

cos � 4πlkx � � 1 � ξm � x ��
Using Chebychev’s inequality and lacunarity of � lk � ,

µ ! x � � a 	 b � :
�
ξm � x � � � δ " � o � 1 �

for any δ � 0. Hence, inserting the above in (7.5) we get for m � ∞,
� b

a
Kη � x � eiλ Sm � x �

Am dx 	 e � λ2 
 2
� b

a
Kη � x � m

∏
k � 1

� 1 � iλak

Am
cos � 2πlkx � �  (7.6)

We write the product above as a Fourier series ∑v cv cos2πvx. The lacunarity of � lk �
implies certain bounds on the solution to some Diophantine inequalities, which in turn
implies nice bounds on the Fourier coefficients av. In this way, one can prove that

� b

a
Kη � x � m

∏
k � 1

� 1 � iλak

Am
cos � 2πlkx � � � kη

uniformly as m � ∞. Inserting in (7.6), we get (7.4).

In later sections of this part of the thesis, we will be looking at dynamical systems,
where we approximate each partial sum with Gaussian random variables. Such a result
also exists for lacunary trigonometric series (see [51], Chapter 6). We include the result
here, since it is an early example of a method, which — albeit in a different disguise
— we will use to prove results in ergodic theory later on. Philipp and Stout prove
theorems similar to the following for the partial sums of a number of sequences of
different types of weakly dependent random variables.

Theorem 7.6 (The Gaussian Approximation Theorem for Lacunary Trigonomet-
ric Series). Let � lk � , � ak � and Am be as in the statement of Theorem 7.5. Let

S � t � � S � t 	 x ��� m

∑
k � 1

ak cos2πlkx for t � �
A2

m 	 A2
m # 1 ��

Assume that Am
� ∞ as m tends to infinity and that there exists a δ � � 0 	 1 � such that

am � A1 � δ
m . Then, we can refine the process S � t � on a richer probability space without

changing the distribution such that for every λ � δ � 32,

S � t � � X � t � � t1 
 2 � λ a  s 
where X � t � is the standard Brownian motion.
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In fact, Theorem 7.6 is (almost) a generalisation of Theorem 7.5. To see this, let
Sm � t � � S � A2

mt � for 0 � t � 1. By Theorem 7.6,

Sm � t � � X � A2
mt � � AmA � 2λ

m t1 
 2 � λ 
Dividing by Am and using standard facts about the standard Brownian motion, we see
that

Sm � t �
Am

D� � X � t � for t � � 0 	 1 ��
Inserting t � 1 and using Proposition 12.4 in [11], we get the convergence claimed in
Theorem 7.5.

Note that am � A1 � δ
m implies that

�
am
� � Am

� 0, but not vice versa. Hence Theorem
7.6 generalises Theorem 7.5 with the weaker assumption on the coefficients.

Sketch of proof of Theorem 7.6. In all the cases examined by Philipp and Stout in [51],
they use the same method. We only give a sketch of the method, since the technical
details get quite involves. Their main idea is to use the fact that under appropriate
circumstances, every element in a sequence of random variables can be written as a
martingale plus a co-boundary. In fact, one has the following easy lemma:

Lemma 7.7. Let � X j � j � � be some sequence of random variables and let � B j � ∞
j � 0 be a

non-decreasing sequence of σ-fields such that X j is B j-measurable for all j � 	 , and
B0 is the trivial σ-field. Let

u j � ∞

∑
k � 1

� �
X j # k

�B j � 1 � for j �
	
and assume that

∞

∑
k � 0

� � �� � �
X j # k

�B j � �� � � ∞ for j � 	  (7.7)

Then for any j �
	 ,
X j � Yj � � u j � u j # 1 ��	

where ! Yj 	 B j
"

j � � is a martingale.

Proof of Lemma 7.7. The sequence

Yj � ∞

∑
k � 1

� � �
X j # k

�B j � � � �
X j # k

�B j � 1 � �

fulfils the requirements of the lemma.

With the lemma in place, one splits the partial sums up into blocks Sm � ∑M
j � 1 X j,

where X j � ∑k � I j
ak cos � 2πlkx � . The blocks I j may be chosen such that for large j, the

transfer function u j of the co-boundary is small in comparison with X j and such that
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(7.7) holds, where the B j are the σ-fields generated by X1 	    	 X j. With some small
errors, Lemma 7.7 implies,

X j 	 Yj and Sm � M

∑
j � 1

X j 	 M

∑
j � 1

Yj 
Hence, it suffices to prove the theorem for the partial sums of the martingale Yj. For
this, one can use Skorohkod’s Representation Theorem (Chapter 7.2 in [58]) to find
non-negative random variables Tj such that

M

∑
j � 1

Yj � X � M

∑
j � 1

Tj � a  s  	
� �

Tj
�B j � 1 � � � �

Y 2
j
�B j � 1 � a  s  	

�
�
T p

j � � �
� �� Yj

�� 2p � for p � 1 	
where X is the standard Brownian motion. With these tools, it is possible to prove the
theorem. We refer to [51] for the technical details.

7.3. Spectral theory

Having seen that theorems of the type in which we are interested exist for certain tri-
gonometric series, we will now consider a particular example of an ergodic dynamical
system. Namely the case of an irrational rotation of the circle.

For the remainder of this section, we let α � � � � , � � � 0 	 1 � and let T : � � � be
defined by x �� α � x � mod 1 � . This defines a measure preserving system � ��	 B 	 µ 	 T � ,
where µ is the Lebesgue measure. Equivalently, we can map � to the unit circle in the
complex plane and consider the map T � e2πix � � e2πi � α # x � . This is another description
of the same dynamical system.

We are interested in finding functions f � L2 � � � such that the Central Limit The-
orem holds for the normalised partial sums Sm f � � Sm f � 2, where Sm f � ∑m � 1

j � 0 f � T j.
Since real functions on � are periodic functions with period 1, we may use Fourier ana-
lysis to describe these. In particular, we may assign a Fourier series to each function
in L2 � � � and — under certain assumptions on the Fourier coefficients — vice versa.
Since Fourier series are trigonometric series, we may in under appropriate circum-
stances use the results in Section 7.2 to obtain similar results for irrational rotations.
A number of different approaches have been taken to this question. We discuss them
chronologically.

A general fact about partial sums of Fourier series is that it is particularly easy to
calculate their partial sums under irrational rotations. Note that the eigenfunctions of
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T are e j � x � � e2πi jx with eigenvalues Te j � e2πi jαe j. Hence, if we let f be defined in
terms of it’s Fourier series,

f � x ��� ∞

∑
n ��� ∞

ane2πinx � ∞

∑
n ��� ∞

anen � x ��	
we obtain

Sm f � x ��� m � 1
∑
j � 0

T j
∞

∑
n ��� ∞

anen � x ��� ∞

∑
n ��� ∞

an � m � 1
∑
j � 0

e2πi jα � en � x �
� ∞

∑
n ��� ∞

an
1 � e2πinmα

1 � e2πinα en � x ��
This is also a Fourier series, where the coefficients from the original series have been
scaled by certain fractions. Since the en are orthogonal in L2 � � � , this implies

� Sm f � 2 � ∞

∑
n ��� ∞

a2
n

���� 1 � e2πinmα

1 � e2πinα

���� 2 
To simplify notation, we define the functions

Vm � θ ��� 1 � e2πimθ

1 � e2πiθ  (7.8)

These functions are known as the spectral kernels.

7.3.1. Irrational rotations

The first Central Limit Theorem for irrational rotations was proved by Burton and
Denker in [13]. They subsequently used this theorem to deduce a general Central
Limit Theorem for aperiodic dynamical systems, but unfortunately there is a mistake
in this second proof. We will discuss this in more detail in Section 7.4.

Theorem 7.8 ([13], Theorem 1a). There exists a function f � L2 � � � with � � f � � 0
such that

Sm f� Sm f � D� � N � 0 	 1 �� (7.9)

Proof. We follow the proof given by Burton and Denker. The strategy is to reduce the
theorem to a consequence of Theorem 7.5 by clever choice of f in terms of it’s Fourier
coefficients. We take sequences ! lk

" � 	 , εk
� 0, ε̄k

� 0 and ! ak
" � � such that

∞

∑
k � 1

a2
k lk

� ∞ 	 (7.10)
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� k � 	 : εk � εk � ε̄k � εk
2  (7.11)

Let β � e2πiα. By Weyl’s Equidistribution Theorem, there are infinitely many j � 	
such that

�� 1 � β j
�� � � εk � ε̄k 	 εk � and β j is in the first quadrant of the complex plane.

Hence, we may choose a lacunary sequence of integers � jk � such that these two prop-
erties hold. We split the sequence up into consecutive blocks Jk of size lk and define a
sequence � b j � by

b j � �
ak for j � Jk or � j � Jk 	
0 otherwise,

and a function f � L2 � � � by

f � x ��� ∞

∑
n ��� ∞

bne2πinx � ∞

∑
n � 1

2bn cos � 2πnx ��
By (7.10), f is indeed in L2.

As in the beginning of this section, we obtain

� Sm f � 2 � ∞

∑
n � 1

2b2
n
�
Vm � nα � � 2 � ∞

∑
n � 1

2a2
n ∑

j � Jn

�
Vm � nα � � 2 

Now, let j � Jn and m � 	 be such that mεn � 1. We have the following inequality:

0 � m � 1 � mεn � � �
Vm � nα � � � m  (7.12)

Indeed, the last inequality follows since���� 1 � βm j

1 � β j

���� � ����� m � 1
∑
i � 0

�
β j � i

����� � m

by the triangle inequality. The first inequality is most easily explained by a picture.
The denominator of the fraction is strictly less than εn, so since mεn � 1, the fraction
is strictly greater than m

�� 1 � βm j
�� . Since β j is in the first quadrant,

�� 1 � β j
�� � εn and

mεn � 1, β jm does not go full circle. In fact, we have the situation of Figure 7.1 on the
following page. Note, that we must have l2 � � 1 � mεn � . Hence the inequality.

Note that 4
�� 1 � β j

�� � 2 � �
Vm � jα � � 2. Letting L � n ��� 2a2

nln, we obtain by (7.12),

L � n0 � m2 � 1 � mεn0 � � � Sm f � 2 � ∑
n � n0

16L � n � ε � 2
n � m2L � n0 � � m2 ∑

n
�

n0

L � n ��	 (7.13)

for any n0 and any m with mεn0 � 1. We can choose the function L � n � freely, as long
as (7.10) remains valid. Hence, we choose L � n � � 2 � γn2 , where γ � � 0 	 2 � is arbitrary.
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β j

βm j

l1 � εn

l2 � 1 � mεn

βh j

Figure 7.1.: Rotation of β j (dashed lines are straight).

Now, we take the set N0 � ! 2n2 : n � 	 " and the numbers εn � 2 � n2 � n and m � 2n2
0 ,

where n0 is chosen so large that

m � γm2 � 1 � 2 � n0 � � � Sm f � 2

� 4 ∑
n � n0

�
2 � γn2 � �

22n2 # 2n � � m2 � γ � m2 ∑
n
�

n0

2 � γn2

� 8
�
2 � 2 � γ � � n0 � 1 � 2 � � m2 � γ � 2m22 � γ � n0 # 1 � 2 

This is possible by (7.13). Hence, � Sm f � 2 	 m2 � γ, and Sm f is well approximated in
L2 � � � by the Fourier series restricted to block Jn0 for m � 2n2

0 , as is seen by calculating
the L2-distance between the two. Hence,

Sm f 	 an0 ∑
� j � � Jn0

Vm � jα � e j

when m � 2n2
0 � ∞. For any ε � � 0, we may choose n0 so large that εn

� ε � for any

90



7.3. Spectral theory

n � n0. Hence, with arbitrarily small L2-error,

Vm � jα � e j � x � � Vm � � jα � e � j � x �
� 1 � β jm

1 � β j e j � x � � 1 � β � jm

1 � β � j e � j � x � 	 Cn0 cos � 2π jx � � D0 sin � 2π jx ��	
where Cn0 and Dn0 depend on εn0 . Normalising, we see that for m � 2n2

0 ,

Sm f� Sm f � � 1
An0

�
kn0

∑
j � Jn0

Cn0 cos � 2π jx � � D0 sin � 2π jx ��	
where An0 � 1

2 � C2
n0 � D2

n0 . Since we are still free to choose ln0 , Theorem 7.5 (and the
remarks preceding it) implies that the theorem holds along the sequence N0.

We will now extend the theorem to all of 	 . For large m, we define the number
n0 � sup ! n : 2n2 � m " . The variance of Sm f is concentrated on the blocks Jn0 and
Jn0 # 1. Hence,

Sm f� Sm f � � 1� Sm f � ∞

∑
n � 1

2ak ∑
� j � � Jn

Vm � jα � cos � 2π jx ��	 (7.14a)

and

an0 ∑ � j � � Jn0
Vm � jα � e j � an0 # 1 ∑ � j � � Jn0 � 1 Vm � jα � e j

2a2
n0 ∑ j � Jn0

�
Vm � jα � � 2 � 2a2

n0 # 1 ∑ j � Jn0 � 1

�
Vm � jα � � 2 	 (7.14b)

have the same limit distribution as m � ∞. By the argument used above to obtain the
Central Limit Theorem along a subsequence, we see that for 2n2 � m � 2 � n # 1 � 2 , the
expression

A � 1
m � an ∑

� j � � Jn

Vm � jα � e j � an # 1 ∑
� j � � Jn � 1

Vm � jα � e j �
tends to Φ � u � . For 2 � n � 1 � 2 � m � 2n2 , the expression

A � 1
m � an � 1 ∑

� j � � Jn � 1

Vm � jα � e j � an ∑
� j � � Jn

Vm � jα � e j �
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also tends to Φ � u � , where

A2
m � 1

2 � a2
n ∑

j � Jn

� 2 ��� � Vm � jα � � � 2 � � 2 ��� � Vm � jα � � � 2 �
� an � 1 ∑

j � Jn � 1

� 2 ��� � Vm � jα � � � 2 � � 2 ��� � Vm � jα � � � 2

� 2a2
n ∑

j � Jn

�
Vm � jα � � 2 � 2a2

n � 1 ∑
j � Jn � 1

�
Vm � jα � � 2

and Φ � u � is the standard normal distribution. This completes the proof.

In fact, if we define the set

CLT � σ � m � ��� �
f � L2 � � � : Theorem 7.8 holds for f 	�� Sm f � � σ � m � � 	 (7.15)

the proof of Theorem 7.8 implies the following corollary:

Corollary 7.9. For any γ � � 0 	 2 � , CLT � m � γ � is dense in L2 � � � .
Proof. By (7.13) and choice of L � n � , it is clearly possible to choose elements in
CLT � n � γ � for each value of γ � � 0 	 2 � . A closer examination on our freedom of choice
of the Fourier coefficients and Parseval’s equality shows, that one such element exists
arbitrarily close to any g � L2 � � � . This completes the proof.

Kato made the definition of the set CLT � σ � m � � in [28], where he also proved the
following:

Theorem 7.10. Let γ � 0. CLT � m2 � logm � � γ � is dense in L2 � � � .
In the beginning of his proof, Kato defines series � lk � � 	 and � ak � � � , where� lk � is lacunary and ak � 1

k � 1 � γ � � 2 . Kato’s proof consists of splitting the partial sums up
into three,

Sm f � x ��� m � 1
∑
j � 0

T j f � x ��� ∑
� n � � n0 � m �

anVln � pα � eln � x �
� m ∑

� n � � n0 � m �
aneln � x � � ∑

� n � � n0 � m �
an � Vln � pα � � m � eln � x ��	

where n0 � m � � min ! n � 0 : ! nα " � 1
2m � logm � 1 � 6

" . Now, he divides by � Sm f � and ob-
tains three summands of the normalised partial sums, Σ1, Σ2 and Σ3. Using classical
estimates, he proves that Σ1 and Σ3 converges to zero in probability as m tends to
infinity. For the last summand, Theorem 7.5 applies.
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In fact, the estimates made on the three summands are not obtained quite as easily
as the above might suggest. Rather intricate arguments from spectral theory are used
along with some classical estimates on the Vn � θ � . The details are omitted, but the result
deserves mention here.

To obtain density of the set, one notes that the estimates in the proof of the partic-
ular case only depends on Fourier coefficients corresponding to arbitrarily small sets
having given values. Thus, the density is obtained.

We will not go further into the method of dividing the partial sums up into blocks
at this point. There will be plenty of block-dividing arguments in what follows.

7.3.2. Diophantine criteria

The above result by Burton and Denker was subsequently generalised by Lacey (see
[38]). Lacey proved a very beautiful result, connecting Diophantine approximation and
Gaussian approximation. He showed that the modulus of continuity of a function, such
that the Central Limit Theorem holds for it’s partial sums under an irrational rotation
of the circle, depends on the Diophantine type of the rotation number α � � � � . We
make some definitions.

Definition 7.1. Let α � � � � . The Diophantine type β of α is defined to be

β � inf
�

b � 0 :
��� α � p

q

��� � Cbq � 1 � b for any p 	 q ��� for some Cb � 0 �
Relating this to the material in Part I, we note that the Diophantine type of an

irrational number is a measure of how badly approximable the number is. In particular,
we see that if β � 1, then α is badly approximable (the real one-dimensional analogue
of Definition 5.1).

Definition 7.2. Let f : � � � be continuous and 0 � a � 1. We say that f � lip � a � if�
f � x ��� f � y � � � C

�
x � y

� a
for some constant C.

Lacey proved the following theorem:

Theorem 7.11. Let α be of Diophantine type β. If a � 1
2β there is an f � lip � a � ,

Sm f�
m

D� � N � 0 	 1 �� (7.16)

If a � 1
2β there does not exist an f � lip � a � such that (7.16) holds.

Remark. In fact, Lacey proved a stronger result (Theorem 1.4 in [38]), involving the
convergence of the partial sums (in appropriate normalisation) to a standard fractional
Brownian motion. For simplicity, we stay with the above form of the Central Limit
Theorem.
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Lacey needed a few auxiliary results in order to prove Theorem 7.11. We give these
here. First of all, equation (1.2) from our sketch of the proof of Dirichlet’s Theorem
(Theorem 1.1) along with Definition 7.1 immediately implies:

Proposition 7.12. Let α be irrational of Diophantine type β and define the sequence

dn � �
αqn � pn

�
. Then for any ε � 0 we have for large n, that dn � 1 � qβ # ε

n , and there

exists an infinite subsequence � n j � such that dn j

� 1 � qβ � ε
n j .

As in the previous section, we will be looking at a function defined as a cosine
series with Fourier coefficients ak. This time, we also include a sequence � rk � of
Rademacher functions in the series:

f � x ��� ∞

∑
k � 1

2akrk cos � 2πkx �� (7.17)

For such functions, we have (see [27], Theorem 3, page 68):

Theorem 7.13. If there exists an a, 0 � a � 1 such that

s j � � ∑
2 j � k � 2 j � 1

a2
k � 1 
 2 � O � 2 � a j �

then f � lip � a � almost surely.

With the tools in place, we embark on a sketch of the proof of Theorem 7.11.

Sketch of the proof of Theorem 7.11. We prove the negative part in detail. Let a � 1
2β

and assume that f � lip � a � is such that for any u � 0,

µ

�
x � � :

���� Sm f�
m

���� � u � � φ � u ��	
where φ �� 0 is some non-trivial distribution function. We wish to arrive at a contradic-
tion. Let ε � 0 be arbitrary and take by Proposition 7.12 a subsequence � ni � � 	 such
that

� ! qniα
" � � dni

� q � β # ε
ni . Using this and the fact that f � lip � a � , we get��� S2qni

f � x � � 2Sqni
f � x � ��� � qni � 1

∑
j � 0

�
f � x � qniα � jα ��� f � x � jα � �

� qni � 1

∑
j � 0

C f
� ! qniα

" � a � C f q1 � � β � ε � a
ni

for any i � 	 and any x � � . Now choose ε so small that a � β � ε �	� 1
2 . Then for some

ε � � 0, the above implies ����� S2qni
f � x ��

qni

� 2
Sqni

f � x ��
qni

����� � C f q � ε �
ni
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Since qni tends to infinity with i, this implies

φ � u ��� lim
i � ∞

����� � x � � :

����� 2Sqni
f � x ��
qni

����� � 2u � ����� � lim
i � ∞

����� � x � � :

����� S2qni
f � x ��

qni

����� � u � �����
� lim

i � ∞

����� � x � � :

����� S2qni
f � x �

�
2qni

����� � u
2 � ����� � φ � u

2 ��
Since φ is a distribution function, it is a non-increasing function, which tends to 0 as u
tends to infinity. This implies the negative half.

For the positive half of the theorem, we need the second and fourth moment of the
partial sums. Using tools from random measures — in particular using Gaussian white
noise — Lacey proves that we can choose the Fourier coefficients ak in (7.17) such
that for some δ � 0, � Sm f � 2 � m � O

�
m1 � δ � 	 (7.18)

m � 2 � � � Sm f � 4 � � O
�
m � δ �  (7.19)

The construction also ensures that f � lip � a � by Theorem 7.13.
With these estimates, we may reduce Theorem 7.11 to a consequence of a slightly

adapted version of Theorem 6.4 in [64]. We see that

Sm f � x ��
m

� ∞

∑
k � 1

am � krk cos � 2πkx � where am � k � 2akVm � kα ��
m


It is enough to prove that this converges in distribution to a standard normal distribu-
tion. This would follow from the before mentioned adapted theorem, if we can prove
that 1

2 ∑k a2
m � k 	 1 and ∑m ∑k a4

m � k � ∞. We see by (7.18),

1
2

∞

∑
k � 1

a2
m � n � 1

2

∞

∑
k � 1

4a2
k

�
Vm � kα � � 2

m
� � Sm � f � � 2

m
� 1 � O

�
m � δ � 

We will now prove that ∑m ∑k a4
m � k � ∞. To do this, let θ j � �

θ j � for some arbitrary
θ � 1. We split 	 up into blocks I j � � θ j 	 θ j � 1 � . By (7.19), along this sequence we get

∑
θ j

∑
k

a4
θ j � n � K ∑

θ j

θ � δ
j � K

∞

∑
j � 1

� 1
θδ � j � ∞ 

Hence, we have the required property along the subsequence � θ j � . We now control the
oscillations of Sm f on each block I j. By (7.18),�� Sm f � Sθ j f

�� 2 � O � � θ � 1 � �
θ j ��	

so letting θ � 1, we get the required convergence. This concludes our sketch.
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7.3.3. Gaussian randomisation

Another method for proving theorems of the Central Limit Theorem type involving
spectral theory was introduced by Weber in [62] and [63] to prove the Almost Sure
Central Limit Theorem for irrational rotations. We have so far mainly been interested
in the Central Limit Theorem, and it would appear that Weber’s method could also
work for this theorem. Also, in none of the partial methods, ergodicity is required, so
it might be possible to use this method to treat non-ergodic system. Hence, we include
it in this survey.

We state Weber’s Almost Sure Central Limit Theorem.

Theorem 7.14. There exists a sequence � σ j � such that σ j �
�

j and an f � L2 � � � such
that

1
logm

m

∑
j � 1

1
j
δ �

S j f 
 σ j �
D��� � �

m � ∞
N � 0 	 1 � a  s 

Note the resemblance with Theorem 7.4. The main difference is that the norm-
alising factor is only approximately

�
j and not necessarily equal to

�
j. This is the

result of a limitation of the method of proof, which implies that we can not obtain an
exact value for the variance of the partial sums. In the following, we sketch the method
used by Weber.

The method of proof is based on two principles. One is the almost sure convergence
of certain series over a quasi-orthogonal system. The other is the concept of Gaussian
randomisation.

A sequence of vectors � fn � � L2 � � � (or indeed any Hilbert space) is said to be a
quasi-orthogonal system if the quadratic form ∑

�
f j 	 fk � x jxk is bounded, where

� � 	 � �
denotes the inner product in L2 � � � . It can be shown that if sup j

�
1 ∑k

�� � f j 	 fk � �� � ∞,
then the sequence � fn � is a quasi-orthogonal system. Also, one can show that for any
quasi-orthogonal system � fn � ,

∞

∑
n � 1

1�
n � logn � b fn

� ∞ a  s  (7.20)

whenever b � 3 � 2. In fact, this is a corollary of a theorem due to Menchov and
Rademacher (see [44], Lemma 1, page 42).

The second element of the proof is the Gaussian randomisation. We fix some
number ∆ � 0 and construct a function f � ∑akelk in terms of it’s Fourier expansion,
where

ak � ��� �� ∆k 
 2 for k � 0 	
0 for k � 0 	
∆ � k 
 2 for k � 0 	

and lk is such that ! lkα " � �
∆ � k � 1 	 ∆ � k � . As before, we can calculate the variance of

the partial sums and — again using the orthonormality of the en — we get an upper
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bound on the correlation of the partial sums. In fact, with the aid of some classical
estimates on the Vn � θ � ,� Sm f � 2 � n 	 � n � m :

� �
Sn f 	 Sm f � � � C � ∆ � n log

�
m
n �  (7.21)

We will include a random element in the definition of our function. Hence, let� Y 	 C 	 ν � be another probability space, and let � gn � n ��� and � g �n � n ��� be two isonormal,
independent sequences on this space. Let γn � gn � ig �n and define

ξ � x ��� ∞

∑
k ��� ∞

ak ���
�
γkelk � x � � 

For each x � � , these are random variables on � Y 	 C 	 ν � , and for any x � � , m 	 n � 	 ,�
Sn � ξ � x � � 	 Sm � ξ � x � � � � �

Sn f 	 Sm f �� (7.22)

Calculating the characteristic function of Smξ � x 	 ω � in the product probability space� � � Y 	 B � C 	 µ � ν � , we see that this is a centred Gaussian sequence. We may use a
nice property of Gaussian vectors in � 2 along with the estimates (7.21) and (7.22) to
construct an appropriate quasi-orthogonal system, which gives an almost sure conver-
gence statement by (7.20). This all takes place in the extension � � � Y 	 B � C 	 µ � ν � .
Using Fubini’s Theorem, one may deduce that we also have an almost sure conver-
gence in the factor � ��	 B 	 µ � for ν-almost all functions in an appropriate subset of
L2 � � � . Using Kronecker’s Lemma ([11], Lemma 3.28), one concludes that the the-
orem in fact holds for a large number of functions.

7.4. Tower constructions

Irrational rotations of the circle are interesting in their own right, but they hardly make
up the whole spectrum of ergodic dynamical systems. Hence, it is a natural question
to ask, whether or not the results in Section 7.3 extend to other types of dynamical
systems. It turns out that under appropriate circumstances, some of the results do
indeed extend to other dynamical systems. A method of passing from rotations to
general ergodic, aperiodic systems is by using Rokhlin towers.

A first attempt to prove a Central Limit Theorem for general aperiodic dynamical
systems was due to Burton and Denker ([13]), who emulated the behaviour of rotations
by constructing a Rokhlin tower inside the new dynamical system. Unfortunately, their
proof was flawed. It was later corrected by de la Rue, Ladouceur, Peškir and Weber in
[15]. The theorem stated in both articles is the following:

Theorem 7.15. Let � X 	 B 	 µ � be a non-atomic probability space and let T : X � X be
an aperiodic automorphism. There exists a function f � L2 � µ � with � � f � � 0 such that

Sm f� Sm f � D� � N � 0 	 1 ��
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A key element in all known proofs of Central Limit Theorems in general measure
preserving systems is Rokhlin’s Lemma:

Lemma 7.16 (Rokhlin’s Lemma ([50], Lemma 4.7)). Let � X 	 B 	 µ � be a non-atomic
probability space, let T : X � X be an ergodic measure preserving transformation and
let ε � 0, n � 	 . There exists a set A � B such that

1. The sets ! T iA " n � 1
i � 0 are pairwise disjoint.

2.

µ � n � 1�
i � 0

T iA � � n � 1
∑
i � 0

µ
�
T iA � � 1 � ε 

The set A is called an � n 	 ε � -Rokhlin set.

This lemma allows us to trace large parts of the orbits of a substantial subset of
points in X . This in turn allows us to emulate the behaviour of irrational rotation,
where this information is implied in the bounds on the Fourier coefficients.

The method of using Rokhlin sets to deduce the Central Limit Theorem was first
used by Burton and Denker in [13] to generalise Theorem 7.8 to arbitrary systems. The
fundamental property needed in order to obtain the general theorem was the existence
of functions gi : E � ! � 1 	 1 " , i � 0 	    	 N � 1, where E is an � LN 	 ε � -Rokhlin set for
some L 	 N � 	 , such that the sequence � g2n � N 
 2 � 1

n � 0 as well as the sequence � g2n # 1 � N 
 2 � 1
n � 0

each consists of independent and identically distributed random variables with respect
to the measure µ � E � � 1 tr � µ 	 E � , where tr � µ 	 E � � A � � µ � A � E � . Also, one needs the
property that

µ � E � � 1 tr � µ 	 E � � x � X : gi � x ����� 1 � � 1
2

for i � 0 	    	 N � 1 
Burton and Denker made a mistake in their proof of the existence of such func-

tions. This mistake was corrected by de la Rue, Ladouceur, Peškir and Weber in [15].
They still needed the sequences of functions. In their paper, the construction is based
on choosing independent partitions of the space � X 	 B 	 µ � . We will not go into this con-
struction at this point, since independent partitions will be constructed in abundance
in the next section. Instead, we will focus on the application of these functions in the
construction of functions for which the Central Limit Theorem holds.

One defines the function

g � x ��� �
gl

�
T jN # l � x � � for x � T jN # l where j � ! 0 	    	 L � 1 " 	 l � ! 0 	    	 N � 1 " 	

0 for x �� � NL � 1
i � 0 T l � F ��

The information we have on the Rokhlin construction along with the definition of the
gi gives us quite a lot of information about the distribution of the values of the first
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iterates of the function. In particular, we can get nice bounds on the variance of the
partial sums. In fact, if K � ε � L � 1 � � 0 as K 	 L � ∞, ε � 0,

� 1 � δ � m � � Sm f � 2 � � 1 � δ � m for 1 � m � K 	
� 1 � δ � K � � Sm f � 2 � � 1 � δ � K for K � m � N � K 	

when δ � 0. Also, we obtain nice independence properties of the partial sums.
Now, by a particularly clever choice of sequences � Nk � , � Lk � , � Kk � and � εk � , we may

use the above to construct a sequence � gk � of functions of the above form. Furthermore,
we may choose a sequence of reals � ak � and integers � nk � — again in a particularly
clever way — and define

f � ∞

∑
k � 1

akgk 	 fk � ankgnk � ank # 1gnk # 1 and Ak � Knk

�
ank

� 2 � k
�
ank # 1

� 2 
One can prove that the partial sums of f are well approximated in L2 � µ � by the partial
sums of fk as k tends to infinity. This is similar to the last part of the proof of Theorem
7.8, with the gk replacing the cosines. Furthermore, the estimates on the variance
implies the theorem.

This was a short sketch of the ideas involved in extending the theorems known
from irrational rotations to general ergodic, aperiodic dynamical systems. The full
details of the constructions involved are quite lengthy and the detail given here is far
from complete. We refer the reader to [15] for a detailed account. In that paper, a few
results extending Theorem 7.15 are also given.

7.5. A general result on Rokhlin towers

In [61], Volný proved a surprising result on Gaussian approximation in general aperi-
odic dynamical systems. His construction involved the Rokhlin sets introduced in the
preceding section along with a construction similar to the one used in the proof of
Theorem 7.6. We prove Volný’s general result on Rokhlin towers in this section. The
proof of this result given in [61] is essentially a sketch. In a subsequent private com-
munication between this author, M. Weber and D. Volný ([60]), the ideas of the proof
became more apparent. The aim of the present exposition of the proof is to present it
in a consistent manner.

A key property in Volný’s proof is the fact that we can introduce the beginning of
any strictly stationary sequence of random variables with arbitrary distribution on the
probability space in our aperiodic dynamical systems along with a function for which
the iterates are close (in L2) to the random variables. In fact, we have:
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Proposition 7.17. Let � Ω 	 B 	 µ 	 T � be an ergodic, aperiodic measure preserving sys-
tem, � Xi � i ��� be an ergodic, strictly stationary process (defined on a different probabil-
ity space), let ξ1 � ! A1 	    	 AK

" be a partition of Ω, n � 	 , and let ε � 0. Then, there
exist a measurable finite valued function f such that:

1. There exists a random vector � X �0 	    	 X �n � distributed as � X0 	    	 Xn � on Ω,

µ ! � 0 � i � n 	 �� f � T i � X �i �� � ε " � ε  (7.23)

2. The partition η1 generated by f 	 f � T 	    	 f � T n is ε-independent of ξ1 in the
sense that

∑
A � η1 � B � ξ1 � µ � B � � 0

�
µ � A � � µ � A �B � � � ε  (7.24)

Proof. To begin with, we impose the assumption, that the X i be finitely valued. We
will see later that this causes no loss of generality.

Let � Ω̄ 	 C 	 ν 	 S � be a representation of the process � Xi � . It poses no problem to
choose this representation in such a way that there exist S-invariant, independent σ-
algebras C � 	 C � � � C , such that the corresponding factors are aperiodic and such that X
is C � � -measurable. Indeed, take the product space of a representation with any other
measure preserving system with � -action and extend � Ω 	 C 	 S � and ν accordingly.

Now, we use Rokhlin’s Lemma to chop things up in a nice and orderly fashion. Let
N � 	 be some number to be fixed at a later point and let F 	 TF 	    	 T NF be a Rokhlin
tower in Ω. Further, we let E 	 SE 	    	 SNE be a C � -measurable Rokhlin tower in Ω̄ with
µ � F � � ν � E � and let π1 and π2 denote the partitions generated by F 	 T F 	    	 T NF and
E 	 SE 	    	 SNE respectively. Clearly, these two partitions are identically distributed.

We now choose a family of measure preserving bijections,

φi : T iF � SiE 	 i � ! 0 	    	 N " 
For the exceptional set, we choose another measure preserving bijection,

φε : X �
N�

i � 0
T iF � X � � N�

i � 0
SiE 

We combine the whole thing to a measure preserving bijection which maps π1 to π2,

φ � x ��� �
φi � x � for x � T iF 	 i � ! 0 	    	 N " 	
φε � x � otherwise.

We map the partition ξ1 to Ω̄ through this function, that is, ξ2 � φ � ξ1 � .
Now, let η2 be the partition of Ω̄ generated by X 	 SX 	    	 Sn. We map this partition

to Ω. That is, η1 � φ � 1 � η2 � . Since C � is independent of C � � , the partition π2 � ξ2 is
independent of η2. Hence, η1 is independent of π1 � ξ1.
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7.5. A general result on Rokhlin towers

Since all the functions we are interested in are constant on each cell of the partition,
we may define the function

f � x ��� �
X � φ � x � � for x � T iF 	 i � ! 0 	 1 	    	 N "
0 otherwise

and the random variables
X �i � x ��� Si � X � φ � x � � �

The random variables are clearly distributed as the Xi, as everything is constant on each
cell.

Now, we can get the results. For x � � N � n
i � 0 T iF , there is full control of the future of

x for the next n steps of the process. Furthermore, by definition, the value of T i � f � x �
is the same as the value of X �i � x � for such x. Hence, we have the first property when
we choose N so large that µ � � N � n

i � 0 T iF � � 1 � ε. We also see that any dependence
between the partitions defined in the statement of property 2 must occur outside of this
set. Hence, this guarantees the second property as well.

A note missing in Volný’s original paper is that he can indeed pass from consid-
ering finitely valued random variables to any random variable. This turns out to be
possible, since we can approach any random variable with finitely valued random vari-
ables. This means that we can get a sequence of refinements of partitions of each of our
two spaces in such a way that they have the same distributions at each step, and such
that the step-functions are constant on each cell in the representation space, where the
functions converge to the required random variable. Hence, there is no choice for the
mirrored step-functions in the aperiodic system but to converge to a random variable
of the same distribution.

We note, that this proposition implies Proposition 2 in [61] by applying the previ-
ous Proposition for each k �
	 :

Proposition 7.18. Let nk be positive integers, � Xk � i � i � Z be ergodic, strictly stationary
processes (defined on different probability spaces), εk � 0 	 k � 1 	 2 	    . Then there
exist measurable finite valued functions fk such that:

1. For every k � 1 	 2 	    there exists a random vector � X �k � 0 	    	 X �k � nk
� with the same

distribution as � Xk � 0 	    	 Xk � nk � on Ω,

µ
� � 0 � i � nk 	 �� fk � T i � X �k � i �� � εk

� � εk 
2. The partition ξ generated by f j � ti 	 0 � i � n j 	 1 � j � k � 1, and η generated

by fk � T i 	 0 � i � nk, are ε-independent in the sense that

∑
A � η � B � ξ � µ � B � � 0

�
µ � A ��� µ � A �B � � � εk 
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7. Introduction

A straightforward application of this Proposition gives us Proposition 1 in [61]:

Proposition 7.19. Let � εi � i � � � � , � αi � i � � � � and � di � i � � � 	 . Then there exist� f i � i � � � L2 � Ω 	 A 	 µ � , � f i � 0 for any i � 	 ; and independent random variables Xk � i,
i � 0 	    	 2dk, k � 	 where any given Xk � i is N � 0 	 α2

k � -distributed, such that� k � 	 	 i � 0 	    	 2dk :
�� Xk � i � f k � T i

�� � εk  (7.25)

In the following chapter, we will go through the details of Volný’s proof of some
theorems in Gaussian approximation.
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8. Gaussian approximation

In this section, we prove some of Volný’s results in Gaussian approximation. Volný’s
results are the basis of the results of the next chapter, where we use these results to
obtain results in weighted Gaussian approximation.

In the first section, we prove results on Gaussian approximation in L2. We begin
by proving the existence of a function for which the n’th partial sum is close to the
sum of independent random variables, where the variables are dependent on n. This
is the essence of Lemma 8.6 below. To obtain the correct distribution of the random
variables, we simply normalise these appropriately, and prove that the non-normalised
random variables are asymptotically close to the normalised ones. To also get rid of
the dependence on n of the random variables, we consider the asymptotic behaviour
of the triangular array of random variables when we move towards the diagonal. This
has an impact on the speed of convergence obtained.

In the second section, we prove that the partial sums of the function found in the
preceding section also satisfy the strong invariance principle. In Volný’s paper there is
also a proof of the weak invariance principle. While we do mention this result, we do
not prove it, since this would involve additional technique, and since the result is not
generalised in the subsequent chapter, where the additional methods fail to work.

8.1. Approximation in L2

In this section, we will prove the following theorem:

Theorem 8.1. Let � X 	 B 	 µ � be a non-atomic probability space. Let T : X � X be an er-
godic, aperiodic automorphism. There exist a function f � L2 � X 	 B 	 µ � and independ-
ent random variables Z j 	 N � 0 	 2 � loglog3 � loglog2 � � , such that for n sufficiently
large,

max
1 � l � n

1�
n

����� Sl f � l � 1
∑
j � 0

Z j

����� � O � loglogloglogn
logn � 1 
 2 

We follow Volný’s general approach from [61], but since we do not aim to ob-
tain the weak invariance principle simultaneously with Theorem 8.1, we avoid some
technicalities. We do go into other technicalities somewhat deeper that the original
proof.
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8. Gaussian approximation

It is worth noting that a version of the Central Limit Theorem follows from The-
orem 8.1, just as a version followed from Theorem 7.6. Hence, Volný’s Theorem is
a generalisation of the Central Limit Theorem for aperiodic dynamical systems (for
example in the form of Theorem 7.15).

A converse of Volný’s Theorem due to Akcoglu, Baxter, Ha and Jones exists ([3]).
In their paper, they prove that given an aperiodic, non-atomic measure preserving sys-
tem � X 	 B 	 µ 	 T � , an L2-function f and a natural number K, one can find another L2-
function g, such that the T ig are “almost” Gaussian and such that the correlations�
T ig 	 T jg � are “close to” the correlations

�
T i f 	 T j f � for i 	 j � ! 1 	    	 K " . For the ap-

propriate definitions of closeness as well as the full results, the reader is referred to
[3].

As in Volný’s proof, we define numbers

dk � 3k 	 pk � 2k 	 αk � 1
pk

�
k
	 εk � 6 � 3k 	

and take functions f k’s and random variables Xk � i’s as in Proposition 7.19. Again, we
follow Volný and define functions

fk � pk � 1

∑
i � 0

T i f k � T dk

pk � 1

∑
i � 0

T i f k 	
f � ∞

∑
k � 1

fk 
We will split the function up into three parts,

f � f � � f � � � f � � � � ∑
k:dk � n

fk � ∑
k:pk � n � dk

fk � ∑
k:n � pk

fk 
We are considering the partial sums of f , defined by

S j f � j � 1

∑
l � 0

T i f 
Clearly, the operator S j is linear, so

S j f � S j f � � S j f � � � S j f � � � 
The three partial sums are treated separately. In order to estimate the sums, we need
an auxiliary lemma.

Lemma 8.2. Let a � 1, p � 0 and c � 0. There exists a K � ∞ such that

∑
k:ack � n

ak

kp � K
n

1
c� 1

2c logn � p
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8.1. Approximation in L2

Proof. The proof is a straightforward calculation:

∑
k:ack � n

ak

kp � � 12c loga n �
∑
k � 1

ak � � 1c loga n �
∑

k � � 12c loga n � # 1

ak� 1
2c loga n � p

� a1 # � 12c loga n � � 1
a � 1 � a1 # � 1c loga n � � 1

a � 1
1� 1

2c loga n � p

� a � n1 
 c � 1 
 2 � 1
a � 1

� an1 
 c � 1
a � 1

1� 1
2c loga n � p

� K
n

1
c� 1

2c logn � p


We can now estimate the first weighted sum.

Lemma 8.3. Let n � 	 . For any j � ! 0 	    	 n " ,�� S j f � �� � O � n
logn � 1 
 2 

Proof. For any k � 	 , we define the function

gk � dk � 1

∑
j � 0

pk � 1

∑
i � 0

T i # j f k  (8.1)

We immediately note that fk � gk � T gk. That is, fk is a co-boundary. Hence,

S j f � � j � 1

∑
l � 0

T l ∑
k:dk � n

� g � T g ��� j � 1

∑
l � 0

∑
k:dk � n

�
T lgk � T l # 1gk � � ∑

k:dk � n

gk � T j ∑
k:dk � n

gk 
Using the triangle inequality and the fact that T is measure preserving, the above im-
plies �� S j f � �� � ∑

k:dk � n

� gk � � ∑
k:dk � n

� gk � � ∑
k:dk � n

� gk ��
Hence, it suffices to consider the last sum.

We define new functions,

ĝk � dk � 1

∑
j � 0

pk � 1

∑
i � 0

Xk � i # j 	 g̃k � gk � ĝk  (8.2)
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8. Gaussian approximation

We consider g̃k first. By the triangle inequality and Proposition 7.19, we have

� g̃k � � ����� dk � 1

∑
j � 0

pk � 1

∑
i � 0

T i # j f k � dk � 1

∑
j � 0

pk � 1

∑
i � 0

Xk � i # j

����� � dk � 1

∑
j � 0

pk � 1

∑
i � 0

�� T i # j f k � Xk � i # j

�� � dk pkεk 
Since

∑
k:dk � n

dk pkεk � ∑
k:dk � n

3k2k6 � 3k � � log3 n �
∑
k � 1

1
62k

� 1 	
we only need to consider the sum of the ĝk.

We know that the Xk � i # j are independent. Hence, since pk
� dk,����� dk � 1

∑
j � 0

pk � 1

∑
i � 0

Xk � i # j

����� 2 � α2
k p2

k � pk � dk ��� dk � pk

k

by choice of sequences. But now we may use Lemma 8.2 to obtain

∑
k:dk � n

� ĝ � � ∑
k:dk � n

�
dk � pk

k
� ∑

k:3k � n

� 3k � 2k � 1 
 2

k1 
 2

� � 2 ∑
k:

�
32k � n

�
3k

k1 
 2 � � 2K
n1 
 2� logn � 1 
 2 � O � n

logn � 1 
 2 
This completes the proof.

We now consider the third weighted sum:

Lemma 8.4. Let n � 	 . For any j � ! 0 	    	 n " ,�� S j f � � � �� � O � n
logn � 1 
 2 

Proof. We need a new splitting of the sums. In fact, since

S j f � � � � S j � ∑
k:n � pk

fk � � ∑
k:n � pk

S j fk 	 (8.3)

we will look at the S j fk. For these,

S j fk � j � 1

∑
l � 0

T l � pk � 1

∑
i � 0

T i f k � T dk

pk � 1

∑
i � 0

T i f k � � j � 1

∑
l � 0

pk � 1

∑
i � 0

T l # i
�

f k � T dk f k � 
As in the proof of Lemma 8.3, we define

Ŝk � j � j � 1

∑
l � 0

pk � 1

∑
i � 0

�
Xk � l # i � Xk � l # i # dk � 	 S̃k � j � S j fk � Ŝk � j  (8.4)
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8.1. Approximation in L2

We may calculate an upper bound on the norm of S̃k � j using Proposition 7.19 and the
triangle inequality:�� S̃k � j

�� � ����� j � 1

∑
l � 0

pk � 1

∑
i � 0

�
T l # i f k � Xk � l # i � � j � 1

∑
l � 0

pk � 1

∑
i � 0

�
T l # i # dk f k � Xk � l # i # dk � ������ 2 jpkεk � 2n2k6 � 3k 

But since

∑
k
�

log2 n

2k6 � 3k � O � 1
n3 � 	

we see that ����� ∑
k:n � pk

S̃k � j

����� � O � 1
n2 �  (8.5)

The estimate on the norm of Ŝk � j is not quite as easy. Once again, we calculate the
square of the norm.�� Ŝk � j

�� 2 � �
j � 1

∑
l � 0

pk � 1

∑
i � 0

�
Xk � l # i � Xk � l # i # dk � 	 j � 1

∑
l � � 0

pk � 1

∑
i � � 0

�
Xk � l � # i � � Xk � l � # i � # dk ���

� 2

�
j � 1

∑
l � 0

pk � 1

∑
i � 0

Xk � l # i 	 j � 1

∑
l � � 0

pk � 1

∑
i � � 0

Xk � l � # i � �  (8.6)

The last inequality holds since ∑ j � 1
l � 0 ∑pk � 1

i � 0 Xk � l # i and ∑ j � 1
l � 0 ∑pk � 1

i � 0 Xk � l # i # dk are equally
distributed and uncorrelated, due to the gap between the indices. and independence of
the summands.

To calculate the final inner product, we split the sum up into three uncorrelated
parts with indices corresponding to Figure 8.1 on the next page. The set Σ2 contains
the diagonals on it’s boundary. Note that along each diagonal, the second index of the
corresponding random variables is constant. Summing along the diagonals and using
the fact that � X � 2 � �

X 	 X � , we may write�
j � 1

∑
l � 0

pk � 1

∑
i � 0

Xk � l # i 	 j � 1

∑
l � � 0

pk � 1

∑
i � � 0

Xk � l � # i � �
� ����� j � 2

∑
i � 0

� i � 1 � Xk � i
����� 2 � ����� j

pk � 1

∑
i � j � 1

Xk � i
����� 2 � ����� j � 2

∑
i � 0

� i � 1 � Xk � pk # j � 2 � i

����� 2 
These three norms are easily estimated using the independence of the Xk � i. For the

first summand, we get����� j � 2

∑
i � 0

� i � 1 � Xk � i
����� 2 � � j � 1 � ����� j � 2

∑
i � 0

Xk � i
����� 2 � j3α2

k � n3 1
22kk

 (8.7)
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8. Gaussian approximation

i

l

Σ1

Σ3
Σ2

j � 1

pk � 1j � 1 pk � j � 2

Figure 8.1.: Splitting the sum in
�� Ŝk � j

��
The same estimate holds for the last summand. For the middle summand,����� j

pk � 1

∑
i � j � 1

Xk � i
����� 2 � j2 pkα2

k � n2 1
2kk

 (8.8)

Now, since

∑
k
�

log2 n

1
22kk

� O � 1
n2 logn � and ∑

k
�

log2 n

1
2kk

� O � 1
n logn � 	

(8.7) and (8.8) imply that ����� ∑
k:n � pk

Ŝk � j

����� 2 � � n
logn �  (8.9)

Putting it all together, we see that (8.3) along with (8.5) and (8.9) implies the lemma.

We now consider the middle term. This is where the weighted partial sums are
close to the sums of Gaussian random variables. First, we define these variables. For
n � 	 , 0 � l � n, we let

Yn � l � ∑
k:pk � n � dk

pk
�
Xk � l � Xk � l # dk �  (8.10)

Note that for each n � 	 , these are independent Gaussians, since they are themselves
the sum of independent Gaussians. Furthermore, for each fixed n � 	 , the random
variables Yn � 0 	    	 Yn � n � 1 are identically distributed. This fact will be used to deduce
the main results of this chapter.
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8.1. Approximation in L2

Lemma 8.5. Let n � 	 .

max
1 � j � n

1�
n

����� S j f � � � j � 1

∑
l � 0

Yn � l
����� � O � 1

logn � 1 
 2 
Proof. As in the proofs of the two previous lemmas, we will use Proposition 7.19 to
reduce the statement of the lemma to a statement about random variables. Hence, we
define

Ŝ � �j � ∑
k:pk � n � dk

j � 1

∑
l � 0

pk � 1

∑
i � 0

�
Xk � i # l � Xk � i # l # dk � 	 S̃ � �j � S j f � � � Ŝ � �j  (8.11)

Applying Proposition 7.19 and the triangle inequality in the usual way, we obtain�� S̃ � �j �� � ���� ∑
k:pk � n � dk

j � 1

∑
l � 0

pk � 1

∑
i � 0

�
T i # l f k � Xk � i # l �

� ∑
k:pk � n � dk

j � 1

∑
l � 0

pk � 1

∑
i � 0

�
T i # l # dk f k � Xk � i # l # dk � ����

� 2n ∑
k:pk � n � dk

pkεk � 2n ∑
k:pk � n � dk

2k6 � 3k � O � 1
n2 � 

(8.12)

Hence, by the triangle inequality, the lemma is reduced to a statement about Ŝ � �j .
Unfortunately, to estimate the norm of Ŝ � �j , we need to split the expression up into a

number of parts. First, we split it into two parts,

Ŝ � �j � j � 1

∑
l � 0

∑
k:pk � n � dk

pk
�

j

pk � 1

∑
i � 0

�
Xk � i # l � Xk � i # l # dk �

� j � 1

∑
l � 0

∑
k:pk � n � dk

pk � j

pk � 1

∑
i � 0

�
Xk � i # l � Xk � i # l # dk � � Σ1 � Σ2  (8.13)

The first of these sums may be estimated immediately. For the second sum, we may
use a re-ordering similar to the one performed in the proof of Lemma 8.4 to obtain a
splitting into three parts, which may in turn be estimated individually. We begin with
the first sum.

First of all, we note that for j � pk, Σ1 has the same distribution as

Σ̂1 � j � 1

∑
l � 0

∑
k:pk � n � dk

pk
�

j

pk � 1

∑
i � 0

�
Xk � i # l � Xk � i # l # 2pk �  (8.14)

Indeed, the gap between the random variables Xk � i # l and Xk � i # l # 2pk is preserved and
the variables are identically distributed, so Σ1 must have the same distribution as Σ̂1.
Hence, it suffices to estimate the norm of Σ̂1.
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8. Gaussian approximation

We let U be the step-up operator on the second index of the Xk � j. That is, whenever
Xk � j and Xk � j # 1 are defined, we let UXk � j � Xk � j # 1. Under this operator, the the ex-
pression (8.14) may be written as the weighted sum of a co-boundary. Indeed, if we
define

g � �j � ∑
k:pk � n � dk

pk
�

j

2pk � 1

∑
h � 0

pk � 1

∑
i � 0

Xk � i # h 	 (8.15)

we see that

g � �j � Ug � �j � ∑
k:pk � n � dk

pk
�

j

pk � 1

∑
i � 0

�
Xk � i � Xk � i # 2pk � 

Hence,

Σ̂1 � j � 1

∑
l � 0

U l � g � �j � Ug � �j ��� g � �j � U jg � �j 
Clearly, U preserves L2-norm. Hence, by the triangle inequality,�� Σ̂1

�� � �� g � �j �� � �� U jg � �j �� �
�� g � �j �� 

But by the triangle inequality and Lemma 8.2 we can estimate this norm:�� g � �j �� 2 � ∑
k:pk � n � dk

pk
�

j

4p3
kα2

k � 4 ∑
k:pk � n � dk

pk
�

j

2k

k
� ∑

k:2k � n

2k

k
� O � n

logn � 
Hence, �� Σ̂1

�� � O � n
logn � 1 
 2  (8.16)

We now consider Σ2. First, we look at the sum over i and l,
j � 1

∑
l � 0

pk � 1

∑
i � 0

�
Xk � i # l � Xk � i # l # dk � 

As in the proof of Lemma 8.4, we will re-arrange the terms in this sum according to
Figure 8.2.

Again, i � l is constant along each diagonal. Performing the splitting, we get
j � 1

∑
l � 0

pk � 1

∑
i � 0

�
Xk � i # l � Xk � i # l # dk � � pk � 2

∑
i � 0

� i � 1 � �
Xk � i � Xk � i # dk �

� j � 1

∑
i � pk � 1

pk
�
Xk � i � Xk � i # dk �

� pk � 2

∑
i � 0

� i � 1 � �
Xk � pk # j � 2 � i � Xk � pk # j � 2 � i # dk �� S1 � S2 � S3 
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8.1. Approximation in L2

l

i

S1

S3
S2

pk
� 1

j � 1pk
� 1 j � pk

� 2

Figure 8.2.: Re-arrangement of the terms.

We examine the terms individually. For S1, following the argument used to obtain
(8.6),

� S1 � 2 � 2

����� pk � 2

∑
i � 0

iXk � i
����� 2 � 2p3

kα2
k � 22k

k


Hence, by Lemma 8.2,

������� ∑
k:pk � n � dk

pk � j

S1

�������
2 � 2 ∑

k:2k � n

2k

k
� O � n

logn �  (8.17)

Analogously, ������� ∑
k:pk � n � dk

pk � j

S3

�������
2 � O � n

logn �  (8.18)

We now consider the final term. The relevant norm splits up into three sums. To
simplify our notation, we introduce new random variables,

Vk � l � Xk � l � Xk � l # dk  (8.19)
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8. Gaussian approximation

With this convention,������� j � 1

∑
l � 0

Yn � l � ∑
k:pk � n � dk

pk � j

S2

�������
2 �

������� j � 1

∑
l � 0

∑
k:pk � n � dk

pkVk � l � ∑
k:pk � n � dk

pk � j

j � 1

∑
l � pk � 1

pkVk � l
�������

2

� ������� pk � 2

∑
l � 0

∑
k:pk � n � dk

pk � j

pkVk � l � ∑
k:pk � n � dk

pk
�

j

j � 1

∑
l � 0

pkVk � l
�������

2

� 2 ∑
k:pk � n � dk

pk � j

p2
k � pk � 1 � α2

k � 2 ∑
k:pk � n � dk

pk
�

j

p2
k jα2

k

� 2

��
� ∑

k:pk � n � dk
pk � j

pk � 1
k

� ∑
k:pk � n � dk

pk
�

j

j
k

� �
� 

(8.20)

We have used independence of the Xk � i and the definition of Vk � i to get the inequality,
when getting rid of the norm. The first sum may be estimated from Lemma 8.2. Indeed,

∑
k:pk � n � dk

pk � j

pk � 1
k

� ∑
k:2k � n

2k

k
� O � n

logn �  (8.21)

We only need to estimate the last sum in (8.20). This is where the maximum in the
statement of the lemma comes into play. Consider the function

max
1 � j � n

1
n ∑

k:pk � n � dk
pk

�
j

j
k

� max
1 � j � n

1
n ∑

k:log3 n � k � log2 k
log2 j � k

j
k


Since log2 j � log3 n if and only if j � nlog3 2, the function under the maximum is
constant for such j. Hence, the maximum is assumed for some j � nlog3 2. We may
estimate the function using integrals,

1
n ∑

k:log3 n � k � log2 k
log2 j � k

j
k

� j
n ∑

k:log2 j � k � log2 k

1
k

� j
n

� log2 n

log2 j

1
x

dx � j
n

� loglog2 n � loglog2 j � 
To estimate the last expression, we use the Mean Value Theorem,

loglog2 n � log log2 j � log log2 n � loglog2 j
log2 n � log2 j

log2 n � log2 j
n � j

� n � j �
�

1
log2 j

1
j
� n � j � 
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Since the maximum is assumed for some j � �
nlog3 2 	 n � , we get

max
1 � j � n

1
n ∑

k:pk � n � dk
pk

�
j

j
k

�
j
n

1
log2 j

1
j
� n � j � � n

n log2 nlog3 2 � O � 1
log2 n �  (8.22)

Now, by (8.17), (8.18), (8.20), (8.21), and (8.22),

max
1 � j � n

1�
n

����� Σ2 � j � 1

∑
l � 0

Yn � l
����� � O � 1

logn � 1 
 2 
Along with (8.13), (8.16) and the triangle inequality, this implies the lemma.

Combining Lemma 8.3, Lemma 8.4 and Lemma 8.5, we get the key lemma of this
section.

Lemma 8.6.

max
1 � j � n

1�
n

����� S j f � j � 1

∑
l � 0

Yn � l
����� � O � 1

logn � 1 
 2 
This is the first part of the way to Theorem 8.1. However, there are two prob-

lems. First of all, the random variables are not properly normalised. We take care of
this problem in the next theorem. Secondly, the random variables depend on n. This
problem will be solved subsequently.

Theorem 8.7. Let � X 	 B 	 µ � be a non-atomic probability space and let T : X � X be
an aperiodic automorphism. For any n � 	 there exists an f � L2 � X � and independent
N � 0 	 2 � log log3 � loglog2 � � distributed random variables Zn � 1 	    	 Zn � n � 1 such that

max
1 � j � n

1�
n

����� S j f � j � 1

∑
l � 0

Zn � l
����� � O � 1

logn � 1 
 2 
Proof. We may use the same f � L2 � X � as above. Let Yn � l be as in (8.10) and define

Zn � l � Yn � l�� Yn � l �� �
2 � loglog3 � loglog2 �  (8.23)

For ease of notation, we denote
�

2 � loglog3 � loglog2 � by K in this proof.
These random variables clearly have the right distribution, since the Yn � l are centred.

By Lemma 8.6 and the triangle inequality, it suffices to prove that

1�
n

����� j � 1

∑
l � 0

�
Yn � l � Zn � l �

����� � O � 1
logn � 1 
 2

(8.24)

for any j � 1 	    	 n � 1.
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8. Gaussian approximation

Let n be fixed. For any l � 0 	    	 n � 1,�� Yn � l �� 2 � 2 ∑
log3 n � k � log2 n

p2
k

p2
kk

� 2 ∑
log3 n � k � log2 n

1
k
	

We need to prove that ��� �� Yn � l �� 2 � K2
��� � O � 1

logn �  (8.25)

This amounts to showing that����� ∑
logn 
 log3 � k � log n 
 log 2

1
k

� loglog3 � loglog2

����� � O � 1
logn �  (8.26)

But this follows since for any a 	 b �
	 , a � b we have����� b

∑
i � a

1
k

� � b

a

1
x

dx

����� � b

∑
i � a

� 1
k

� 1
k � 1 � � 1

a


Now,
� logn 
 log 2

logn 
 log3

1
x

dx � log � logn
log2 � � log � logn

log3 � � loglog3 � log log2 
Even when taking possible error terms into account, coming from the fact that the
bounds logn � log3 and logn � log2 on k may not be integers, we still get (8.26).

Now, let j � ! 1 	    	 n " . By (8.25), since the Yn � l are independent and identically
distributed,

1
n

����� j � 1

∑
l � 0

�
Yn � l � Zn � l �

����� 2 � 1
j

����� j � 1

∑
l � 0

Yn � l � 1 � K�� Yn � l �� � ����� 2 � �� Yn � l �� 2
����� 1 � K�� Yn � l ��

����� 2
� �� �� Yn � l �� � K

�� 2 � ��� �� Yn � l �� 2 � K2
��� � O � 1

logn � 
Taking the square root of this and maximising over j implies the theorem.

Note that this theorem is a triangular one. That is, for each n there exists an array
of random variables Zn � j for which the theorem holds, but the arrays need not be equal
on the first entries. We would like a theorem which states that this is the case. That is,
a similar theorem in which the dependence on n is removed from the array of random
variables. This is essentially Theorem 8.1.

First, we make some definitions of random variables. For any n � 	 , we define

Yn � ∑
k:pk � n � dk

pk
�
Xk � n � Xk � n # dk �  (8.27)
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8.1. Approximation in L2

Note that if we extend the definition of Yn � l to 1 � l � n (instead of l � n), this is the
diagonal random variables Yn � n. As before, we take the appropriate normalisations,

Zn � Yn� Yn � �
2 � loglog3 � loglog2 ��� Yn� Yn � K  (8.28)

These are the random variables of the theorem.

Proof of Theorem 8.1. The main part of the proof consists in estimating the size of
certain sums. Some of these are potentially very close to the bounds, we are looking
for. Hence, the following is quite technical. By Lemma 8.6 and the triangle inequality,
it is sufficient to prove,

max
1 � j � n

1�
n

����� j � 1

∑
l � 0

�
Z j � Yn � j �

����� � O � loglogloglogn
logn � 1 
 2  (8.29)

We first consider
��� ∑ j � 1

l � 0 � Yl � Yn � l � ��� . We use the Vk � l defined in (8.19) to simplify nota-
tion.

j � 1

∑
l � 0

�
Yl � Yn � l � � j � 1

∑
l � 0

� ∑
k:pk � l � dk

pkVk � l � ∑
k:pk � n � dk

pkVk � l �
� j � 1

∑
l � 0

∑
k:pk � l � dk � n

pkVk � l � j � 1

∑
l � 0

∑
k:l � pk � n � dk

pkVk � l� Σ1 � Σ2 
Hence, to obtain an estimate of the norm, it suffices to obtain an estimate of the norm
of Σ1 and Σ2 individually. Immediately, by independence of the Vk � l and definitions of
constants, � Σ1 � 2 � 2

n � 1
∑
l � 0

∑
k:pk � l � dk � n

1
k


Unfortunately, it is not trivial to estimate the double sum in this expression. We split
the sum up into two parts,

�
nlog3 2 �
∑
l � 0

∑
log3 l � k � log2 l

1
k
� n � 1

∑
l � � nlog3 2 � # 1

∑
log3 l � k � log3 n

1
k

� S1 � S2  (8.30)

To obtain estimates of the inner sums, we will use Riemann integrals. From the defin-
ition of the Riemann integral, we get for any a 	 b � 	 , a � b

b

∑
k � a

1
k

� � b

a

1
x

dx � b

∑
k � a

� 1
k
� 1

k � 1 � � 1
a
 (8.31)
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From (8.31),

∑
log3 l � k � log2 l

1
k

� log log2 l � log log3 l � C1
log l

� log log3 � loglog2 � C1
log l

for some C1 � 0. Since the sum on the left hand side is equal to zero for l � ! 0 	 1 " and
the expression on the right hand side is decreasing as a function of l, we may majorise
the sum by a constant C2 � 0. Hence,

S1 � �
nlog3 2 �
∑
l � 0

∑
log3 l � k � log2 l

1
k

� C2

�
1 � n � log3 2 � � � O � n loglogloglogn

logn �  (8.32)

We now estimate S2. First, by (8.31),

∑
log3 l � k � log3 n

1
k

� log � logn
log j � � C3

logn

for some C3 � 0. Hence,

S2 � n � 1
∑

l � � nlog3 2 � # 1
� log � logn

log j � � C3
logn �

� � n 
 logn �
∑

l � � nlog3 2 � # 1
log � logn

log j � � n � 1
∑

l � � n 
 logn � # 1
log � logn

log j � � C3n
logn� S �2 � S � �2 � S � � �2  (8.33)

Clearly,

S � � �2 � O � n loglogloglogn
logn �  (8.34)

Consider S �2. Here,

S �2 � � n 
 log n �
∑

l � � nlog3 2 � # 1
log � logn

log j � � n
logn

log � logn

log
�
nlog3 2 � �

� n
logn

� loglog3 � loglog2 ��� O � n loglogloglogn
logn �  (8.35)

We now estimate S � �2 . Let L � log logn. Since j � n, we may take a C4 � 0 such
that

log � logn
log j � � C4 � logn

log j
� 1 � 
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8.1. Approximation in L2

Now, we split the sum once again,

S � �2 � n � 1
∑

l � � n 
 logn � # 1
log � logn

log j �
� � n 
 L �

∑
l � � n 
 logn � # 1

C4 � logn
log j

� 1 � � n � 1
∑

l � � n 
 L � # 1
C4 � logn

log j
� 1 � � S � �2 � S � �2  (8.36)

We estimate S � �2 .

S � �2 � � n 
 L �
∑

l � � n 
 logn � # 1
C4 � logn

log j
� 1 � � nC4

L
� logn

logn � loglogn
� 1 �

� 2C4n
L

loglogn
logn

� O � n loglogloglogn
logn �  (8.37)

For S � �2 we get, since logn � loglogn � L,

S � �2 � n � 1
∑

l � � n 
 L � # 1
C4 � logn

log j
� 1 � � C4n � logn

logn � logL
� 1 �

� C4n � 2L
logn � logL

� 1 � � 2nC4
2loglogL

logn
� O � n loglogloglogn

logn � 	 (8.38)

whenever n � eee . Assume for the remainder of the proof that this is indeed the case.
This is what it means for n to be sufficiently large. By (8.36), (8.37) and (8.38),

S � �2 � O � n loglogloglogn
logn �  (8.39)

Hence, by (8.33), (8.34), (8.35) and (8.39), the same holds for S2, so by (8.30) and
(8.32), � Σ1 � 2 � O � n loglogloglogn

logn �  (8.40)

For the last term, � Σ2 � 2 � 2
n � 1
∑
l � 0

∑
k:l � pk � n � dk

1
k


This expression may be estimated in a fashion analogous to the previous calculations,
so � Σ2 � 2 � O � n loglogloglogn

logn �  (8.41)

Hence we get by (8.40) and (8.41),����� j � 1

∑
l � 0

� Yl � Yn � l � ����� 2 � O � n loglogloglogn
logn �  (8.42)
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8. Gaussian approximation

With this estimate in place, it is easy to prove the theorem. Once again, K de-
notes

�
2 � loglog3 � loglog2 � . If we can find a good bound on

��� ∑ j � 1
l � 0 � Yl � Zl � ��� 2

, the
triangle inequality implies (8.29). Using the independence of the Yl , we get����� j � 1

∑
l � 0

� Yl � Zl � ����� 2 � ����� j � 1

∑
l � 0

Yl � 1 � K� Yl � � ����� 2 � j � 1

∑
l � 0

� � Yl ��� K � 2

� j � 1

∑
l � 0

�� Yl � Yn � l �� � j � 1

∑
l � 0

� �� Yn � l �� � K � 2 � O � n loglogloglogn
logn � � O � n

logn � 	
(8.43)

by (8.25) and (8.42). This completes the proof.

8.2. Invariance principles

In Volný’s paper [61], we also find proofs of the weak and the strong invariance prin-
ciple. Here, we prove the strong invariance principle. We subsequently make a few
comments on Volný’s proof of the weak invariance principle, and the reasons why it is
omitted here. We use the same splitting of the weighted sums as in Section 8.1, so a
large amount of references are given in the following.

Theorem 8.8. There is a Brownian motion X � n � , such that�
Sn f � X � n � ��

n loglogn
� 0 a  s 

Proof. Clearly, ∑n � 1
l � 0 Zl has the same distribution as a Brownian motion X � n � . We may

write

Sn f � n � 1
∑
l � 0

Zl � n � 1
∑
l � 0

�
Yn � l � Zl � � � Sn f � n � 1

∑
l � 0

Yn � l �  (8.44)

By (8.42) and (8.43), we know that����� n � 1
∑
l � 0

�
Yn � l � Zl �

����� 2 � O � n loglogloglogn
logn � 	 (8.45)

where the sum of random variables is itself a Gaussian random variable.
We now split the last term in (8.44) up into eight terms. These are terms, we treated

in the proofs of Lemma 8.3, Lemma 8.4 and Lemma 8.5. In particular by (8.2), (8.4)
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and (8.11),

Sn f � n � 1
∑
l � 0

Yn � l � ∑
k:dk � n

ĝk � ∑
k:dk � n

g̃k � Un ∑
k:dk � n

ĝk � T n ∑
k:dk � n

g̃k

� ∑
k:n � pk

Ŝk � n � ∑
k:n � pk

S̃k � n � � Ŝ � �n � n � 1
∑
l � 0

Yn � l � � S̃ � �n 
The first, third, fifth and seventh summand on the right hand side are all Gaussian, and
the variance of each one has already been seen to be

O � n
logn � � O � n loglogloglogn

logn � 
Hence, by the above and (8.44), we may write

Sn f � n � 1
∑
l � 0

Zl � Gn � ∑
k:dk � n

g̃k � T n ∑
k:dk � n

g̃k � ∑
k:n � pk

S̃k � n � S̃ � �n 	 (8.46)

where Gn is a Gaussian. Hence, Ĝn � Gn �
�

n log logn is also a Gaussian, and by the
above, �� Ĝn

�� 2 � ���� Gn�
n loglogn

���� 2 � O � log logloglogn
logn log logn �  (8.47)

Hence, for any ε � 0 we have

µ
�
x � X :

�� Ĝn
�� � ε � � � 2

π

� ∞

ε
�

logn log logn
C1 log log loglogn

e � x2 
 2dx � n � 2 	
where C1 � 0 is the constant implicit in the O in (8.47). By the Borel–Cantelli Lemma,
since ∑∞

n � 0 n � 2 � ∞,

lim
n � ∞

Gn�
n loglogn

� lim
n � ∞

Ĝn � 0 a  s  (8.48)

We now consider the remaining terms in (8.46). First, let g̃ � ∑∞
k � 1

�
g̃k
�
. Then,�� ∑k:dk � n g̃k

�� � g̃ for any n �
	 . As in the proof of Lemma 8.3, � g̃k � � dk pkεk � 6 � 2k.
Hence, g̃ � L2 � X � , so for any ε � 0,

∞

∑
n � 1

µ

�
x � X :

����� T n ∑
k:dk � n

g̃k � x � ����� � ε
�

n � � ∞

∑
n � 1

µ
�
x � X : � g̃ � x � � 2 � ε2n � � ∞ 

Hence, the Borel–Cantelli Lemma implies,

lim
n � ∞

�� T n ∑k:dk � n g̃k � x � ���
n log logn

� lim
n � ∞

�� T n ∑k:dk � n g̃k � x � ���
n

� 0 a  s  (8.49)
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In exactly the same manner,

lim
n � ∞

�� ∑k:dk � n g̃k � x � ���
n loglogn

� 0 a  s  (8.50)

Now, we consider the remaining random variable. That is, we define

Rn � ∑
k:n � pk

S̃k � n � S̃ � �n 
By (8.5) and (8.12), � Rn � � O

�
1
n2 � . By Chebychev’s inequality,

µ
�
x � X :

�
Rn � x � � � ε

�
n � � C2

ε2n3

for some C2 � 0 implicit in the O. Since ∑∞
n � 0 n � 3 � ∞, the Borel–Cantelli Lemma

implies that
lim
n � ∞

�
Rn
��

n loglogn
� lim

n � ∞

�
Rn
��

n
� 0 a  s  (8.51)

Now, the theorem follows from (8.46), (8.48), (8.49), (8.50) and (8.51).

Volný proves both a weak and a strong invariance principle. To state the weak
form, we define another more general form of partial sum. For t � � 0 	 1� , we define

Sn � t � � S � tn � f�
n

� ! tn "�
n

T � tn � f  (8.52)

The weak invariance principle states:

Theorem 8.9 (The Weak Invariance Principle).

Sn � t � D� � X � t ��	
where X � t � is some Brownian motion.

The proof of the weak invariance principle is based on the fact that Theorem 8.9
is implied by two properties. The first is the convergence of all finite dimensional
distributions of the Sn � t � to the Brownian motion. That is, for any k � 	 and any
vector � t1 	    	 tk � � � 0 	 1 � k,� Sn � t1 ��	    	 Sn � tk � � D� � � X � t1 ��	    	 X � tk � � 
This follows directly from Theorem 8.7

The second property is tightness of the sequence � Sn � t � � in C � � 0 	 1 � � . Tightness is
again implied by the fact that for any ε � 0 there is a λ � 1 such that

µ

�
x � X : max

1 � j � n

�� S j f � x � �� � λ
�

n � � ε
λ2  (8.53)
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This is a consequence of Theorem 8.4 in [9]. Volný proves this last property using a
more refined splitting than the one which lead to Theorem 8.7. For each component,
he proves that (8.53) holds. This immediately implies that (8.53) holds for the partial
sums.

To see that these two properties together implies the weak invariance principle, we
need only note that the sequence is in C � � 0 	 1� � . By Theorem 8.1 in [9], the sequence
converges to the Brownian motion from the first of the two properties.

We do not go deeper into the proof of the Weak Invariance Principle. The first
reason is the increased technicalities involved in a further splitting of the sums. The
second reason is that (8.53) is highly dependent on the stationarity of the sequence
S j f . Since we will be dealing with weighted sums in the next chapter, the sequence of
random variables involved is no longer stationary. Hence the omission.
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9. Weighted Gaussian
approximation

In this chapter, we generalise the results in the previous chapter to weighted partial
sums. We take two approaches to the problem.

The first approach, which we discuss in Section 9.1 is to take Volný’s methods
and apply them directly to weighted sums instead of the non-weighted sums treated
by himself. As we go along, we impose hypotheses on the sequence of weights. This
approach does in fact yield some results, but the hypotheses we need on the sequence
of weights are both rather strange and rather restrictive. This illustrated the limitations
of Volný’s methods, when no new elements are added.

In Section 9.2, we add an additional element to Volný’s approach and with little
effort obtain a weighted result, where the hypothesis on the weights is less restrictive
and much more natural.

9.1. The direct approach

In this section, we will discuss the approach of proving a generalisation of Volný’s
theorem on Gaussian approximation in L2 (Theorem 8.1) to weighted sums instead of
the partial sums studied in Chapter 8 using only Volný’s methods. For the remainder of
this section, let � an � ∞

n � 0 be a sequence of positive reals bounded from above by some
M � 0. We now state three hypotheses on the weights, which we will need to arrive at
a generalisation. We will return to a discussion of these at a later point. The first one
is

∆ � ∞

∑
n � 1

�
an � an � 1

� � ∞  (H1)

Our second hypothesis is more technical. Namely,

�� An � K2 �� � ������� 2 ∑
log3 n � k � log2 n

�
∑n

i � n � 2k # 1 ai � 2

4kk
� K2

������� � O � 1
logn � 	 (H2)
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9. Weighted Gaussian approximation

where K � 0 is some constant. Our third and final hypothesis looks even more com-
plicated.

1
n ∑

log3 n � k � log2 n

n � 1
∑

l � � nlog3 2 �

�
∑n � 2k # 2

i � l � 2k # 1 ∑2k � 2
h � 0 � ai # h � ai # h � 1 � � 2

4kk
� O � loglogloglogn

logn � 
(H3)

The hypotheses may seem restrictive, but they certainly include the standard partial
sums. Clearly, (H1) and (H3) holds, since the involved sums are equal to zero. (H2)
also holds, since an � C implies that K � C

�
2 � loglog3 � loglog2 � as we saw in

(8.25). In the same way, we see that the hypotheses are all true if the sequence � an � is
eventually constant. In fact, we always have that 0 � K � M

�
2 � loglog3 � loglog2 � ,

as is seen by majorising the terms of the sum in (H2).

Example. To prove that our Hypotheses does not exclude all non-trivial sequences,
we produce an example. From Hypothesis (H1), it is clear that the sequence must
be convergent, and from Hypothesis (H2) it follows that the limit must be different
from zero. Indeed, otherwise K would be zero. Let α � � 0 	 1 � and let an � 1 � αn

for n � 0 	 1 	    . We claim that the Hypotheses (H1), (H2) and (H3) are true for this
sequence.

We prove that (H1) holds.
∞

∑
n � 1

�
an � an � 1

� � � 1 � α � ∞

∑
n � 1

αn � 1 � 1 
Hence, the (H1) certainly holds. To prove Hypothesis (H2), we note that

� n

∑
i � n � 2k # 1

ai � 2 � � 2k � n

∑
i � n � 2k # 1

αi � 2 � 4k � 2 � 2k
n

∑
i � n � 2k # 1

αi � � n

∑
i � n � 2k # 1

αi � 2 
Hence, An splits up into three sums,

2 ∑
log3 n � k � log2 n

1
k
� 4 ∑

log3 n � k � log2 n

∑n
i � n � 2k # 1 αi

2kk
� 2 ∑

log3 n � k � log2 n

�
∑n

i � n � 2k # 1 αi � 2

4kk


For the first sum, we know from (8.25),����� 2 ∑
log3 n � k � log2 n

1
k

� 2 � loglog3 � loglog2 � ����� � O � 1
logn � 

Hence, it suffices to prove that the two remaining terms converge to zero rapidly
enough. We let A � 1 � � 1 � α ��� ∑∞

i � 0 αi. Then,

4 ∑
log3 n � k � log2 n

∑n
i � n � 2k # 1 αi

2kk
� 4A ∑

log3 n � k

1
2kk

� O � 1
nlog3 2 logn � � O � 1

logn � 
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9.1. The direct approach

Similarly,

2 ∑
log3 n � k � log2 n

�
∑n

i � n � 2k # 1 αi � 2

4kk
� 2A2 ∑

log3 n � k

1
4kk

� O � 1
logn �  (9.1)

This completes the proof of Hypothesis (H2).
The third Hypothesis (H3) is in fact even easier to check. First, we see that

� n � 2k # 2
∑

i � l � 2k # 1

2k � 2
∑
h � 0

� ai # h � ai # h � 1 � � 2 � � n � 2k # 2
∑

i � l � 2k # 1

2k � 2
∑
h � 0

�
αi # h � αi # h � 1 � �

� � n � 2k # 2
∑

i � l � 2k # 1
αi # 2k � 2 � n � 2k # 2

∑
i � l � 2k # 1

αi � 2 � 2 � 2A2 
Hence, the left hand side in Hypothesis (H3) is less than or equal to

2A2 1
n ∑

log3 n � k � log2 n

n � 1
∑

l � � nlog3 2 �
1

4kk
� 2A2 ∑

log3 n � k � log2 n

1
4kk

� O � 1
logn � 	

as in (9.1). Hence, Hypothesis (H3) also holds.

Now, let � X 	 B 	 µ � be a non-atomic probability space and T : X � X be an aperiodic,
ergodic automorphism. For any f � L2 � X � and any j � 	 , we define the n’th weighted
partial sum,

A j f � j � 1

∑
l � 0

alT
l f  (9.2)

Following Volný’s methods, we may prove the following theorem:

Theorem 9.1. Under the hypotheses (H1), (H2) and (H3), there exists an f � L2 � X �
and independent random variables Z j 	 N � 0 	 K2 � , where K is defined by (H2), such
that for n sufficiently large

max
1 � j � n

1�
n

����� A j f � j � 1

∑
l � 0

Zl

����� � O � loglogloglogn
logn � 1 
 2 

Note that for an � 1, this is Theorem 8.1.
We will briefly discuss the method of proof. The proof follows the same method

as the one we used in Chapter 8. However, occasional problems present themselves,
since the sums are weighted. The first problem occurs in the proof of a weighted
analogue of Lemma 8.3. In the weighted case, the partial sums of a co-boundary are
no longer telescoping. Hence, there is an additional term in the proof, which needs
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9. Weighted Gaussian approximation

to be controlled. This is the function of Hypothesis (H1), which tells us that the non-
telescoping part of the weighted sum of a co-boundary may be controlled.

Hypothesis (H1) gives us sufficient mileage to arrive at a weighted analogue of
Lemma 8.6. However, as was the case in the non-weighted setting, the random vari-
ables are not identically distributed. In this first weighted setting, the appropriate defin-
itions are

Yn � l � ∑
k:pk � n � dk

� n

∑
i � n � � pk � 1 �

ai � �
Xk � l � Xk � l # dk � 	 Zn � l � Yn � l�� Yn � l �� K 	 (9.3)

where K is the constant defined in (H2). This illustrates the function of Hypothesis
(H2), which is needed to ensure that we may find the variance of the limiting distribu-
tion of the random variables, to which the weighted partial sums are close. This takes
us as far as an analogue of the triangular Theorem 8.7:

Theorem 9.2. Let � an � be a bounded sequence of positive reals such that (H1) and
(H2) hold. Let � X 	 B 	 µ � be a non-atomic probability space and let T : X � X be an
aperiodic automorphism. For any n � 	 there exists an f � L2 � X � and independent
N � 0 	 K2 � distributed random variables Zn � 1 	    	 Zn � n � 1, where K is defined by (H2)
such that

max
1 � j � n

1�
n

����� A j f � j � 1

∑
l � 0

Zn � l
����� � O � 1

logn � 1 
 2 
To obtain the full non-triangular result, we let the random variables of the triangular

array tend to the diagonal. That is, we consider the difference between the partial sums
of the Yn � l and the Yn defined by

Yn � ∑
k:pk � n � dk

� n

∑
i � n � � pk � 1 �

ai � �
Xk � n � Xk � n # dk � 

The essence of Hypothesis (H3) is that the difference between the partial sums of the
off-diagonal Yn � l and the partial sums of the diagonal Yn may be controlled. With that
assumption, we may obtain Theorem 9.1.

In fact, Volný’s methods will also allow us to obtain a Strong Invariance Principle
for weighted sums as in Theorem 8.8. However, it is not immediately possible to obtain
the Weak Invariance Principle by his methods. This is because his approach depends
critically on the fact that the random process ! T i f " is stationary. This is not generally
the case for the weighted process ! aiT i f " .

9.2. Abel summation

The results in the preceding section are somewhat artificial. Though the result is in-
deed a result in Gaussian approximation, the weighted sums behave more or less as
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9.2. Abel summation

the standard partial sums, since we are only allowed weights that oscillate very little
around a constant sequence. Such sequences do not occur naturally in probability
theory. Therefore, we take another approach, which will give us a Gaussian approx-
imation result under weaker assumptions. This work is joint work between this author
and M. Weber ([37]).

Let � al � be a decreasing sequence of positive numbers and assume that

n loglogloglogn
logn

� o � n � 1
∑
l � 0

a2
l �  (H4)

Under this assumption, we prove the following theorem:

Theorem 9.3. Let � al � be a decreasing sequence satisfying Hypothesis (H4). There
exist independent random variables Zl 	 N � 0 	 2 � loglog3 � log log2 � � and a function
f � L2 � X 	 B 	 µ � such that

lim
n � ∞

������� An f�
∑n � 1

l � 0 a2
l � 1 
 2 � ∑n � 1

i � 0 aiZi�
∑n � 1

l � 0 a2
l � 1 
 2

������� � 0 
Furthermore,

lim
n � ∞

� An f ��
∑n � 1

l � 0 a2
l � 1 
 2 � �

2 � loglog3 � log log2 ��
This theorem generalises Theorem 8.1. Indeed, for the constant sequence ai � 1 it

is exactly this theorem. Also, the theorem gives us control over the variance of An f .
There are several other sequences of weights for which the theorem holds. We give
examples at the end of this chapter.

Proof of Theorem 9.3. Let f � L2 � X 	 B 	 µ � . For l � 	 , we consider the sums

Sl f � l � 1
∑
i � 0

T i f 	 Al f � l � 1
∑
i � 0

aiT
i f and Al f � l � 1

∑
i � 0

� ai � ai # 1 � Si f 
Note that

Al f � Al f � alSl  (9.4)

This is the application of Abel summation.
Let f � L2 � X 	 B 	 µ � and Zl be the function and the random variables from Theorem

8.1. That is, there is a K � 0 for which

max
0 � l � n

����� Sl f � l � 1
∑
i � 0

Zi

����� � K � n log logloglogn
logn � 1 
 2 
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9. Weighted Gaussian approximation

Hence, for any l � n, we have����� Al f � l � 1
∑
i � 0

� ai � ai # 1 � � i � 1
∑
j � 0

Z j � ����� � l � 1
∑
i � 0

�
ai � ai # 1

� ����� Sl f � l � 1
∑
i � 0

Zi

�����
� K

l � 1
∑
i � 0

�
ai � ai # 1

� � n log logloglogn
logn � 1 
 2

(9.5)

Furthermore, ����� alSl f � al

l � 1
∑
i � 0

Zi

����� � K
�
al
� � n loglogloglogn

logn � 1 
 2  (9.6)

Since
l � 1
∑
i � 0

� ai � ai # 1 � � i � 1
∑
j � 0

Z j � � l � 1
∑
i � 0

aiZi � al

l � 1
∑
i � 0

Zi 	
we have by (9.4), (9.5) and (9.6),

max
0 � l � n

����� Al f � l � 1
∑
i � 0

aiZi

����� � max
0 � l � n

����� Al f � alSl � l � 1
∑
i � 0

aiZi � al

l � 1
∑
i � 0

Zi � al

l � 1
∑
i � 0

Zi

�����
� K max

0 � l � n
� l � 1
∑
i � 0

�
ai � ai # 1

� � �
al
� � � n loglogloglogn

logn � 1 
 2

� Ka0 � n loglogloglogn
logn � 1 
 2 	

(9.7)

since the sequence of weights is assumed to be decreasing. Since we also have assumed
Hypothesis (H4), we have

lim
n � ∞

������� An f�
∑n � 1

i � 0 a2
i � 1 
 2 � ∑n � 1

i � 0 aiZi�
∑n � 1

i � 0 a2
i � 1 
 2

������� � 0  (9.8)

Hence, to complete the proof of the first part of the theorem, it suffices to prove that
the random variables have the right distribution. But this follows since������� ∑n � 1

i � 0 aiZi�
∑n � 1

i � 0 a2
i � 1 
 2

�������
2 � ∑n � 1

i � 0 a2
i � Zi � 2

∑n � 1
i � 0 a2

i

� � Z0 � 2 � 2 � loglog3 � loglog2 ��	 (9.9)

since the Zi are independent and identically distributed. Also, (9.8) and (9.9) immedi-
ately imply the second part of the theorem.

128



9.2. Abel summation

Slightly strengthening the hypothesis on the weights proves useful in applications
of Theorem 9.3. The strengthened hypothesis we are interested in states that for some
η � 0,

n loglogloglogn
logn

� logn � η � o � n � 1
∑
l � 0

a2
l �  (H5)

With this strengthened hypothesis, we get the following corollary of the proof of
Theorem 9.3:

Corollary 9.4. Let � al � be a decreasing sequence satisfying Hypothesis (H5). There
exist independent random variables Zl 	 N � 0 	 2 � log log3 � loglog2 � � and a δ � 0
such that ������� An f�

∑n � 1
l � 0 a2

l � 1 
 2 � ∑n � 1
i � 0 aiZi�

∑n � 1
l � 0 a2

l � 1 
 2

������� � O � 1� logn � δ � 
Proof. This is immediate from (9.7) and (H5), with δ � η � 2.

Theorem 9.3 and Corollary 9.4 may be applied to find functions for which the
Central Limit Theorem, the Almost Sure Central Limit Theorem and the Law of the
Iterated Logarithm hold for the weighted partial sums under mild assumptions on the
weights. These results will be published elsewhere ([37]). For now, we give two
examples of sequences satisfying (H4) and (H5). The first one is a trivial one, which
implies that our results has Volný’s as a consequence. The second one illustrates that
there is in fact new information in the results of this chapter.

Example. (i) Let c � 0 be some number and let ai � c. This sequence fulfils both
(H4) and (H5). Indeed, since

n � 1
∑
i � 0

a2
i � nc2 	

we have (H4). To see that (H5) is satisfied, note that any η � � 0 	 1 � will do.

(ii) Let a � � 0 	 1
2 � and define ai � 1 � � log i � a for i � 1. This certainly satisfies (H4),

since
n loglogloglogn�

∑n � 1
i � 0 a2

n � logn
�

n loglogloglogn

n 1
� logn � 2a logn

� loglogloglogn� logn � 1 � 2a 	
which tends to zero as n tends to infinity, since 1 � 2a � 0. Since we may choose
η � 0 such that 1 � 2a � η � 0, this sequence also satisfies (H5).
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10. Further research problems

In this chapter, we describe some ideas for further research in the field of Gaussian
approximation in ergodic theory. We discuss three such ideas, for all of which we
describe some ideas which may lead to results in the field. Some of these ideas are
quite loose, mainly due to the fact that they have not been pursued so far.

The first problem we describe is a multi-dimensional generalisation of the mater-
ial in the preceding two chapters. The question is, if there exists an L2 function in a
non-atomic probability space � X 	 B 	 µ � , such that for d commuting, aperiodic, measure
preserving transformations T1 	    	 Td , the partial sums of f under each such transform-
ation is well approximated by the sum of Gaussian random variables. We give some
partial results in this direction and describe where this method fails.

The second problem is the question of, whether or not the approximation theorems
remain valid in other norms than the L2-norm. In the preceding chapters, we have been
concerned with approximation in L2. However, a number of other Banach spaces are
contained in L2, and it is approximation inside these, we will discuss in Section 10.2.
Only a few ideas in this direction are given.

In Section 10.3, we discuss a final research problem. Namely, the problem of
extending the material in this part of the thesis to non-ergodic dynamical systems. Our
methods so far have been highly dependent on the ergodicity of the systems, and only
loose ideas for overcoming this requirement are given in this thesis.

10.1. Gaussian approximation for � d -actions

In this section, let � X 	 B 	 µ � be a non-atomic probability space, let d � 	 and let � d act
on X by measure preserving transformations Tv, v � � d. We assume that the action is
ergodic. For such a system, we may define the partial sums along the vector v ��� d of
the function f � L2 � X � ,

S � v �j f � j � 1

∑
l � 0

T j
v f  (10.1)

Can we find an f � L2 � X � such that Theorem 8.1 holds for all v � � d or at least all v in
some subset V � � d? For V � ! e1 	    	 ed

" , this is the question asked in the beginning
of this chapter.
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10. Further research problems

To this author, it seems that the key to answering the above question must lie in
a generalisation of Proposition 7.19. Such a generalisation must depend on a multi-
dimensional version of Rokhlin’s Lemma. In fact, it is possible to obtain such a gen-
eralisation. In the following, we do just that.

Theorem 10.1. Let � X 	 B 	 µ � be a non-atomic probability space. Let d � 	 and let� Tv � v ��� d be a � d-action by aperiodic measure preserving transformations on X. Let
n � 	 , let ε � 0 and let In � ! 0 	    	 n � 1 " d � � d. There exists an E � B such that

TvE � Tv � E � /0 for any v 	 v � � In 	 v �� v � 	 (10.2a)

µ � �
v � In

TvE � � 1 � ε  (10.2b)

Proof. Let � l be the lexicographical ordering on � d. We define the following ordering
on � 	 � ! 0 " � d: Let v 	 w � � 	 � ! 0 " � d . v � w if and only if

max � v1 	    	 vd � � max � w1 	    	 wd � or (10.3a)

max � v1 	    	 vd ��� max � w1 	    	 wd � and v � l w  (10.3b)
It is easy to see, that this is a total ordering. For the remainder of this proof, the
ordering used (explicitly or implicitly) is � . Now, for some B � B with µ � B � � n � dε,
we define the function

vB � x ��� inf� �
v � � 	 � ! 0 " � d : Tvx � B � 

Furthermore, for u ��� d# � ! 0 " , we define sets,

Bu � ! x � B : vB � x � � u " 
Since the action is ergodic, the sets TvBu, u � � d# � ! 0 " 	 0 � v � u cover X up to a
set of measure zero. Indeed, otherwise the complementary set of the union of the Bv

would be invariant under the action with measure between zero and one, contradicting
the ergodicity. Clearly, the sets are also disjoint.

We will construct the set E as the union of some of the disjoint sets defined above.
Define

E � �

u � � n ������� � n �

���
u1 � n � 1

n � � ����� � � ud
� n � 1
n �	��

v � 0
Tn � vBu 

Clearly, ! TvE "
v � In is a family of pairwise disjoint sets. Furthermore, the construction

yields

µ � X �
�

v � In

TvE � � nd ∑
v ��� d

�
� �

0 �
µ � Bk � � ndµ � B � � ε 

This completes the proof.
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10.1. Gaussian approximation for � d-actions

With the above theorem, it is relatively simple to extend Proposition 7.19 to � d-
actions.

Proposition 10.2. Let � X 	 B 	 µ � be a non-atomic probability space. Let d � 	 and let� Tv � v ��� d be a � d-action by aperiodic measure preserving transformations on X. Let� Xv � i ��� d be an ergodic strictly stationary process (defined on a different probability
space), let ξ1 � ! A1 	    	 AK

" be a partition of X, n � 	 , and let ε � 0. Let In be as in
Theorem 10.1. Then, there exist a measurable finite valued function f such that:

1. There exists a random array � X �v � v � In distributed as � Xv � v � In on X,

µ ! � v � In 	 �� Tv f � X �v �� � ε " � ε  (10.4a)

2. The partition η1 generated by � Tv f � v � In is ε-independent of ξ1 in the sense that

∑
A � η1 � B � ξ1 � µ � B � � 0

�
µ � A � � µ � A �B � � � ε  (10.4b)

Proof. As before, we begin with the assumption that Xv is finitely valued. We may
choose a representation of the process as an ergodic dynamical system with � d-action.
Let � X � 	 C 	 ν 	 Sv � where v � � d be an ergodic dynamical system with some integrable
function Y such that SvY 	 Xv. This is such a representation.

As in the proof of Proposition 7.19, we may without loss of generality choose
the representation in such a way, that there exists sub-σ-algebras C � 	 C � � � C with the
properties that

1. C � and C � � are Sv invariant.

2. Both � X � 	 C � 	 ν 	 Sv � and � X � 	 C � � 	 ν 	 Sv � are ergodic.

3. Y is C � � measurable.

Now, let N � 	 and ε � � 0 to be fixed later. Let F � B be the set corresponding
to these values from Theorem 10.1. That is, ! TvF " fulfils (10.2a) and (10.2b) with ε
replaced by ε � and for v 	 v � � IN . By the same theorem, we may choose a family of sets! SvE " � C � , v � IN with the same properties. Furthermore, the base sets E and F may
be chosen such that µ � F � � ν � E � . Let π1 be the partition of X generated by ! TvF " ,
v � IN and π2 be the partition of X � generated by ! SvE " , v � IN . Clearly, these are
identically distributed.

We now choose a family of measure preserving bijections,

φv : TvF � SvE 	 v � IN 
For the exceptional set, we choose another measure preserving bijection,

φε : X �
�

v � IN

TvF � X � � �
v � IN

SvE 
133



10. Further research problems

We combine the whole thing to a measure preserving bijection which maps π1 to π2.

φ � x ��� �
φv � x � for x � TvF 	
φε � x � otherwise.

We map the partition ξ1 to X � through this function, that is, ξ2 � φ � ξ1 � .
Now, let η2 be the partition of X � induced by ! SvY

" , v � In. We map this partition
to X . That is, η1 � φ � 1 � η2 � . Since C � is independent of C � � , the partition π2 � ξ2 is
independent of η2. Hence, η1 is independent of π1 � ξ1.

We know, that all images of Y under Sv, v � In are constant on the cells of the
partition π2 � ξ2 � η2, except possibly on the exceptional set in π2. Hence, we may
define a finitely valued function on X by

f � x ��� �
Y � φ � x � � for x � TvF 	 v � IN 	
0 otherwise,

(10.5)

and random variables,
X �v � x ��� Sv � Y � φ � x � � �  (10.6)

Clearly, � Xv � v � In 	 �
X �v � v � In


We now consider

x � �
v � IN � n

TvF 
Following from the construction, we know the values of Tw f � x � for any w � In, since
we know which cells of the partition π1 � ξ1 � η1, Twx belongs to. In fact, by (10.5)
and (10.6),

Tw f � x ��� X �w � x � for x � �
v � IN � n

TvF 	 w � In 
By Theorem 10.1, we may choose F , N and ε � such that

µ � �
v � IN � n

TvF � � 1 � ε 
This implies (10.4a). To prove (10.4b), we note that any dependence between the
partitions must come from the exceptional set. That is, the set of measure � ε.

It only remains to be shown that the proposition remains true without the assump-
tion that Xv be finitely valued. To see this, we note that we may approximate any Xv

by finitely valued X̂ � h �
v for each h � 	 . Thus, we obtain partitions η � h �

1 and η � h �
2 in

the construction above for each h � 	 . We may choose this approximation such that
η � h # 1 �

2 is a refinement of η � h �
2 . In this way, we ensure that the convergence takes place

in both spaces.
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Proposition 10.3. Let nk be positive integers, � Xk � v � v ��� v be ergodic strictly stationary
processes (defined on different probability spaces), εk � 0 	 k � 1 	 2 	    . Then there
exist measurable finite valued functions fk such that

1. for every k � 1 	 2 	    there exists a random matrix � X �k � v � v � Ink
with the same

distribution as � Xk � v � v � Ink
on X,

µ
� � v � Ink 	 �� Tv fk � X �k � v �� � εk

� � εk 
2. the partition ξ generated by f j � Tv 	 1 � j � k � 1 	 v � In j , and η generated by

fk � Tw 	 w � Ink , are ε-independent in the sense that

∑
A � η � B � ξ � µ � B � � 0

�
µ � A ��� µ � A �B � � � εk 

Proof. Apply Proposition 10.2 for each k � 	 inductively.

Proposition 10.4. Let � εi � i � � � � , � αi � i � � � � and � di � i � � � 	 . Then there exist� f i � i � � � L2 � Ω 	 A 	 µ � , � f i � 0 for any i �
	 ; and independent random variables Xk � v,
i � I2dk , k � 	 where any given Xk � v is N � 0 	 α2

k � -distributed, such that� k � 	 	 v � I2dk :
�� Xk � v � Tv f k

�� � εk  (10.7)

Proof. Apply the above proposition to stationary processes � Xk � v � consisting of random
variables with N � 0 	 α2

k � -distribution. This yields the proposition.

Clearly, Proposition 10.4 implies that we may find functions such that their iterates
behave much like Gaussian random variables. However, putting this together to a
function for which Theorem 8.1 holds for all v � ! e1 	    	 ed

" is a lot more difficult
than it might seem. The attempts made by this author to construct such a function all
failed because the partial sums failed to fulfil the analogue of Lemma 8.3.

The proof of this lemma in one dimension was based on the fact that we could
re-write the function as the sum of co-boundaries with respect to the automorphism,
we iterated. To prove the corresponding lemma for � d-actions by the same techniques,
we must find a function which is a co-boundary with respect to all the transformations
Tv, v � V � � d. Failing to find such a function, we could find a function which is a co-
boundary plus something controllable with respect to transformation Tv, v � V � � d. It
has not been possible for the present author to construct any functions with the required
properties. However, this does not mean that such a function does not exist.

10.2. Approximation in Lp-norm

The second problem, we choose to describe, concerns some properties of the function
found in Theorem 8.1. In the construction of this function, we found that the function
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was in L2. Our question is now: Is f contained in Lp for 2 � p � ∞? Since, for
p 	 q � � 2 	 ∞ � , p � q, it is well known that Lp � X � � Lq � X � , it is clearly sufficient to
prove that f as constructed in Section 7.5 is uniformly bounded.

In fact, this is implied by Theorem 8.8. Indeed, the Brownian motion in uniformly
bounded, so by Theorem 8.8, Sn f � L∞ � X � for n large enough. For such n,

T n # 1 f � Sn # 1 f � Sn f � L∞ � X �� (10.8)

Since T is measure preserving, this must mean that f � L∞ � X � . Indeed, otherwise
for any M � 0 there would be a set of positive measure, such that for any x in this
set, f � x � � M. Since T is measure preserving, this would also be the case for T n # 1 f ,
contradicting (10.8).

The next obvious question is, whether or not the theorem corresponding to The-
orem 8.1 holds, when we replace the L2-norm ��� � with the Lp-norm ��� � p. As in the
previous section, one also encounters problems when trying to generalise the method
of proof from Volný’s paper to this problem. The method of proof used by Volný in
[61] and the present author in Chapter 8 was highly dependent on the fact that inde-
pendence of random variables corresponds to orthogonality in L2. This is not the case
in Lp for p � 2, where we do not even have a sensible inner product.

Other problems are likely to present themselves in an attempt to solve this problem.
At any rate, the present author has not been able to come up with really useful ideas
for solving this problem.

10.3. Non-ergodic systems

The third problem we will describe, is the question of weakening the independence
condition implied by the ergodicity of the systems, we have been looking at so far.

Ergodicity can be viewed as a generalisation of independence. Indeed, we may
view ergodicity as a generalisation of the strong mixing property for measure pre-
serving systems. Since strong mixing states

µ
�
A � T � nA � � � � �

n � ∞
µ � A � 2 for any A � B 	

we may read this as “Any given event is asymptotically independent of it’s history”.
This clearly generalises independence of events to a wider class of random processes.
It is well-known that strong mixing implies ergodicity, so with the above interpreta-
tion, we may consider ergodicity to be an weakened form of independence of random
processes.

In the beginning of this part of the thesis, we posed the question of whether or not
the independence criterion could be weakened in the Central Limit Theorem and the
Almost Sure Central Limit Theorem. We have answered this question affirmatively for
some functions in L2

0 � X � under the assumption that the process could be described as
an ergodic measure preserving system. However, we are still left with an assumption
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10.3. Non-ergodic systems

stating a sort of generalised independence. The next obvious question is: “Under
which circumstances may the independence assumption be weakened further?”

Clearly, this is a very difficult question. In all of the methods used in the preceding,
we had to assume ergodicity in some sort of disguise. Whenever we were discussing
irrational rotations of the torus, we needed Weyl’s Equidistribution Theorem, which
is in fact a consequence of ergodicity. In the general measure preserving systems
case, the main instrument of our approach was Rokhlin’s Lemma, which is again a
consequence of ergodicity.

It seems clear to this author that if the results are to be extended to non-ergodic
systems, we must revert to the methods known from irrational rotations of the circle. It
would appear that we must find some substitute for Weyl’s Theorem, which applies in
non-ergodic systems. However, we need to go beyond rotations of the circle, since all
irrational rotations are ergodic, and hence already treated. Also, it is easy to construct
counterexamples to any statement resembling Weyl’s Theorem, that would be useful
for our purposes, whenever the rotation is not irrational. Hence, it would seem that
some definition of equidistribution in other measure spaces along with a replacement
of Weyl’s Theorem would a the way to overcome the barrier. This author has so far
not been able to take these ideas any further.
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