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Introduction

How does the Meadow-flower its bloom unfold?
Because the lovely little flower is free
Down to its root, and, in that freedom, bold.

William Woodsworth

0 E\'l ACKGROUND. The polynomial invariant for knots introduced by Jones [17] in 1986 signed the
I qé‘) beginning of a fast development of Knot Theory in new directions, with unexpected relations
CRIA| to several fields of both Mathematics (Hopf algebras, subfactors) and Physics. In particular, it
was soon clear that there are relations between Knot Theory and Quantum Groups (Drinfeld [6—11] and
Jimbo [16]). For references on Hopf algebras, we refer to Sweedler [41] and Schneider [38]. For references
on Quantum Groups and their relations to Knot Theory, we refer to Kassel [21].

o

In 1988, Witten [50, 51] (see also Atiyah [2]) introduced the notion of a Topological Quantum Field
Theory (TQFT). In dimension 3, TQFTs provide an interpretation of Jones polynomial as a path integral
and relate it to Conformal Field Theories. In 1991, Reshetikhin and Turaev [37] introduced a family of
invariants of 3-manifolds based on Knot Theory and Quantum Groups. These invariants, and the similar
ones constructed by other authors (see [14, 15, 25, 33, 46] and, in dimension 4, [4, 5, 28]), are closely
related to braided tensor categories and, in particular, categories of representations of Quantum Groups. For
a detailed discussion of TQFTs in dimension 3 and Reshetikhin-Turaev invariants, we refer to Turaev [43].

A tensor category . 7 (see, e.g., [27]) is braided [20] if it is endowed with a natural family of isomorph-
ismsc={cyy: UQV - VU | U,V €.7), the braiding, such that

cuyvez = (V®cyz)o(cyy ®Z)
cugvz = (cuz®V)o (U®cyz)

for every Z € .72. (In the above formula, the identity of an object U is also denoted by U). A balanced
category [19] is a braided tensor category .72 endowed with a family of isomorphisms 6 = {6y: U —
U | U € .7}, the twist, such that Oygy = cyy o cyy © (By ® Oy). Let U be an object in a tensor category.
We recall [27] that an object U™ is a left dual of U if U* is endowed with an arrow b: I — U ® U*, the unit,
and an arrow d: U* ® U — 1, the counit, such that (U®d)o (b U) =1dy and (dQ® U*) o (U* ® b) = Idy-.
A balanced category .77 is a ribbon category [36] when every object U € .72 has a left dual U* such that
07, = Oy-. (In [19, 39], a ribbon category is called a fortile tensor category.) We recall that a ribbon link is
a finite family of disjoint knots in the 3-sphere S 3, with a number associated to every knot. It turns out that
the automorphisms of the tensor unit I of .77 is a quotient of the space of ribbon links colored by objects
of .%. Fix a field k. A modular category [37] is, roughly speaking, a k-linear semisimple ribbon category
whose simple objects satisfy a non-degeneracy condition.

The crucial point in the construction of Reshetikhin-Turaev invariants is that a closed compact 3-man-
ifold M can be represented by a ribbon link. Suppose that .2 is a modular category. Chose a ribbon link
R representing M. By considering the sum of the values in End, _#(I) obtained by coloring R in all possible
ways by simple object of . 72, to M we associate a scalar which does not depend on R.

o

IX



X INTRODUCTION

Tensor categories used to construct TQFTs are, usually, categories of representations. The category of
representations . %2,+(H) of a Hopf algebra H (over k) is braided if and only if H is quasitriangular, i.e., it
is endowed with an invertible element R € H ® H, called a universal R-matrix, such that, for every h € H,

(o o A)(h)R = RA(h), (A® H)(R) = R 3R>, (H®A)R) = R;3R,>,

where A is the coproduct of H, ¢ the permutation, R,, = R® 1, R,; = 15 ®R,and R;; = (0® H)(17 ® R).
If R = §; ® {; is a universal R-matrix, the braiding ¢ in .72, (H) is givenby cxy: X®Y - Y@ X: x®y
Ciy®E;x. Conversely, given a braiding ¢ in . %2, (H), we obtain a universal R-matrix R = (6ocy p)(1g®1p) €
H ®x H. The category of representation of a quasitriangular Hopf algebra H is ribbon if and only if H is
endowed with a rwist, that is, an invertible central element 0 € H such that A(0) = 0T;E; ® OE;C; and
s(0) = 0, where s is the antipode of H. The twist in the category of representations of H is given by the
multiplication by 0. A Hopf algebra endowed with a twist is said a ribbon Hopf algebra [36].

Starting from a finite-dimensional Hopf algebra H, Drinfeld [6] showed how to obtain a quasitriangular
Hopf algebra D(H), the quantum double of H, such that the following conditions are satisfied (for details,
see [21]).

e There are embeddings of Hopf algebras i: H < D(H) and j: H*® — D(H).

e The linear map H ® H*” 2, D(H)® D(H) L D(H) is bijective, where p is the multiplication in
D(H).

e The universal R-matrix of D(H) is the image of the canonical element of H ® H** under the
embedding i ® j: HQ® H**® — D(H) ® D(H).

Given a quasitriangular Hopf algebra H, Reshetikhin and Turaev [36] embedded it into a ribbon Hopf
algebra RT(H). As an algebra, RT(H) is the quotient of the polynomial algebra H[0] by the two-sided ideal
generated by 0% — us(u), where u = s(C;)§;.

The quantum double and the ribbon construction RT(-) have categorical counterparts. Starting from a
tensor category .7, Joyal and Street [20] defined a braided tensor category Z(.7"), the center of .7. 1t
was proved in [30] that, given a finite-dimensional Hopf algebra H, there is an isomorphism of braided
tensor categories Z(.-%en(H)) = S2¢n(D(H)). This result shows that the center construction is an adequate
categorical counterpart of the quantum double. The proof is based on the fact that both these categories are
isomorphic to the category of Yetter-Drinfeld modules [52], also called crossed bimodules.

Starting from a braided tensor category .77, Street [40] defined a balanced category .7 whose object
are automorphisms of objects in .72. Then, he obtained a ribbon category by considering the maximal
ribbon subcategory . J(.%8%) in .79 . This is an adequate categorical counterpart of the ribbon construction
RT(-), as showed by the fact that, when .72 = .%24(H), the category of finite-dimensional representations
of a Hopf algebra H, we have an isomorphism of balanced categories . %2¢.(RT(H)) = U/”V((.%p/zf(H)Z),
see [40].

The composition V/V((é‘%(.? ))Z) is the categorical double & (.7"), firstly introduced by Kassel and
Turaev [22]. They also proved that, if H is a finite-dimensional Hopf algebra, then there is an isomorphism
of ribbon categories .%wf(RT(D(H))) = D (Sye(H)).
=

{
o

0 00 ¢ ‘ X1 oMoToPY QUANTUM FIELD THEORIES AND CROSSED STRUCTURES. Recently, Turaev [44, 45] (see
also Le and Turaev [24] and Virelizier [49]) generalized the notion of a TQFT and Reshetikhin-
(CRLOGIKT b

ﬁ Turaev invariants to the case of a 3-manifold M endowed with a homotopy class of maps M —
K(m, 1), where m is a group. The homotopy classes of maps M — K(m, 1) classify principal flat st-bundles
over M. When M is connected, they are in bijection with group homomorphisms s, (M) — 7.

One of the key points of the theory is a generalization of the definition of a tensor category to the notion
of a crossed m-category, here called a Turaev category or, briefly, a T-category. The algebraic counterpart
of this generalization is the notion of a crossed Hopf mt-coalgebra, here called a Turaev coalgebra or, briefly,
a T-coalgebra. As the category of representations of a Hopf algebra has a structure of a tensor category,
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the category of representations of a T-coalgebra has a structure of a T-category. Let us briefly describe the
notions of a T-coalgebra and of a T-category. Details will be given in Chapters 1 and 2, respectively.

Roughly speaking, a T-coalgebra H is a family {H,}qer of algebras endowed with a comultiplication
Aop: Hyg — Hy ® Hp, a counit e: k — H, (where 1 is the neutral element of m), and an antipode
Sq: Hy — Hy-. It is required that H satisfies axioms that generalize those of a Hopf algebra. It is also
required that H is endowed with a family of algebra isomorphisms cpg = @p: Hy — Hpop-1, the conjugation,
compatible with the above structures and such that @p, = @p o ¢y. In particular, when 7 = {1}, we recover
the usual definition of a Hopf algebra.

A T-coalgebra H is of finite type when every H, is finite-dimensional. H is fotally-finite when the
direct sum @aen H, is finite-dimensional. Properties of T-coalgebras are studied in [48]. Related algebraic
objects that also cover the totally-finite case was introduced by Enriques [12] (see [49]).

A T-category 1is a tensor category .7~ disjoint union of a family of categories {7 }qcx such that, if
Ue.Z andV € 55, then U®V € .Zg. It is required that .7 is endowed with a group homomorphism
@: T — Aut(7), the conjugation, where Aut(.7") is the group of strict tensor automorphisms of .7
Given o € m and U € .7, the functor ¢, is also denoted Y). Notice that the component .7] is a tensor
category. In particular, when mt = {1}, we recover the usual definition of a tensor category. It turns out that,
given any T-coalgebra H, the disjoint union .%24.(H) = ||,y %247, (H) of the categories of representations
Sg (H) = S2ye(H,) of Hy has a structure of a T-category.

The notions of quasitriangular, ribbon, and modular Hopf algebras and the corresponding categorical
notions of braided, ribbon, and modular categories can be generalized to the crossed case. Let H be a
T-coalgebra. A universal R-matrix and a twist for H are, respectively, families R = {E); ® L) = Rup €
H,® Hﬁ}a,ﬁen and 0 = {0, € Hy}qer satisfying axioms that explicitly involve the conjugation. Notice that,
in general, R™' = {R;}‘ﬁ} is not a universal R-matrix for H. However, it is possible to introduce another
T-coalgebra H, the mirror of H, such that H, = H,- for every o €  and that R™' is a universal R-matrix
for H.

On the level of categories, a braiding ¢ and a twist © for a T-category .7 are, respectively, families of
isomorphisms cyy: U®V — (UV)®U =g (V)®Uand 0y: U — YU = @o(U), withU € Z and V € .7,
satisfying axioms that explicitly involve the conjugation. Finally, .7 is modular when it is ribbon and its
component .7] is a modular tensor category.

As we need a modular tensor category to construct Reshetikhin-Turaev invariants of 3-manifolds, we
need a modular T-category to construct Turaev homotopy invariants. Similarly, to construct Virelizier
Hennings-like homotopy invariants, we need a ribbon T-coalgebra H such that the component H, is un-
imodular [38]. This is a clear topological motivation to generalize, to the case of T-coalgebras, Drinfeld’s
quantum double and Reshetikhin-Turaev’s ribbon construction, as well as the corresponding Joyal-Street’s
center construction and Kassel-Turaev’s categorical double.

OUBLE CONSTRUCTIONS FOR CROSSED STRUCTURES. The present Thesis is organized as follows.

'~l} In Chapter 1 we generalize Drinfeld’s quantum double and Reshetikhin-Turaev’s ribbon con-
P struction to the case of a T-coalgebra. We also discuss the problem of the modularity of the
quantum double. In Chapter 2, we generalize Joyal-Street’s center construction and Kassel-Turaev’s cat-
egorical quantum double. Finally, in Chapter 3, we discuss the relations between algebraic and categorical
constructions.

I

&)

At the beginning of Chapter 1, we recall the definition of a T-coalgebra and some relevant algebraic
results. The notion of a T-coalgebra in not self-dual, i.e., given a T-coalgebra H = {Hy}uen, the family
H}, = {H;}qex does not have a natural structure of a T-coalgebra. However, when H is of finite type, it
is possible to define a T-coalgebra H*, the inner dual of H, that, in many aspects, in particular in the
construction of D(H), plays the role of a dual for H. The components of H™* are all isomorphic as algebras.
More precisely, as a vector space, for any o € 7, we have H* = @ﬁen HE, with the product of f € H;, and
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g€ HE given by fg € H(’;ﬁ, where
(f8. Y = (f i) (g ),

for every h € Hop (Where h;a) ® % =Ayp(h) € H, ® Hp).

After that, we define the double of a T-coalgebra H of finite type. Firstly, we provide an abstract
description of D(H) as a solution of a universal problem (THEOREM 1.16), analogous to the description we
gave of the quantum double of a Hopf algebra. Then, we provide an explicit construction of D(H) and we

prove that D(H) is quasitriangular, i.e., we prove the following result.

THEOREMS 1.19 AND 1.22. Let H be a T-coalgebra of finite type. There is a T-coalgebra D(H) with
the following properties.

e Both H and H**** are embedded into D(H) as T-coalgebras.

e For every o € m, the a-th component of D(H), denoted Dy(H), as a vector space is equal to
Hy- ® EBBE“ Hg. (Given h € Hy- and f € HE, the corresponding element h ® f € Dy(H) is
denoted h ® f). The multiplication in Dy(H) is obtained by setting, for any h,k € Hy-, f € H3,
and g € HY*,

(@ f)(k®g) =h k® f{g. 57" (] )_@alhy1,0)) € Ha ® Hy C Do(H),

where, given u,v € H,, we define (g,u_v) as the element of H;i that, evaluated against x € H.,
gives (g, uxv).

o The comultiplication Ay p: Dyg(H) — Do(H) ® Dg(H) is obtained by setting, for any a,p € m,
he Hﬁﬂaﬂ, andf € H*,

Bap(h® 1) = (h® oy ® (0 )y = (ephigrap) © 1) & (G5 © 1),

where [’ ® [ € Hy; ® H, is given by (f" ® ", x®y) = (f,yx) for any x,y € H,.
e D(H) is quasitriangular with universal R-matrix R defined by setting, for any o, p € m,

Rap = (i ®2) ® (15 ® e* ) € Dy(H) ® Dp(H),

where, for every a. € T, (eq;) is a basis of Hy and (e™') is the dual basis in H,.

When & = {1}, we recover the standard definition of the quantum double of a Hopf algebra. Notice that
D(H) is of finite type if and only if H is totally-finite and, in that case, D(H) is also totally-finite. Notice,
also, that both the product and the coproduct in D(H) explicitly depend on the conjugation ¢ of H.

The quantum double D(H) of a semisimple Hopf algebra H over a field of characteristic o is both
semisimple [23, 35] and modular [13]. The double D(H) of a semisimple T-coalgebra H over a field of
characteristic o is semisimple if and only if H is totally-finite, and, in that case, D(H) is also modular
(THEOREM 1.27). A key point in the proof is that, when H is totally finite, it gives rise to a graded Hopf
algebra Hy, = EBa < Has the packed form of H. The Hopf algebras D(H ) and (D(H ))]Dk are not necessarily
isomorphic, but it is always possible to embed the component D, (H) of D(H) into D(H ).

The end of Chapter 1 is devoted to the generalization of Reshetikhin-Turaev’s ribbon construction.
Starting from a quasitriangular T-coalgebra H (not necessarily of finite type), we construct a ribbon T-coal-
gebra RT(H) such that, when it = {1}, we recover the RT(-) construction for Hopf algebras. More precisely,
we prove the following theorem.

THEOREM 1.30. Let H be a quasitriangular T-coalgebra. There is a ribbon T-coalgebra RT(H) with
the following properties. For every o. € T, the o-th component of RT(H), denoted RT,(H), is the vector
space whose elements are formal expressions h + kv, with h,k € H,. The sum is given by

h+kve)+(W +kvy)=(h+h)+k+K)vg,
forany h, W', k, k' € H,, and the product by
(h+ kvy) (W + k'vg) = B + hk'vg + k(B v + k(K g sq-1 (Ug-1)
= (hh' + kpo(K g sa- (ua-)) + (K" + kepo(k"))va
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(Where ug = (S 0P )(Cor1).i)E(w.i)- We identify H, with the subset {h+ovq|h € H,} of RTo(H). In that way,
H becomes a sub-T-coalgebra of RT(H) and the universal R-matrix of H becomes the universal R-matrix
of RT(H). The twist is given by 0, = vy' for any o € m.
As a corollary, for any T-coalgebra H of finite type, we obtain a ribbon T-coalgebra RT(D(H)).
e

In Chapter 2, we first recall some generalities on tensor categories and dualities. Then, we introduce
the notion of a T-category, discuss dualities in a T-category, and prove some coherence results that allow
us to consider only strict tensor categories. After that, we define the center of a T-category.

THEOREM 2.23. Let.7 be a T-category. There is a braided T-category Z(.7"), the center of .7, with
the following properties.
o The objects of Z(.7") are the pairs (U, ¢ ) such that
— U is an object of .7 and
— ¢_is a natural isomorphism from the functor U ® _ to the functor Y(_) ® U such that, for any
X, Y e 7,

Q®Y=(Uk)®q)oax®y)

o The arrows in Z(.7") from an object (U, ¢ ) to an object (V,d ) are the arrows f € .7 (U, V) such
that, for any X € .7,

WM®ﬁow=mog®m

(we use the Eilenberg notation .7 (U, V) to denote the set of arrows from U to 'V in. 7).
e The braiding c in Z(.7") is obtained by setting, for any Z = (U,¢ ),Z' = (U’, ') € Z(7),

Czz = (urt U®U, - (UU,)® U.

Starting from a braided T-category, we obtain a balanced T-category .7 “ (THEOREM 2.14) whose
objects are all the pairs (U, t), where U € .7 andt € .7 (U, bu ) is invertible. The twist of .7 Z is given by
G(U,t) =1.

Given a balanced T-category .7, we define the category ./ (.7") as the maximal ribbon subcategory
of .7~. In THEOREM 2.32 we prove that ./ (7") is well defined and we give an explicit description of it.
Let us briefly describe the idea behind this description.

Let.7 be a T-category and let U be an object of .7,. Consider a left dual U* of U with unit b and counit
d. We say that U* is stable when, for every § € 7 that commutes with a, if qp(U) = U then ¢g(b) = b and
@p(d) = d. If U is stable, then we can fix a dual for every object of the form ¢,(U), with v € m. Suppose,

0 Y%
that.7 is balanced. Set, for any U € .7, 07, = (U LINYY/ § Qi iN U®UU) and 07 = (63)™'. We say that U
is reflexive if it has a stable left dual U* such that 0,7 = wy, where

0y = (dvsvy. @ U) o ((U®UU*> ® (CU@UU’U)_I) o ((CUU’UU* obuyy)® U®UU>: vely —» U.

Notice that wy does not depends on the choice of U* (Lemma 2.12). A good left dual for a reflexive object
U is a stable left dual U* such that 0y~ = U*(e’;,). The category ./ (.7") is defined as the full subcategory
of .7~ consisting of all reflexive objects that have a good left dual.

Starting from any T-category .7, we obtain a ribbon T-category ./} ((92(7 ))Z). Finally, we show
that a duality in .7 fixes a duality in ./V((%(.;7))Z). To this end, by generalizing the construction in [22],
we define a ribbon T-category & (.7"), with the advantage that a duality in .7 directly induces a duality in
Y (7). We conclude with the following theorem that, with the center construction, is the main result of
Chapter 2.

THEOREM 2.36. &/ (.7) is a ribbon T-category canonically isomorphic to 1/((%(7))Z>

In particular, via this isomorphism, a duality in.7 fixes a duality in V((%(T ))Z).
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At the beginning of Chapter 3, we define a Yetter-Drinfeld module over a T-coalgebra H, or, briefly,
a YD-module, as a module V over a component H, of H endowed with a family of k-linear morphisms
Ag: V — V ® Hp (for any B € m) satisfying axioms that generalize the usual definition of a Yetter-Drinfeld
module over a Hopf algebra. Then we construct the following isomorphisms.

THEOREMS 3.1 AND 3.8. Let H be a T-coalgebra of finite type. We have two isomorphisms of braided
T-categories .
(Rl H)) = YT (H) = Rope(D(H)),
where Y/Z(H) is the category of Yetter-Drinfeld modules over H and D(H) is the mirror of D(H).

We can describe Theorems 3.1 and 3.8 via the commutative diagram

Rl H) —— Z(Sop(H)) —— Y I (H) —— . 72,,(D(H))
H = D(H)

Denote 9/Z(H) the category of finite-dimensional YD-modules. In Corollary 3.14 we prove that the
above results are also true for finite-dimensional representations, i.e., the commutativity of the diagram

P H) —— Z(Soy(H)) === YL(H) == S2y0,(D(H))
ﬁ’/’t/{\ T'ﬁ’/’f
H = D(H)

Thus, our center construction for T-categories is an adequate categorical counterpart of our double con-
struction for T-coalgebras.

Starting from any T-coalgebra H, not necessarily of finite type, we prove in THEOREM 3.16 that there
is an isomorphism of balanced T-categories

N (P (H))?) = R (RT(H)).

This yields the commutativity of the diagram

} () . _
gt O, (S 1))) ——— (R0
H RT(H)

RT

Thus, the composition ./V((-)Z) is an adequate categorical counterpart of our ribbon extension for T-coal-
gebras.

When H is a T-coalgebra of finite type, by combining the last two diagrams we obtain an isomorphism
of balanced T-categories & (. %2y((H)) = .%n/z,f(RT(E(H))). We prove in Corollary 3.20 that this is also an
isomorphisms of ribbon T-categories. This yields the commutativity of the diagram

PRoge(H) —"— D (Ropu(H)) == Sy (RT(D(H)))
Sy r/[ 1\ Ry
H — RT(D(H))

Thus, our categorical double construction is an adequate counterpart of the composition of the double and
the ribbon extension for T-coalgebras.



Introduction (version francaise)

TRUCTURES CROISEES. A partir de motivations topologiques, Turaev [44, 45] a introduit les notions
de cogebre croisée (appelée ici T-cogebre) et de catégorie croisée (appelée ici T-catégorie). Brie-
vement, étant fixés un groupe m et un corps k, une T-cogébre (sur k) est une famille H = {H}en
de k-algebres munie d’une comultiplication Ayp: Heg — Hy ® Hp, d’une counité e: k — H,, et d’une
antipode s,: H, — Hy qui satisfont des axiomes généralisant ceux d’une algebre de Hopf. On exige
également que H soit dotée d’une famille d’isomorphismes d’algebres

@ = @p: Ho = Hpapo,

la conjugaison, compatible avec les structures ci-dessus et telle que g, = ¢g o ¢p,. Pour ;t = {1}, on retrouve
la définition standard d’une algebre de Hopf. Une T-cogebre H est de type fini quand tous les H, sont des
espaces vectoriels de dimension finie. H est globalement finie quand @aen H,, est de dimension finie. Une
T-catégorie est une catégorie tensorielle .7~ somme famille de catégories (.7} telles que U ® V € .Fg
pour tous U € .7 et V € 7. On exige également que .7 soit dotée d’un homomorphisme de groupe
@: t — Aut(.7") (la conjugaison), ou Aut(.7") est le groupe des automorphismes stricts de.7 . Si H est une
T-cogebre, la somme des catégories des représentations . #2,-(H,,) a une structure standard de T-catégorie.

Les notions d’algebre de Hopf quasitriangulaire [6], d’algebre de Hopf rubannée [36], et d’algebre
de Hopf modulaire [37] ainsi que les notions catégorielles correspondantes de catégorie tressée [20], de
catégorie de rubannée, et de catégorie modulaire peuvent étre généralisées dans ce contexte. Les roles
de la R-matrice R et du twist 0 d’une algebre de Hopf sont maintenant joués, respectivement, par des
familles R = {Rup € Hy ® Hﬁ}a,ﬁen et 0 = {0, € Hy}aen, satisfaisant des axiomes qui généralisent le
cas standard, mais dans lesquels apparait explicitement la conjugaison. Notez que, si H est une T-cogebre
quasitriangulaire avec R-matrice R, alors R™' n’est pas, en général, une R-matrice pour H. Cependant, il est
possible de définir une autre T-cogébre H, le miroir de H, telle que H, = H,- pourtout a € 7 et que R™" soit
une R-matrice pour H. Un tressage ¢ pour une T-catégorie .7 est la donnée d’une famille d’isomorphismes
cuv: UV — @u(V)®U, pour tout U € .7, satisfaisant des axiomes qui généralisent la définition standard
d’un tressage pour une catégorie tensorielle, mais ou apparait explicitement la conjugaison. Un rwist sera
maintenant une famille d’isomorphismes 6y : U — ¢4 (U), pour tout U € .%. .7 est modulaire si elle est
rubannée et si sa composante .7, est une catégorie tensorielle modulaire.

OUBLES QUANTIQUES DES STRUCTURES CROISEES. Le premier chapitre de la these est consacré a la
‘ H} généralisation du double quantique de Drinfeld [6] et a celle de la twist-extension de Reshetikhin
» (ﬁ Ol et Turaev [36]. Dans la premiere partie du chapitre, nous présentons la notion de T-cogebre et
nous rappelons brievement quelques résultats de base.

Etant donnée une T-cogebre H = {Hy}qeq, 12 famille H, = {H}},ex n’a pas de structure naturelle de
T-cogebre. Cependant, quand H est globalement finie, il est possible de construire une autre T-cogebre H*'

telle que, pour chaque a € ,
H;;‘m — H;klo! — @ HE

Pem

en tant qu’espace vectoriel. Par un grand nombre d’aspects, en particulier dans la construction du double
quantique de H, la T-cogebre H* joue le role du dual de H.

XV
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Si H est une T-cogebre de type fini, nous construisons I’'unique T-cogebre tressée D(H), le double
quantique de H, telle que les conditions suivantes soient satisfaites.
e H et H**** sont des sous-T-cogebres de D(H).
e D(H) est quasitriangulaire et la R-matrice R, g est I'image de I’élément canonique e, ;®e®1 ﬁ®e°‘"
de H, ® H,"*" ® Hg ® H;""*" (avec la notation d’Einstein) par I’injection

Ea ® HTlot,cop ®ﬁ[’) ® HTIO!,cop s DG(H) ®D6(H)

i

(0l (eq1 )7, est une base de H, et (¢* )}, est la base duale);

e I’application linéaire Hy, ® H;**™ — Dy(H): h® f — hf est bijective.

Quand & = {1}, nous obtenons la définition standard du double quantique d’une algebre de Hopf.

Le double quantique D(H) d’une algebre de Hopf semisimple H sur un corps de caractéristique o est
semisimple [23, 35]. De plus, D(H) est une algebre de Hopf modulaire [13]. Dans le cas croisé, le double
quantique d’une T-cogebre semisimple H sur un corps de caractéristique o est semisimple si et seulement
si H est globalement finie et, dans ce cas, D(H) est modulaire.

La fin du premier chapitre est consacrée a la généralisation de la construction du twist de Reshetikhin et
Turaev. A partir d’une T-cogébre quasitriangulaire K (non nécessairement de type fini), nous construisons
une T-cogebre rubannée RT(K) telle que la composante a-ieme de RT(K) est un quotient de H,, X H,. Pour
nt = {1}, nous obtenons la construction standard pour une algebre de Hopf. A partir d’une T-cogebre H de
type fini, en construisant d’abord son double quantique D(H), nous obtenons alors une T-cogebre rubannée
RT(D(H)).

20

Le deuxieme chapitre est consacré a des constructions catégorielles analogues a celles algébriques
du premier chapitre : centre [20] et double [22] d’une T-catégorie. A partir d’une T-catégorie .7, nous
généralisons la construction du centre de .7~ et nous obtenons une T-catégorie tressée Z(.7). A partir
d’une T-catégorie tressée .72, nous obtenons une T-catégorie balancée .7#%. A partir d’une T-catégorie
balancée .7, nous obtenons une T-catégorie rubannée ./ (.7”). En particulier, a partir de n’importe quelle
T-catégorie .7, nous obtenons une T-catégorie rubannée Z (.7 ) = . ((%(7 ))Z).

e

Dans le troisieme chapitre nous étudions les relations entre les constructions algébriques et catégorielles
(voir [22] dans le cas standard). Premierement, nous définissons un module de Yetter-Drinfeld pour une
T-cogebre H comme un module V d’une composant H, muni d’une famille de morphismes k-linéaires

AF,I V- V®Hﬁ,

pour tout B € m, satisfaisant des axiomes qui généralisent la définition habituelle d’'un module de Yetter-
Drinfeld d’une algebre de Hopf. Ensuite, si H est de type fini, nous obtenons un isomorphisme de T-caté-
gories tressées
LA Ry(H)) = YL (H) = Rop(D(H)),
oll Y7 (H) est la catégorie des modules de Yetter-Drinfeld sur H et D(H) est le miroir de D(H).
En conclusion, a partir de n’importe quelle T-cogebre H (non nécessairement de type fini), grace a une
catégorie auxiliaire .#2.#(h), nous prouvons 1’isomorphisme de T-catégories balancées

N (R (H))’) = RAMH) = Sy (RT(H)),

oll . %24 (H) est la catégorie des représentations de dimension finie de H. Comme corollaire, nous montrons
que, si H est de type fini, alors les T-catégories rubannées & (. %g;(H)) et - #24.¢(RT(H)) sont isomorphes.
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CHAPTER 1

T-coalgebras and their quantum double

1.1. T-coalgebras

75| IRSTLY, we introduce the notion of a T-coalgebra [45] as a generalization of the standard no-

tion of a Hopf algebra (see [1, 41] or, for a modern introduction [38]). A generalization of the
Heynemann-Sweedler notation [41] is also provided. After that, we complete the definition of

the category of T-coalgebras over a fixed group. The end of this section is devoted to the study of some
properties of the antipode of a T-coalgebra.

o

Basic perFINITIONS. Let k be a commutative field and let it be a discrete group. A T-coalgebra H (over

7t and k) is given by the following data.

(1a)

(1b)

e For any a € m, an associative k-algebra H,, called the a-th component of H. The multiplication

is denoted p,: Hy, ® Hy, — H, and the unit is denoted 1 : k — H,, with 14, = n4(1).
A family of algebra morphisms

A= {Au,ﬁ: H,s — H, ®HB}

a,pemn?

called comultiplication, that is coassociative in the sense that, for any o, 3, y € m, the diagram

H.,; ® H,
(1[3 / \/GB®H
Hegy H,®H; ®H,
a[s\ / Hy®Ap
o« ® Hpy
commutes.
An algebra morphism
et H -k

called counit, such that, for any o € =, the diagrams

H ®H,

8®H/ \Al.a Ha®1k/\Ha
]k®Ha HOL \ /A(1|
\/ H,®e '

H,®H,

commute (the horizontal arrows are the natural identifications between H, and k ® H, and, re-
spectively, H, and H, ® k).
A set of algebra isomorphisms

@ = {95 Hy = Hpop}o gen

called conjugation. When not strictly necessary, the upper index will be omitted. We require that
@ satisfies the following conditions.
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— o is multiplicative, i.e., for any B,y € m,

(10) Pp © Py = Ppy: Ho — Hipyya(py)

It follows that, for any a € s, the automorphism ¢¢ is the identity of Hy.
— @ is compatible with A, i.e, for any a, B,y € w, the diagram

Hyapy

(Pv/ \?‘/wz’ Lapy!

Hyoy1 @ Hypy

H o
AuJN /P‘/@P‘x
H

a®H[3

(1d)

commutes.
— @ is compatible with ¢, i.e., for any y € m, the diagram

(1e)
NG

commutes.
o Finally, a set of k-linear morphisms

s ={8q: Hy = Hy 1 }oens
called antipode, such that, for any a € m, the diagram

Sq-1 ®Hy
He- ®H, —~ s H,®H,

(1f) H, & k Mo Hy
=

H(X®H(X_' THQ@HQ

commutes.

(The compatibility of the antipode with the conjugation isomorphisms is proved in Lemma 1.5.) In the
nomenclature of [45], a T-coalgebra is called a crossed group Hopf coalgebra.

We say that H is of finite-type if any component H, (with a € ) is a finite-dimensional k-vector space.
We say that H is totally-finite when dimy EB& ex Ha < 00, i.e., when H is of finite-type and almost all the
H, are zero. It is proved in [48] that the antipode of a finite-type T-coalgebra is bijective.

We observe that the component H, of a T-coalgebra H is a Hopf algebra in the usual sense. We also
observe that, for t = {1}, we recover the usual notion of a Hopf algebra.

ExampLE 1.1 (TH-coalgebras). Let H, be a Hopf algebra, with comultiplication A,, counit ¢,, and
antipode s,, endowed with a group morphism

¢': T — Aut(H,)
ar— @

(where Aut(H,) is the group, by composition, of the Hopf algebra automorphisms of H,). We obtain a
T-coalgebra H by setting (for any o, € m) H, = H, as algebra, Aqg = A, € = g, 5o = s, and
cp[‘:i)t = cpé: Hy — Hpp-. H will be called the TH-coalgebra based on H,.
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When the antipode s, of H, is invertible, we can consider the coopposite Hopf algebra H;” of H,.
We recall that this is the Hopf algebra obtained from H, by replacing the comultiplication A, of H, by the
comultiplication A" given by
A" =(H25 H o H, 5 H 0 H,)
(where o is the permutation of the two factors in the tensor product). We also need to replace the antipode
cop

s, of H, by the antipode 5" given by the inverse of s,, i.e.,

cop

sP=s"

cop

Since the linear maps {¢y}qen are Hopf automorphism also for H;”, we obtain another TH-coalgebra
based on H;”. We will call this TH-coalgebra the coopposite TH-coalgebra of H.

Remark 1.2 (coopposite T-coalgebra). Let H be a T-coalgebra with invertible antipode. The coopposite
T-coalgebra H*" is the T-coalgebra defined as follows.
cop

e For any a € &, we set H,” = H,- as an algebra.

e The comultiplication A“* is obtained by setting, for any a., 3 € m,
A = (Hag = Hy1q ——— Hpr ® Hyr = Ho ® Hpor = H? ® HB“).
The counit is given by € = ¢.
e The antipode s°* is obtained by setting, for any o € m,

— 1. — cop
St =8q tHy" =Hy —> H', = Hg.

e The conjugation ¢°* is obtained by setting, for any {3 € m,

cop

(p[g = @p-
In particular, when H is a TH-coalgebra, we recover the construction of the coopposite TH-coalgebra de-

scribed above.

ExampLE 1.3 (see [45]). Let H, be a Hopf algebra with comultiplication A, counit € and antipode s, .
We recall that a non-zero element 7 € H, is a group-like element when A,(h) = h® h and (¢, h) = 1. We
also recall that the set G(H,) of the group-like elements of H, is a group (via the multiplication of H,) and
that h~' = s,(h) for any h € G(H,).
We obtain a T-coalgebra H = (H,)g over G(H) by setting, for any h,k € G(H), H, = H,, Apx = A,
Sq = Sy, and @ x = hxh™'.
ExAMPLE 1.4 (group T-coalgebra). Let ;t and P be two fixed groups and let H be a T-coalgebra. The
group T-coalgebra H[P] is the T-coalgebra defined as follows.
e For any a € m, we set (H[P]), = Hu[P], the group algebra over P with coefficients in H,. We
recall that H,[P] is the free H,-module generated by P, with the multiplication obtained by setting
hp, -kp, = hkp,p,
for any h,k € Hy and p,, p, € P.
e Forany o, € m, h € Hyg, and p € P, we set
Aap(hp) = A(h)14p ® 1pp.
The counit of H is given by
(&, hp) = (&, h),
foranyh € H, and p € P.
e Forany a € m, h € Hy, and p € P, we set
sa(hp) = s(h)p™".
o Finally, the conjugation is given by

@5 (hp) = g (Wp,
foranyo € m, h € H,, and p € P.



4 1. T-COALGEBRAS AND THEIR QUANTUM DOUBLE
&0

HEYNEMANN-SWEEDLER NOTATION. The coassociativity of H allows us to introduce an analog of the
Heynemann-Sweedler notation [41]. For any o, 3 € wand h € H.p we set

hl

”
(a) ®h

@ = Baph)-

Now, with this notation, the coassociativity condition (1a) can be rewritten as
’ ’ ’ 17 17 4
hiay ® (i) ® i)y = (i) e ® Uiy ) ® My
for any a, 3,y € mwand i € H,. So, we can set
"o
hiwy ® higy ® gy = Dapiy(h)-
More in general, given o, ..., o, € 7 and defined

Ady iz 0m H\®Ad a5-an

Aa.,a2 ..... a, = (Halaz---a,, _— Ha,®Haﬁ o, H, (X)I'Iz‘gliaq a > Hal®Ha2®‘ . '®Ha,,),

forany h € Hy, q,...q,, W€ set
ha) ® Mgy ® - @1, = Aa, a0, (D).

Now, let M be a vector space over k and suppose that f: Hy, X Hy, X -+ X Hy, — M is a k-multilinear
map. Denoted f the tensor lift of f, we introduce the notation

f(hga )’ hz:l > h/?a )) f(Aot.,az ..... (xn(h))-

For simplicity, we also suppress the subscript “(c.;)” when o; = 1.
With this notation, the axiom for the counit, i.e., the commutativity of (1b), can be rewritten as

(e, WYl = h = iy, (e, i)

for any h € H,,, with a € m. Similarly, the compatibility of ¢ with A, i.e., the commutativity of (1d), can be
rewritten as

Py(he) ® gy (hg) = (CPY(h))Eyay") ® ((Pv(h))z;ﬁy—u)

for any h € H,g, with a, 3 € wt. Finally, the axiom for the antipode, i.e., the commutativity of (1f), can be
rewritten as

(2) S (M- .))h o = (&M = hE(x)S(l"(hE;“))
forany h € H,, with a € .
e

THE CATEGORY Zowtyy (). Given two T-coalgebras H and K, a morphism of T-coalgebras from H to
K is a family f = {fy}oex Of algebra morphisms f,: H, — K, (for any o € m) such that the following
conditions are satisfied.

e fis a coalgebra morphism, in the sense that the diagram

faﬁ/ \/a B

K, ®Kﬁ

Aq, \/ /J\cu@’fﬁ

HQ®H[))
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commutes for any a, 3 € t. We also require that f preserves the counit, i.e., the commutativity of
the diagram

If we use the Heynemann-Sweedler notation, then the first of the conditions above can be rewritten

as
(3a) (Fap 1))y ® (Fup()fy = Fulli)) ® fis(hif)

for any a, 3 € wand h € H,g. Similarly, the second condition can be rewritten as
(3b) (&, fi(h) = (&, )

forany h € H,.

e fin compatible with the conjugation in the sense that, for any o, € =, the diagram

Kq
fO/ \'fﬁ
H, Kpap-:

‘Pﬁ\y /fﬁaﬁﬂ

HBaﬁ—l

commutes, i.e., that, for any 7 € H, we have

(30) (fpap~ © @p)(h) = (g © fa)(h).
We will see in Lemma 1.6 that if f is a morphism of T-coalgebras, then it is also compatible with the
antipode.

Given two morphisms of T-coalgebras f = {fq}aen: H — K and g = {gq}aen: K — L, we define the
composition of f and g via
(fog)a Zfaog(x: H, — L,.
for any a € m.

In this way, we obtain the category “ow¢z, (1) of the T-coalgebras over &t This is a strict tensor category
(see Section 2.1) with the tensor product H ® K of two objects H, K € Zowty, (1) defined as follows.

e For any a € 7, the component (H ® K),, is the tensor product of algebras H, ® K.
e For any a, 3 € mt, the component

AQ’B : H(xﬁ ® KQB — (Hy ® Ky) ® (H[g, ® Kﬁ)

of the comultiplication of H ® K is given by

Aqp®Aop H,®08Kj
Hy® Hy® Ky ® Ky —— Hy ® Ko ® Hy ® Kp).

(4) Aa,ﬁ = (Haﬁ
If we use the Heynemann-Sweedler notation, then we can rewrite (4) as
(h® k) ® (h® k) = (B ® kiey) ® (hig) @ k),

for any a,f € 7, h € Hyp, and k € Kp.
e The counit of H ® K is given by

(e, h®k) = (&, h){e, k)
foranyh e H, and k € K.
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e For any a, 3 € m, the conjugation isomorphism cpg: Hy ® Ky — Hpop-+ ® Kpgp-r is given by the
tensor product of the conjugation isomorphisms of H and K, i.e.,
¥ = (@p)n ® (k-

o Finally, for any a € m, the a-th component of the antipode sygx of H ® K is given by the tensor
product of the a-th components of the antipode sy of H and of the antipode sk of K, i.e.,

SHeK,0 = SHa ® SK,a-

&

PROPERTIES OF THE ANTIPODE. Let H be a T-coalgebra and let A be an algebra with multiplication p4
and unit 4. We define the convolution algebra Conv(H, A) (see [48]) in the following way. As a vector
space, we set

Conv(H, A) = () Homy(H, A).

Pen

The multiplication in Conv(H, A) is obtained by setting, for any 3,,8. € , f; € Homy(Hp,,A), and f, €
Hom]k(Hﬁz,A),

Alvz J1 :l
L x o = (H, —>ﬁﬁ H®H,—>f®f A®AH—A>A,
BiB- B B>

i.e., forany h € Hpg,,
(5) (f % £)0) = fulhlg )l ).

With this multiplication, Conv(H, A) becomes an associative algebra. Indeed, if we take f, and f, as above,
63 €m and f; € Hom]k(HB},A), then, for any & € HBIBzB}’ we have
(CRFAEN N O (GENS AN VACANE VA TR TGS
=fihg ) fo (hggz))fgm;gﬁ)) [ ) B ))= (% (o x )00,
The unit of Conv(H, A) is given by
1.=mMac0¢e: H — A.
Indeed, given 3 € m and a morphism f € Homy (Hg, A), for any i € Hp we have

(1% F)(h) = (& W) () = FGe. D) = f(B)

and, similarly, (f * 1.)(h) = f(h).

For any a € &, we introduce the notation Conv,(H) = Conv(H, H). It is clear that the commutativity
of (1f) is equivalent to say that s, is a two-sided inverse of the identity morphism of H,, in the convolution
algebra Conv,(H). Thus, we can reformulate the axiom for the antipode of H by requiring that, for any
o € m, the identity morphism of H, is invertible in Conv,(H). This also proves that the antipode of a
T-coalgebra is unique.

LemMA 1.5. The antipode is always compatible with @, i.e., for any o, p € n, the diagram

N

Hpg-1p-

\ / SBap=1

Hpog-

commutes.
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Proof (taken from [48]). Let o and {3 be in ;t. We only need to show that gg o 54 © (g~ is a two-sided
inverse of the identity morphism of Hg,-1g-+ in Convpeg-1 (H). We have

Wpa-1p © (Hpa1pr ® (@ © Sa © Pp-1)) © Apa-pr pap-
= Wpa-1pt © ((Pﬁ ® (Pﬁ) o (Hy+ ®sq) 0 ((P[S" ® CPB") © AB&"B*',BaB*‘
= (@polg© (Hy ® 54) © Aa*',a O (Pp-1 = (Pp © Mgt © €0 Pp-1 = Npg-1p-1 © E.

¢

LEMMA 1.6. any morphism of T-coalgebras f: H — K is compatible with the antipode, in the sense

that the diagram
K,
f(x/ \-‘/‘a
H, Ko
S(\ /\fa—l
Hy-
commutes for any o. € m, i.e.,
(6) (Jorr © $a)(h) = (sq. © fa)(h)

foranya e mandh € H,

Proof. The proof follows by observing that, given a € m, both f,- o s, and s, o f, are two-sided
inverses of f,- in Conv(H, K,-1). In fact, we have

Ug-1 © ((fa*‘ ® 5q) ® fa") © Aa,or' = U1 © (forr ® fom1) 0 (5q ® Hy-1) 0 Aa,a"
= fa" O Ug-t © (Sa ® Hy-1) 0 Aa,a“ = fa“ OMNH,a' ©€H = NK,a' ©€H

and

HCL" o ((Sa ° fa) ® for‘) ° Aa,or‘ = “forl o (Scr' ® Kor‘) o (fcx ® for‘) o Ao.,or'
=g 0 (5 ® Ky1) 0 Aggr 0 fi =Mk 08k 0 fi =Nk ©En

(similarly on the other side). @

LEmMA 1.7. Let H be a T-coalgebra. The antipode s of H is both antimultiplicative and anticomulti-
plicative, i.e.,

7 sa(hk) = sq(k)sq(h)
forany o € m, h,k € Hy, and
8) Sa(llgy) ® sa(lfp) = (Sap(M))o-1) @ (Sap (M) -1,

forany h € Hyg.

The proof can be obtained as in the standard case (i.e., for m = {1}) and is given [48].

1.2. T-algebras

i‘g grHEN we dualize the axioms of a T-coalgebra, we obtain the notion of a T-algebra. However, a
‘\\;\ 77 T\{"_algebra H can be equivalently described in terms of a Hopf algebra endowed with a family of
W\¥ || automorphisms, the packed form of H. In this section, we present both the approaches.

=

o
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Basic pEFINITIONS. A T-algebra H is a family {(Hq, Ag, Mo}, Of k-coalgebras, endowed with the
following data.

o A family of coalgebra morphisms
W= {Uop: Hy ® Hp = Huplopens
called multiplication, that is associative, in the sense that, for any o, 3, Y € 7 the diagram
H.,; ® H,

Ltu,[a@HY/ \juﬁn{

(9a) H,® H[g ® HY HQBY
Ha®uﬁ,.,\ /Ma,ﬁy
H, ® Hﬁ\{
commutes. Given h € H, and k € Hg, with o, § € 7, we set
hk = W p(h, k).
With this notation, the commutativity of (9a) can be simply rewritten as
(hk)l = h(kl)
forany h € Hy, k € Hg,l € H, and o, 3,y € m.
e An algebra morphism
n:k—-H,
called unit, such that, if we set 1 = n(1k), then, for any h € H, (with a € m), we have
(9b) th=h=h.
o A set of coalgebra isomorphism

v = {Wg: H, — Hﬁaﬁ" }a,ﬁen

called conjugation. Also in this case, when not strictly necessary, the upper index will be omitted.
We require that y satisfies the following conditions.
— v is multiplicative, i.e., for any a, f and y € =,

9¢) VB o Wy = Wyt Ha — Higpagy-

It follows that, for any a € s, y$ is the identity of H,,.
— v is compatible with y, i.e, for any f € mw,

(9d) Vp(hk) = y(h)yp(k).
— vy is compatible with , i.e., for any 3 € m,
(9e) yp(1) = 1.

e Finally, a set of linear homomorphisms
S = {S(x: H(x i Hoc“}aem

called antipode of H, such that, for any a € 7, the diagram

S«®H,
H,ooH, —*" g . ®H,
Aq \ux;
9 H, k " H,

commutes.
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For any o € &, the coalgebra H, will be called the a-th component of H.

We say that H is of finite-type when any component H, (with o € ) is a finite-dimensional k-vector
space. We say that H is totally-finite when dimy @aen H, < co. Since the antipode of any finite-type
T-coalgebra is bijective, by duality also the antipode of any finite-type T-algebra is bijective.

Also in the case of a T-algebra, the component H, of H is a Hopf algebra in the usual sense. Moreover,
for = {1}, we recover the usual definition of a Hopf algebra.

ExaMpLE 1.8. Let G be a normal subgroup of a group 7 and let H be a fixed Hopf algebra with
antipode § and counit & We define a T-algebra H = (H, 7, G) as follows.
e For any a € m, the coalgebra H,, is the free group coalgebra generated by aG with coefficients in
H. We recall, that the elements of H,, are the finite sums of the kind >, hio;, with o; € aG and
h; € Hforany i = 1,...,n. The comultiplication in H,, is given by
Ag(hoy) =W o, @ h"a,
for any h € H and o, € oG. Finally, given 4 and f as above, the counit €, of H, is given by
(€a, B) = (&, h).
e For any a, § € m, the component i, g of the multiplication is given by
Ha,ﬁ(hal ®kﬁl) = hkalﬁla
for any h,k € H, a, € aG, and B, € BG.
e Given a € m, the a-th component of the antipode of H is given by,
Sa(hay) = 5(ha)’

forany h € H and o, € aG.
o Finally, the conjugation is given by

viha,) = hBap,

forany a,p € m, h e H,and a, € aG.
Another T-algebra (H, i, G)1q can be obtained in the same way, by setting y = Id for any f € .

o

PAckED FORM OF A T-ALGEBRA. Let H be a T-algebra. We define a Hopf algebra H.y, that we will
call the packed form of H, as follows. As a coalgebra, Hpy is the direct sum of the components of H. For
any a € m, we denote by i, the inclusion of H, in Hy,. The multiplication pyx of Hpy is the colimit, in the
category of vector spaces, h_r)na’ﬁen(iaﬁ 0 Ug,p), i.€., the only k-linear map from Hy ® Hpi to Hpg such that

the restriction on H, ® Hg C Hy ® Hpyy coincides with peg,

Ho ® Hy—— @(HY ® Hy) = (@ H\,) ® (@ Hé) = Hy, ® Hy,

v,9€en YET dem

Ha.p l“pk

HpC Hpx

The unit npi of Hy is given by i, ong, i.e., 1, = 1 € H, C Hp. Finally, the antipode S px of Hyy is given by
the sum ), S'«. The Hopf algebra Hyy is endowed with a group morphism y: 7 — Aut(Hyy): o = Ypk g,

where
WYpk,a = Z\UE @Hﬁ > @Hﬁ.

pen Pen Bemn
Conversely, let H, be a Hopf algebra with multiplication ., unit 1, and antipode S (o, endowed with
a group homomorphism
Pror: T —> Aut(Hyor)

A WYiot,a
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Suppose that the following conditions are satisfied.

e There exists a family of coalgebras {H}ex such that Hy, = @aen H, as a coalgebra.

e For any o, € m, the restriction of the multiplication . on H, ® Hp C Hio ® Hyo lies in
Haﬁ C Higt-

e 1€ H C Hyy

e For any a, 3 € 7, @yop sends Hy C Hio to Hgop-+ C Hior.

Under these hypotheses, we obtain, in the obvious way, a T-algebra H such that Hyx = Hyy.

Let H be a T-algebra. Since H can be defined as a Hopf algebra endowed with extra structures, it
follows immediately that the antipode S of H is unique and that S is always both antimultiplicative and
anticomultiplicative, i.e., for any h,k € H,, with o € m, we have S ,(hk) = So(k)S (1) and (S (h)) ®
(So(h))” = So(W")®S 4 (). Since any bialgebra morphism between two Hopf algebras commutes with the
antipode, we deduce that S is always compatible with the conjugation isomorphisms, i.e., that the diagram

H,-
N ‘/ \‘/Vﬁ
H

« Hpo
\Vﬁ\y /;ﬁuﬁ—l
HBCLE)"
commutes for any a, f € .

(&)

THE CATEGORY . 447, (). Given two T-algebras H and K, a morphism of T-algebras form H to K is a
family f = {f,}aer Of coalgebra morphisms f,: H, — K, (for any o € ) such that the following conditions
hold.

(1) fis an algebra morphism, in the sense that, for any i, € H, and h, € Hg, with o, § € m, we have

fcx[%(hlhz) = .fa(hl).fﬁ(hz) and Siliy) = 1k.

(2) f in compatible with the conjugation in the sense that the diagram

V . \“"
H, Kpop-
‘Uﬁ\

Soap1
HBOL[S“ Bap

commutes for any a, 3 € 7.

Given two morphism of T-algebras f = {fy}oen: H = K and g = {gq}uer: K — L, we define their
composition f o g via
(fo8a=fuoga: Hy — Lq.
for any a € m.

In this way, we obtain the category . 4¢, (7) of T-algebras over mt. This is a strict tensor category with
the tensor product H ® K of H and K in . 24, () defined as follows.

e For any a € s, the component (H ® K),, is the tensor product of coalgebras H, ® K. Explicitly,
(H® K)o, = Hy, ® K, as a vector space and the comultiplication is given by

(h@k)®@hek) =MW k)® (W' ®k"),
for any h € H, and k € K. The counit is given by
(e,h®k) = (g, h){e, k).
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e The multiplication puygg is given by
(11) (h, ®k) (h. ®ks) = hh, ® ki k>
for any h, € Hq, k, € K, and h, € Hp, k, € Kp, with o, € m. In particular, the unit 14k of
H®Kisequalto 15 ® 1g.

e For any a, p € 7, the conjugation isomorphism \ug: Hy, ® Ko — Hpop ® Kpgg- is given by the

tensor product of the conjugation isomorphisms of H and K,
\Vg = (\VE)H ® (\UE)K-

o Finally, for any a € =, the a-th component of the antipode S ygx 0d H ® K is given by the tensor
product of the a-th component of the antipode S i of H and the a-th component of the antipode
S[( of K,

Se=SHa®Sko.

It is easy to check that we have a functor (-)yx from .24, () to the category .7/, of the Hopf
algebras over k that sends each H € . 44, (n) to Hp, and each T-algebra morphism f = {f,}aen: K = H
to > qex fo- This functor is a strict tensor functor and it is faithful. In particular, given two T-algebras H
and K, the functor (-)px provides a bijection between the T-algebra morphisms from H to K and the set
.7@”0/;,4,,,((Hpk, Kpy) of the Hopf homomorphisms F': Hy, — K such that, for any a € ,

e F(H,) C K, and

b F ° WHpk,CL = ‘IIka,Ol ° F

In particular, since any Hopf algebra homomorphism commutes with the antipode, this is true also for any
T-algebra morphism, i.e., given f as above, the diagram

Ha*|
SQ/ y;f.
H, K,
">

commutes.

1.3. The outer dual and the inner dual of a T-coalgebra

Wﬁ grE study the problem of how to provide a convenient notion of a dual for a finite-type T-coalgebra
T;I. The easier way is to define a T-algebra H*, the outer dual of H. However, for many purposes,
‘\.AA in particular in the construction of the quantum double of H, it is convenient to introduce a
TH-coalgebra H** based on the packed form H;k of H*, the inner dual of H. When H is totally-finite, it

gives rise to a Hopf algebra Hp = @B <. Hp endowed with extra structures, the packed form of H, such that
H™is the TH-coalgebra based on the dual of Hy.

o

THE OUTER DUAL. Let H be a finite-type T-coalgebra. The outer dual of H is the T-algebra H* defined
as follows. For any a € m, the o-th component of H* is the dual coalgebra H;, of the algebra H,. The
multiplication of H* is given by
(12) (Map(f, &), h) = (f ® g Aup(h))
forany f € H;, g € HE and h € H,g, with o, € 7. The unit of H* is given by € € H; C H*. The antipode
S* of H* is given by

S = S

for any a € m. Finally, for any { € &, the conjugation isomorphism \u*ﬁ of H* is given by
Vg = @i

o
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THE INNER DUAL. Let us consider the packed form (H™), of the outer dual H* of a T-coalgebra H.
Since (H*)px is a Hopf algebra endowed with a group homomorphism -, : T — Aut((H")yx), we can
construct the TH-coalgebra based on (H*),,. We call this TH-coalgebra the inner dual of H and we denote
it H**. Explicitly, H} = (H")p is obtained as follows.

e Asacoalgebra, H;" = D _ H;,.
e The multiplication is obtained by (12), extending by linearity. The unit is given by ¢** = ¢ €

H;c P, ., H.
o The antipode is given by 7 = 3ex S5 = Daen Shoi -

° Finally, WH;k»ﬁ = ZBEJ‘E CPE" .
Remark 1.9. If H is a finite-type T-coalgebra, then, for any a € &, we have
Convy(H) = @(Ha ®Hy) = Hy ® EB H,.
pen pen

So, by the definition (5) of the multiplication in Conv,(H), as an algebra Convy(H) = H, ® H" .

20

THE COOPPOSITE INNER DUAL. We have seen that, given any TH-coalgebra based on a certain Hopf
algebra K, it is possible to construct another TH-coalgebra based on the coopposite Hopf algebra K**. In
particular, given any T-coalgebra H, then ((H*)px)™ is the Hopf algebra obtained from (H*)y by replacing
its comultiplication with the new one A, = A™* given by

(13) (Au(f), h® k) = (f.kh)
forany f € H} C EB[sen Hg and h,k € H,, with o € t. We also need to replace the old antipode with the
new one s, given by s, = §** = (§*)7'. In particular, we have

(5:(f), h) = (f> 54 (W)

for any f € Hj and h € Hy, with a € . The TH-coalgebra based on ((H*)y)™ will be called the
coopposite inner dual of H and will be denoted H***. Notice that, for any a € &, we have

*
(pHﬂm,mpﬂ = CPH*“",a = Z CpB,] .
Ben

In view of the role played by H™*** in the construction of the quantum double of a finite-type T-coal-
gebra, the Heynemann-Sweedler notation will be reserved for the comultiplication of H***, not for the
comultiplication of H**, i.e., given F € ) .. H;, we set

F'® F" = A(F).
e

THE TOTALLY-FINITE CASE. When H is a totally-finite T-coalgebra, the Hopf algebra H;* = (H")y is
the dual of a certain Hopf algebra Hyx. An easy calculation shows that Hp satisfies the following conditions.

e As an algebra, Hyy is the product of the family {H}qex. So, as a vector space, Hp = @aen H,.
e The comultiplication Apy is obtained setting, for any h € H, C Hpy,

Ak = Z Ag.y(h).

B,y s.t. Py=a

e The counit gy is given by

¢ wheno =1
Epkly, = :
« o otherwise.

e The antipode is given by spx = X\qex Sa-
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The Hopf algebra Hp is endowed with a group homomorphism

Ppk: T—> Aut(Hpk)

o Gpra = P @ -

Pen
Conversely, let Hy be a finite-dimensional Hopf algebra, (with antipode sy, counit € and comultiplic-
ation Ayy), endowed with a family of subcoalgebras {H}qer and a group homomorphism

Prot: T —> Aut(Hior)
O Qrot,a
such that the following conditions hold.

e H,y is, as an algebra, the product of the family {H}qex-
For any a € m,

AaH)© P Hye Hy).
By s.t. py=a
e Forany a e w\ {1}, H, C Kere.
e Forany a € m, siot(Hy) = Hy-.
e For any a, 3 € m, the image of H,, under @ lies in Hpgp-1.
Under these hypotheses, Hy, determinates in the obvious way a T-coalgebra H such that Hy, = Hiy. In
particular, for any a, 3 € 7, the component A, g: Hoyg — H, ® Hp of the comultiplication is given by

Aot Pa®pp
Hyp = Hiot — Hiot ® Hiow — Hy ® Hp,

where p, and pg are the canonical projections of H,, on H, and, respectively, Hp.

1.4. Quasitriangular and ribbon T-coalgebras

HE usual notions of quasitriangular [6] and ribbon [36] Hopf algebra can be generalized to the
i kt! case of a T-coalgebra. Following [45], we start by introducing the corresponding notions of a

(XY quasitriangular, and a ribbon T-coalgebra. Notice that, as in the usual case, it is possible to define
a ribbon T-coalgebra in two slightly different but equivalent ways. At the end of the section, we reproduce
some lemmas, proved in [48], that will be necessary in the sequel.

o

QUuASITRIANGULAR T-COALGEBRAS. A quasitriangular T-coalgebras (H, R) (see [45]). is a T-coalgebra
H endowed with a family

R= {Ra,ﬁ = E((x).i ® ?;([5).1' €EH,® Hﬁ}a,ﬁem

called universal R-matrix, such that R, p is invertible for any a,3 € m. We require that the following
conditions are satisfied.

e Forany o,f e mand h € Hyp,
(14a) RopAaph) = (00 (o ® Hy) © Aapar ) (MR p-
If we use the Heynemann-Sweedler notation, then we can write (14a) in the form
)iy ® Cpyihiy = MigyEw.i ® Pa-r (Migpe-1))Cip).i-
e For any o, 3,y € m,
(14D) (Ho ® Agy)(Rapy) = (Ray)ips(Rap)ioys
where, given two vector spaces P and Q over k, forany x = p; ® ¢; € P ® Q we set
Xip3=pi®1p®q; € POH® 0

and
Xy =pi®qi®1, € PORO®H,.
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If we use the Heynemann-Sweedler notation, then we can write (145) in the form
Ew.i ® Cy.i)p) ® Cpn)is) = E@.iS@.j ® Lpy.j ® Loy
e Forany o, p,y € m,
(140) (Aap ® Hy)(Ropy) = (@5 ® Hy)(Re-rapy)), 55 Roazs-
where, given two vector spaces P and Q, for any x = p; ® ¢; € P ® Q we set
X3 = 14®pi®q € H,® P® 0.
If we use the Heynemann-Sweedler notation, then we can write (14c¢) in the form
Eap).i)io ® Capr)p) ® i = PpEE-1ap).i) ® E).j ® Ciyy.iliny -
e R is compatible with ¢, in the sense that, for any a, ,y € 7, we have
(14d) (%0 ® Pa)(Rpy) = Rapa-r aya-t
i.e.,

Pa(Ep).) ® PalCipi) = E@par)i ® Ciayarry.i-

Notice that (H,, R, ;) is a quasitriangular Hopf algebra in the usual sense.
For any a, B € &, we introduce the notation

é(a).i ® i(ﬁ).i = Ra‘ﬁ = R;,IB'

ExamPLE 1.10. Let H, be a Hopf algebra and (H,)¢ the T-coalgebra defined as in Example 1.3,
page 3. If (H,,R,) is a quasitriangular Hopf algebra, then (H,)s is a quasitriangular T-coalgebra with
universal R-matrix given by R, = (1 ® h™")R,, for any h, k € G(H,).

Remark 1.11 (Yang-Baxter equation). Let (H, R) be a quasitriangular T-coalgebra. For any o, 3,y € 7
we have

(15) (Rﬁ,y)(ug,(Ra,y)l[53(Ra,|3)12y = (Ra,ﬁ)lzy((Ha ® @p- )(Ra,ﬁy['}*‘))133(R|’),y)a23,
i.e, if we use the Heynemann-Sweedler notation,
@ .i&w.j ® E@1ACH).j ® Tkl = Ew.iS(w.j ® Tp).iE@ &k ® PCipyp).)C(p)k-

This is an analog for a quasitriangular T-coalgebra of the Yang-Baxter equation for a Hopf algebra
(see, e.g., [21]).

Remark 1.12 (Properties of a R-matrix). Let (H, R) be a quasitriangular T-coalgebra. For any o, 3 € 7
we have

(16a) SaEw.d) ® s8(Cp).i) = PalEar)i) ® Epry.i
and
(16b) Ewi ®Epi = (samr © Pu)Ean.i) ® Ciayi-

The proof, analog to the standard case, can be found in [48].
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THE MIRROR T-COALGEBRA. Let H = (H,R) be a qua51tr1angular Hopf algebra (with R = E; ® ; and

R = R = ®U). By replacing R with R = o(R) = {; ® & we obtain another quasitriangular structure

= (H,R). We will see in the next chapter that this means, in the category of representations of H, that

we replace the braiding cg provided by R by the braiding cj' provided by R. When H is a T-coalgebra,

with universal R-matrix R = {Ryp = E().i ® L(p).i}apen, the family {R;,‘ﬁ =f.® éﬁ,i}a’ﬁeﬂ is not a universal

R-matrix for H. We will see in the next chapter that the categorical counterpart of this fact is that the inverse

of a braiding for a T-category in general is not a braiding. Nevertheless, starting from a T-coalgebra H it is
still possible to generalize the definition of H with the following construction.

o

Let H be a T-coalgebra. The T-coalgebra H, called mirror of H (see [45]), is defined as follows.
e For any a € m, we set Ha = Hy.
e For any a, 3 € m, the component A, g of the comultiplication A of H is given by
(17) Aqp(h) = ((@p ® Hp-1) © Ag-rapp )(h) € Hyr ® Hp-r = Hy ® Hp,
for any h € Hpg-14- = =H, op- If, we set h ® h” = Zu,g(h), then (17) can be written in the form

@®h = cPﬁ(h(B-'a-'m) ® g
The counit of H is given by ¢ € H* = H,. B
e For any a € m, the a-th component of the antipode s of H is given by
S0 = Qo 0Sq: Hy = Hyr = Hy = Hyr.
e Finally, for any a € &, we set @, = @q.
If H is quasitriangular, then H is also quasitriangular with universal R-matrix R given by
(18) Rup = (0(Rg- o))" € Hy- ® Hp- = H, ® Hy

for any o, € m.
If, for any a, § € m, we introduce the notation &, ; ® §g); = Ra.p, then we can write (18) in the form

Ew.i ®Cp).i = Cia).i ® Epr).i-

Notice that ﬁ = H. Notice also that, due to the definition of Z, the mirror of a TH-coalgebra is not,
in general, a TH-coalgebra. In particular, the mirror of the inner dual of a finite-type T-coalgebra is not a
TH-coalgebra.

20

RiBBON T-coALGEBRAS. Let H = (H, R) be a quasitriangular T-coalgebra.
Following [48], we set
Ug = (g1 © (Pa)(C(a“).i)E(a).i € H,
and u = {uy}oex. The u, are called Drinfeld elements of H. When m = {1} we recover the usual definition
of Drinfeld element of a quasitriangular Hopf algebra.
The following properties of u are proved in [48]. Let o and 3 be in 7 and let / be in H,,.

(190)  u, = 5,(C).)EW).-

(19D) Uy is invertible with inverse u,' = s (i(af.)_,-)é(a),i. Moreover we have

o = 055" 05 D) Cw.)Ewi = 85 Can.)(Sa © Pa)Ew)i) = E@.ilSa © $6)(Ciay.i)-

(19¢) (uaﬁ)(a) ® (Maﬁ)(ﬁ) E(a) IC(a)juoc ® C(ﬁ) iPo- (E(aﬁa ) j)uB-
(19d)  &(u,) =1.

(19¢)  Sam (g g = UaSo (Ua).

(19f) (Pﬁ(ucx) = UBaf!-

(198)  (Sa- © Sq © Pa)(h) = ughuy'.

(19h) UgSo- (Ug-1 ) = Qo2 (Mg So-r (ta-1).
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Notice that, by (19g), we have

(Sq © 5¢)(h) = (Pa*'(ua)CPa*'(h)CPaﬂ(M;l) = “acpa"(h)u&]-
In particular, for & = u, we obtain
(190) (a1 © So)(Ug) = Ug.
)
DEFINITION OF A RIBBON T-COALGEBRA (FIRST VERSION). According to [45], we say that H is a ribbon
T-coalgebra if it is endowed with a family
0 = {0404 € Hylaen
such that 0, is invertible for any o € 7 and the following conditions are satisfied for any o,3 € 7 and
heH,.
0O . (h) =0,'h0,.
0 5,(0y) = 0g-1.
® (0up)(ey ® Bup)g) = Oalia).i€(.j ® OpPa (Eupa).)Cip).j-
(4] Cpﬁ(ea) = Bﬁaﬁ-. .
Notice that (H,, R, ;,0,) is a ribbon Hopf algebra in the usual sense.
If H = (H,R,0) is aribbon T-coalgebra, then, for any a € &, we obtain the following properties.
(20a) Qo (h) = 04107 for any h € H, (this follows by @).
(20b) €(0,) = 1 (this is because H, is a ribbon Hopf algebra).
(20c¢) 0, is central (by the same reason).
(20d) 009Pq(h) = hB, for any h € H, (this follows by @).

Moreover, it is proved in [48] that we have
(20¢) Oqltq = Uy, and
(20f) 6(_12 = So (Ug1 U = Ug S (Ug1).
If, for any a, B € mt, we introduce the notation
(21a) Qup = (00 (Yo ® Hy))(Rupa,a)Rap = C(a).iE(w).j ® Pa-t E(apa).i)T).j»
then ® can be written in the form
(eaﬁ)zq) ® (eaﬁ)zé) = (e(x ® eB)Qa,ﬁ-

Moreover, if we set

(21b) Qa,ﬁ = Q(_x,l[)) = Ra,ﬁ((j o (Cpa“ ® H(x))(ié(x[?)(x“,a) = é(a).ii(a).j ® i([ﬁ).icpa“ (%(a[ia“).j)’
we can rewrite (19c) in the form
(210) (u(x[:’))ga) ® (uaﬁ)z[[;) = Qa,ﬁ(”a ® uﬁ)-

We also observe that the conjugation preserves Q, i.e., that, for any a, §,y € m, we have
(Pa ® Pu)(Opy) = Qaa aya -
Indeed, we have
(@0 ® 9a)(Qp) = (G ® 9a)(Rp(0 0 (g ® Hy))(Rpyp-1 )
= (o ® Pu)(Rp)(0 0 (Pap— ® Pu))(Rpyp- )
= Ropa ayo (00 (Qapr ® Pu)(@or ® Par) © (P ® Qo)) (Rpyp-r.p)
= Ropaaya (00 (Qap-ra ® Huya 1)) Rapyoripr.aya) = Qoupat aya -

Remark 1.13. If (H,R,0) 1_s a ribbon_T—coalgebra, then also its mirror (H, R) admits a natural structure
of a ribbon T-coalgebra (H, R, 0), where 0 is given by

0, = 07"

for any a € m.
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o

DEFINITION OF A RIBBON T-COALGEBRA (SECOND VERSION). We can define a ribbon T-coalgebra in an
equivalent way as a quasitriangular T-coalgebra H endowed with a family
v = {Valva € Hyloen
such that, for any a, 3 € 7, the following conditions are satisfied.
@ hvg = vq@q-1 (h) for any h € H,,.
@ v = ugSo (Ug).
® (Vap)igy ® (), = Dup(va @ vp).
@ 5q4(Va) = vo-1.
® cpﬁ(va) = VBap-t-

Let us check the equivalence of the two definitions. Starting from 0, for any o € 7 we set v, = 0,".
Axiom @ follows by (20d). Axiom @ follows by (20f). Axiom ® follows by ®. Axiom @ follows by @.
Axiom ® follows by @.

Conversely, starting from v, recalling that u, is invertible for any o € &, by @ we have that v, is
invertible with inverse v>. If we set ¥, = vqv,>, then we have

VaVa = VaVy® = lg,
and, by @, observing that the conjugation preserves v=> (by ®),
VaVa = VaVy Vo = VaQa-1(Vy?) = Vav® = 1g.
It follows that v, is invertible with inverse ¥,. We set 0, = ¥, = v;'. Axiom @ follows by @. Axiom @
follows by @. Axiom @ follows by ®@. Axiom @ follows by ®.

Remark 1.14. The second way to define a ribbon T-coalgebra will be used in the construction of the
ribbon extension RT(H) of a quasitriangular T-coalgebra H. In this way, it will not be necessary to check
directly that the ribbon element is invertible.

ExawmpLE 1.15. Let H, = (H,,R,,0,) be a ribbon Hopf algebra. The T-coalgebra (H,)g (see pages 3
and 14) is a ribbon T-coalgebra with 0, = 0,h~" for any h € G(H,).

1.5. The quantum double of a finite-type T-coalgebra

Wﬁ’ ; show how, given any finite-type T-coalgebra H, it is possible to construct a quasitriangular
T;-coalgebra D(H) in such a way that, when ©t = {1}, we recover the construction of the quantum
\\AA double of the Hopf algebra H (see [6]). In particular, D(H) is of finite-type if and only if H is
totally-finite and, in this case, D(H) is also totally-finite. Firstly, we provide an abstract description of the
quantum double of H as a solution of a universal problem (analog to the definition given in [6]). Then we
explicitely construct a quasitriangular T-coalgebra D(H). Finally, we prove that D(H) satisfies the universal
property of the quantum double.

o
UNIVERSAL PROPERTY OF THE QUANTUM DOUBLE. Let H be a finite-type T-coalgebra.

THEOREM 1.16. There exist a unique quasitriangular T-coalgebra D(H), the quantum double of H,
such that the following conditions are satisfied.

® The T-coalgebras_ H and H****® can be embedded into D(H), i.e, there are two morphisms of
T-coalgebras i: H — D(H) and j: H**® — D(H) such that i, and j, are injective for any
a € .

e For any o € m, the linear map

*1tot,CoJ 77 ja®ia o
(22) pa = (M @ Fy 2% D(H) ® DutH) > Du(H)

is bijective (where Dq(H) is the a-th component of D(H) and n, is the multiplication in Dy(H)).

e For any o, € m, the component R, g of the R-matrix R of D(H) is the image of the canonical
element of Hy- ® H;""*" under the embedding i, ® jg: Hy ® H,"*" < D, ® Dp.
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*tot,cop

Let a be in 7. Since py, is bijective, we can identify D (H) with Hy- ® H, as a vector space.

Remark 1.17. Notice that, when 7t = {1}, both D(H) and D(H) coincide with the standard definition of
the quantum double of H. The reason of the convention that take the mirror of H in the above description is
that we want to keep as classical limit of hour constructions also the definition of the center of a T-category
(see Chapter 2 and, in particular, Remark 2.13 at page 56) and we want to obtain an isomorphism of braided
T-categories between the category of representations of the mirror of D(H) and the center of the category
of representations of H, generalizing the results and the conventions in [22] and in [40] (see Chapter 3).
Notice also that often, in the standard case, p, is defined as p, o (i, ® j,), reversing the position of i, and
Ji. Moreover, some authors identify D, (H) with the vector space H; ® H. However, since on that point it
seems there is no standard convention, here we also follows the notations in [22], apart for the detail that
we reversed the order of the factors in the tensor product.

20

We do not prove immediately Theorem 1.16. Instead, we start by providing an explicit definition of the
T-coalgebra D(H) in Theorem 1.19. Then, in Theorem 1.22, we prove that D(H) is quasitriangular. Finally,
we complete the prove of Theorem 1.16 (see page 25).

)
CONSTRUCTION OF THE QUANTUM DOUBLE. Let H be a finite-type T-coalgebra. The quantum double of
H is the T-coalgebra D(H) defined as follows.
e For any a € m, the a-th component of D(H), denoted D (H), is, as a vector space,
Hu*l ® H;lm,cop — HC,:I ® HTlol,cop - H(l ® @ HE
Pern

Since the multiplication in D,(H) will not be the multiplication obtained by tensor product of
algebras of Hy- and H****, given h € Hy- and F € H,™" = @B o HE, the element in Dy (H)
corresponding to 4 ® F will be denoted h & F.

To simplify the definition of the multiplication in D(H), we also introduce the following
notation. Let f be in H;, and let 4 and k be in H,, with a € w. By (f, h_k) we denote the linear
functional on H,, that evaluated at x € H, gives (f, hxk).

D, (H) is an algebra under the multiplication obtained by setting, for any s, k € Hy-, f € H,
and g € H, with vy, d € m,

(23) (h® f)(k®g) = h 1 k® f{g. 55" (h§-)_Palhly-roq))-

The unit of Dy(H) is given by 14-+ ® €. It follows that the canonical embeddings Hy-1, Hy"*" <>
D, (H) are algebra morphisms and that, for any 4 € H,- and f € H;,, we have

v
(24a) g ®f)(h®@e)=he f and
(24b) (h@e) (1 ® f) = Iy @ (f, 53 (B0 _Pa(Blgery))-
Notice that for T = {1} we recover the standard formula of the multiplication of the quantum
double of an Hopf algebra, i.e.,
(he f)(keg) =h"ke f(g s (W")_I")
(for any h,k € H, and f, g € H;*™).
e The comultiplication is given by

(25) Agph® F) = (h@® F),, ® (h® F)E[g) = cpﬁ(hgﬁ,,a,.ﬁ)) ®F ® hgé) ®F",

for any o, € 7w, h € Hop = Hp-1q1, and F € H;};"“"p (We recall that F’ ® F” = A.(F), see (13) at
page 12). The counit &: D,(H) — k of D(H) is obtained by setting, for any 2 € H, and f € Hj,
with y € m,

(&.he f)=(enf 1y).



1.5. The quantum double of a finite-type T-coalgebra 19

Notice that these are the usual comultiplication and counit given by the tensor product of T-coal-
gebras between the mirror T-coalgebra H and H*>*.
e For any a € m, the a-th component of the antipode of D(H) is given by

(26) sq(h®F) = (54(h) ®¢) (1 ® 5.(F)) = (g © 56-1)(R) ® €) (14 ® 5.(F)),
for any h € Hy, = Hy and F € H,°*", where s, is the antipode of H™*" (see page 12) and
So = Qg © Sq 1s the antipode of the mirror T-coalgebra H of H.
o Finally, for any a € &, we set
27 Pph ® f) = @p(h) ® Ppronco p(f) = pp(h) ® . (f),
forany h € Hy- and f € H;**", with y € m.
e

Proor THAT D(H) 1s A T-coaLGEBRA. We need the following preliminary remark.

Remark 1.18. Let H be a T-coalgebra. For any o € w and h € H,, we have

(28) Sa' (g iy = (@ M1
hz;)sal (/’l/a,,)) = <8’ h>10(

To show (28), we only need to apply s,' to both sides of (2) and to use the antimultiplicativity of s.

TuEOREM 1.19. D(H) is a T-coalgebra. Moreover, the multiplication in D(H) is uniquely determin-
ated by (24) and the condition that the canonical embedding H, H**** — D(H) are T-coalgebra morph-
isms.

Proof. Firstly, for any a € s, we will show that D,(H) is an associative algebra with unit. Then we
will show that A, defined as above, is multiplicative, i.e., that any A, g is an algebra morphism. After that,
we will show that € is an algebra morphism. Finally, we will check the axioms for the antipode and that the
conjugation isomorphisms are compatible with the multiplication. We omit the proof of the coassociativity,
of the compatibility between the comultiplication and the counit, of the compatibility between the comul-
tiplication and the conjugation, and, finally, of the fact that ¢ is a group homomorphism. Notice that the
computations that we omit are the same needed in the construction of the tensor products of T-coalgebras
H®H"» (since the comultiplication, the counit and the conjugation of D(H) and H®H*"* are the same)
and, however, they are all easy.

AssociativiTy. Let a be in ;t. The multiplication defined in (23) is associative if and only if for any
hk,le H-,pe H;,q € HY and r € Hg, with B,v, 0 € m, we have

(29) (hep)keg)ler) =hep)lkegler)

By computing the left-hand side of (29), we obtain

(he p)k@®g)ier) = (hg;_.)k ® p(q. 57" (h;:,'..>)_cpa(hza-,w>)>) (er)
= Bkl @ p(as 57" () Palhly o) (7 55 g k)@ skl oa))
(by the antimultiplicativity of s and the multiplicativity of ¢)

= Wl ko @ p<q, 5! (hg;':.'))_%(h;a_.W))xr, 55 (KL )s3! (hgg_/,))_cpa(h;;_.M))cp(,(k;a_.éa)»,
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while, by computing the right-hand side, we have
(hep)(kegler)=(he p)(k;;f.)l ® q(r. sy (k(gi.))_cpu(k(af.aa)»)

= e Kl © P{a{r 55" (K5 ) K1) 530 )0 0)
(by the anticomultiplicativity of s and the comultiplicativity of ¢)
= Nkt ® p(s 57 (HE0) @l rge) )7 55" (K555 ()@l 1)Kl 5y))-
Unir. Let a be in &t. For any h € Hy- and f € H;,, with y € &, we have
(g ®@e)(h®@f) =1h@ef=h®f
and

(h@ f)(1a@e) = hi )10 ® fele, s, (W) (e, pu(h)) = h® f,
where we used (28) and the fact that both s, and ¢, commute with &.

MurtipLIcATIVITY OF A. Let us prove that A, g is an algebra morphism for any o, f§ € m. Since A,p
obviously preserves the unit, we only need to prove that, for any i,k € Hp-1o-1, f € Hj and g € Hg, with
v, 0 € m, we have

(30) Aap((h® )k ®g)) = Aap(h ® NAupk ® Q).

If we take p € H}_,, g € H;_,, and x,y € H,s, and we evaluate both terms of (30) against p@ x® ¢ ®y,
then on the left side-hand we have

(Aup((h® k@), pOx®q®Y) = <Aa,ﬁ(h£fmﬂ k@ £(2, 55" () _@ap (g 1oapy)))s P O X @ G © y>
- <q35(hff%*'ov' k(i) @ (148 55 (M) _Dap(igpyryiap))) @

@ Hg k(i) ® (48 55" (5" @ Uilapy o)) -P BT @G ® y>
= P, (g1 OB (Kigorpy)) (s gy CF XD €85 857 (i) V(o Xy P gy
while on the right side-hand we have
(Aap(h® Ak @8, pOxX®g®Y)
= ((cpﬁ(h;ﬁ,.w.ﬁ)) ® ) Ppk(p-1 1) @) ® () ® [Nk @ 7). p®X®G® y)
- <cPﬁ(h2[I3*'a*'ﬁ))(PB(kzﬁ*'a*'ﬁ)) ® /{8 53" @015 )Pl Pp g r5))®
® (ki @ £7(8" 55" () _op(hfop)) PO X® G ® y>
= (P, (PB(hzfylorl 5))cp[3(k(’|3*‘a" B))><q’ hzfi”"’)k(/[/i")>
f's XEY)Xg” (Sgl o (Pﬁ)(hffg'—-g,—:B))xzé)cpaﬁ(hzaﬁ)—:5(a[5))><f"’ yEY)Xg", Sgl(hég)m)yfé)cpﬁ(hff{flbﬁ))>
= (P 0 higor ) P (Kprcorp))) s g K
(X €85 85 (i) )iy @B g oy (S5 © )y o-1)X(e) D) By
(by (28))
= (P PpCh{f1 o5y OB K1 o5))) €5 B KGf)
¥ Xen) €8 S5 (i) V)& 1)) Py B a1y
= (P> O (g1 )P i1y {05 i ki) <5 Vi X €85 85 () )Y ) X(5) Pap Bapy15(ap))-

In both cases, we obtain the same expression. This proves (30).
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MutripLicativiTy ofF €. Forany h,k € H, and f € H,, and g € H, with v, d € &, we have

(&, h® ) (e.k® f) = (e, ) {f, 1y) (e, k) ([, 15)

and

(e, (h® Nk® )=(e. "k f(g, 55 (h5..)_ b)>) (& 1) (e, k) (s 1) (8 ) (- D))
=& k) (f. 14) (8. 55 (W Vi) ) =(&. k) (f 1) (8. (8. ) 15) = (&, ) ([, 14) (&, k) (8. 15)-

This proves that € is multiplicative. Moreover, since € is obviously unitary, it is an algebra homomorphism.

ANTIPODE. Let i bein H, and let f be in H, with y € . We have

v
(h®f)za)sa" ((he® f)",l)) = (Pt (h -y @ ) (@a-r 0 Sa)(h ) ® &)(1a @ 5.(f))
= (e (Mo 5a(h) ® f/)(1a © 5.(F)) = (& )10 @ £))(1 @ 5.(f")) = (&, h)1 @ f's.(f")
=&, ){f, 1)1 ®E=(,h® f)1, ®¢€

and

Sart (B ® i) B ® ey = Sar (Palhiy) ® ) (A ® f7) = (salhe) @ )10 @ 5.(f)) (1) @ f7)
= (fs 1y)(salhiy) ® e)(hi;-) ® &) = (f, 1y)salhig)hi, sy ® (e, h ) e, b )e = (e, ){f, 1y)1, ® €
=(e,h® flia®e.

Consucartion. Let us check that cpl‘;L is an algebra isomorphism for any a, B € 7. Since cpg is obviously
bijective and preserve the unit, we only need to show that it is compatible with the multiplication, i.e., that,
forany h,k € Hy-, f € Hy, and g € Hj, with y, 0 € 7, we have

(31 ph® Nppk @ g) = gp((h @ fHk ® g)).

Let x be in Hgysp— and let p be in H
P ® x, on the left-hand side we obtain

ﬁ g By evaluating both sides in (31) against the general term

(pp(h ® Npplk @ g), p ® x) = ((Pp() © G (NN (k) ® 9. (2), p© X)
= <Cpﬁ(h2;-.))fpﬁ(k) ® Pp- (f)(CPE—| (&), (spop- © Pp)(1(5-1))_Ppop- (CPB(hEQ-.M))», P® x>
={(p, (Pﬁ(hgaﬂ))cp[i(k» <(P[5(f)’ xéﬁYﬁ,,)> <CPF571 (&), (pp o SE,' )(hzg l))x(ﬁbﬁ )cpﬁa(hza—naa)»
={p, (Pﬁ(hza-')k» fs Pp-r (xz[gY[s—! ))> (& Sy (hié,'-l ))(Pﬁ*‘ (xzfgﬁ[g—'))@a(h(u-' 6(1))>’

while on the right-hand side we obtain
(p(h0E® ). p® x) = (p( k® (85505 )Gl 150 O 3)

= (P (1 ) (P (s X)) (cpg-. (<g, 85" () Pall{gp)))- Ko >>

={(p, (PB(hE;—n)k» (f, CPB_'(XEB‘{ﬁ’l))> <<g’ Sy m )) %(h(a léa)» Pp- (x(ﬁaﬁ ))>
={ps (Pﬁ(hza_.)k» (fs Pp- (xz[gyg—!)» (& SS— (é’ ))(P[S (x(ﬁaﬁ ))CPa(h'a-.m)»-

This proves that ¢, is an algebra isomorphism and concludes the proof that D(H) is a T-coalgebra.

EMBEDDINGs. It only remains to show that (24), together with the request that the canonical embed-
dings H, H***** — D(H) are T-coalgebra morphisms, uniquely determinates the multiplication in D(H).



22 1. T-COALGEBRAS AND THEIR QUANTUM DOUBLE

Let o be in . For any h,k € Hy-, f € Hj; and g € Hg we have

(he f)(k®g) =
(by (244))
= (1 @ f)(h®e) (1o ®g) (k®€)
(by (24b))
= (1o ® 1) (M) @ (85 55 (W) _@aBly 50)) (k@ )
(by (244))

= (1 ® ) (10 ® (8. 55" f-))_Palhlyr50))) () @ 8) (K D €)
(since the canonical embedding of both H,- and H,***” in D,(H) are algebra morphisms)

= (10 ® £ 55 W) _Pulhy150)))) (Bl k@ )
(again by (24a))

= -k ® f(g, 55! (hégf.))_%(hia—'aa)»-

This concludes the proof of the theorem.

&

QUASITRIANGULAR STRUCTURE OF THE QUANTUM DOUBLE. To prove that D(H) is quasitriangular, we
n, b€ a basis of H, as a

Rup=eq i ®E® 1 ®e” ' € Dy(H)® Dy(H)

(sums over i) and
Rup = Sa(a)) ®€® 15 ® ™.

LEMMA 1.20. For any o,p € @, both Ryp and R.g are independent of the choice of the bases.
Moreover, Ra,ﬁ is the inverse of R, g in the algebra D(H) ® Dg(H).

Proof. Let €, g(H) be the subspace of D.(H) ® Dg(H) generated by the elements of the form 7 ® € ®
1+ ® F, with h € Hy+ and F € H,**". Let us check that €, g(H) is a subalgebra of D,(H) ® Dg(H). Of
course, we have 1D (H)eDy(H) = 1Dy(H) ® 1pyH) € Co.p(H). Moreover, for any h,k € Hy and f € H;,", geH;,
with vy, 0 € &, we have

(h®e®1g @ f)k@e®@1p- ®g)=h@e)k@e)Q (15 ® )(1pg ® Q) =hk@e® 15 ® fg.

Recalling that the multiplication of 2® f and k®g in Conv,- (H) is hk® fg (see (5) at page 6 and Remark 1.9),
we conclude that we have an equivalence of algebras Conve-(H) — Cug(H): h®@ F > h®e® 152 ® F,
for any h € Hy~ and F € H;***. In particular, R, is the image of the identity morphism eq-; ® e of
H,- under this isomorphism. Moreover, since the a-th component of the antipode s of H is the inverse,
in the algebra Conv- (H), of eq-; ® e* 7, also Ry is invertible. Finally, since s, can be represented as
s(eq;) ® e*! and since Iéa,ﬁ is the image of s, under this isomorphism, we conclude that Ra,ﬁ is the inverse
of Ry p. 2

Remark 1.21. Let h be in H,, with a € &, and suppose a,a, - - - o, = o for certain o, d, ..., q, € 7.
By observing that h = h'e,; = (¢*', h)e,; and by the linearity of A we have

hiay ® By - ® G,y = P ((€ai)(y,) ® (€aida, @ @ (€ai) ()

(32) o.i ’ ’” m
= (e™, h>(ea.i)(a|) ® (ea.i)(az) ®- - ®(eqi) (o)
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THEOREM 1.22. D(H) is quasitriangular with universal R-matrix
(33) Rup=eq i ®e®1p @e”
forany o, € m.
Proof. R is well defined and invertible by Lemma 1.20. We still need to check the four relations (14).
RELATION (14a). Let o, f, and y be m. Given h € Hg-1o~ and f € H;, we have
RapBaph® 1) = (e i ®® 151 ® e Npp(hlg 1) @ F @ @ )
= (e @ NPy 1) @ 1) ® (15 © NI @ )
= Cear s @3 ) ® (57 (€ ) PallEar i) ® W0y @ 6 F.
Now, observing that the action of (0 o (g ® Dy (H)) o Aaﬁaﬂ,a)(_) on h @ f is given by

Ao( oo (paﬂ@Da(H)
he f—" quhz) @ f ®hf, . ® f F————y

higy @ Q) @ hif @ f7 = By © f7 @ B @ 0 (f),
we have
((050e & Dlt) 0 Adcra)h ® P)Rug = i,y © 7 @y © Gl e 190 15 @)
= (M ® " )ea i ®8) ® (1) @ Pt ()15 @ € )
= Il near i ® 7 @ i @ Qo ()™, st (i) _@p(Big-grp))-

To check relation (14a), given x € Hy-1y, we evaluate the tensor Hy-+ ® Hi; ® Hp-+ ® (-, x) against the
two expression we found above, showing that we obtain the same result. Indeed, in the first case, we have

(Hur ® Hy  Hyo © G, 0)| oo @008
® (1,57 (et D) _Pal(ea Vo ryay)) ® sy @ f,,)
= (60‘7'~i)2;")cp[3(h2[3“a[3)) ® <f/’ s«?l ((ea".i)E:{/-I))—(Pa((ea".i)zq—u{a)» ® hzfg—n)<€a_l .i’ an—|)><fU, xE:{)>
(applying (32) to x for the composition Ag-1yg,g-1 4+ ® Hy)

= Xy Pp (g1 @ F7, X WS 8y () —Pa (X mr90))) @ gy

= Koo Pp (g1 go1p)) @ (s X 83 ()P (K1) ® iy

(by (28) at page 19)

= xE&*‘)CPB(hEﬁ-'a-‘ﬁ)) ® (/. —Cpﬂ(xga"va)» ® hzfi“)’
while, in the second case, we have
(Hom ® H; @ Hys © (o) a1 ® 7 ® higy @ o)X, s Uiy _phigsgopy)
=hil e i®f ® héfgﬂ)((PZ(f/)a XEQ—W)(@“’Q Sq (hzg))XZZx-')CPﬁ(hZB-'a-'[3))>
= higl (e st ()X P (lg-rgpy))eari ® {Fo e (X{gmrya)) ® B
= hig st U)X P g1 g0) © (s —Pa(X(gry09)) ® B
= xz&ﬂ)(P[S(hEBﬂaﬂﬁ)) ®(f, _(Pa(xza*'ya)» ® hzfyl)-
REeLATION (14b). For any a, 8,y € m, we have
{(R(I,,)IB3 =l ®ED I BED 1, @
(Rup)iny = €q i ®E® 1p- @ e @1, @&
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and so we have
(Ray)ip3(Rap)ioy = (€ar i @) (€q-,j @) ® (15 @) (15 @™ ) ® (12 @™ ) (14 ®¢)
=eqiilq [ ®E®1p @’ T @1, @
Moreover, observing that Re gy = eq-1; ® € ® 1y ® €* , we have
(Do(H) ® Agy)Rapy) = a1 i ®e® 15 @ (e 1) ® 1,4 @ (e ).
So, we only need to prove the equality
(34) eqriCar j®€ T@ = e ;@ (MY @ (")

Let f be in H;. If we evaluate both sides of (34) against the tensor f ® H},_, ® H;_,, on the left-hand side

we have “
(f®H;- ® H ) (eqriear j® € T @™ ) = (f,eqr ieqr j)e* T @
= (" ear e T @ ey = @ [,
while on the right-hand side we have
(f @ Hies ® Hy )eq i ® (e ) @ (e 1)) = (freqide® Y @ (e )" = f'® f"
(where, in the last passage, we used (32)).

RELATION (14¢). Let a, f, and y be in . Observing that Rg-148y = €g-10-1pi ® E® 141 @ P B we
obtain

(wp® DY(H))(Rﬁ_.QM))][53 = Pp(epop) ®E® 1p- @e® 1,1 @b P,
Moreover, observing that (Rgy)as; = la- ® €@ €1, ® € ® 14+ ® P 1, we obtain
(s ® D)) Rpa), o Roas
= (ppleprap) @) (1c @) ® (15 @) (ep- ;@) ® (1,4 @ P P (1, @ P )
= @pleprap) @e@ep @@ 1y @el @ PP,
Finally, observing that Reg., = e(opy- i ®@ € ® 14~ ® P, we obtain

(Aa,[i ® Dy(H))(RaB,y) = (P[S((e(a[i)“.i)zﬁ—|a7|[3)) ®e® (e(aB)" .i)zfj—l) BER 1y @ e P
So, to prove (14¢), we only need to show the equality

(35) ep-rapi ®epor ® P PP = (e Yo ® (eqapy )i, @ €D

If we evaluate both sides of (35) against the tensor Hg-14-1p ® Hpg- ® (-, x), where x is a general element of
35) ag prap ® Hp g
Hp-14-1, on the left-hand side we obtain
(Hﬁf-aﬂﬁ ® Hﬁfl ® (, x))(eﬁ—-a—lﬁ,i ®ep1j® EB_‘G_‘ﬁ'ieﬁ_l'j)
= <€B_ o« B’l,xzﬁ—;a-.ﬁﬂeﬁflaﬂﬁ.i ® <€|3_ 'J, xEéﬂ))erl_]‘ = xEﬁ_.a_,ﬁ) ® xzfi_|),
while on the right-hand side we obtain
(Hﬁ—l(rlﬁ ® HB*I ® (-, x))((E(aﬁ)—nli)Eﬁ,,a,lﬁ) ® (E(Qﬁ)—l_[)glg,,) ® e(aﬁ)*l ,i)
= (P X)) i) @ iy = Kooy @ X
(where in the last passage we used (32)).
RELATION (14d). Given a, 3,y € m, we have
(3 ® P)(Rup) = (@y @ Py)eq i ®E® 1 ® e ) = @ylea) DE® 151 ® (e ).
Now, @y is a linear isomorphism, so (¢, (eq-1.));-, ., i8 @ basis of Hyg-1y-1, and (cpf{,, (e*))._,

basis. So, by Lemma 1.20 (see page 22), Ryay- ypy— = (Py ® @y)(Rop)-
This concludes the proof of the theorem. 2

¥

.. isits dual
''''' {3
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o
Proor oF THEOREM 1.16. Before completing the proof of Lemma 1.16, we need a preliminary lemma.

LemMA 1.23. Let T be any quasitriangular T-coalgebra with R-matrix R. For any o, € 7 and any
x € T, we have

(36) S5 (X(-))EB).X () ® T ap) X(p1ap) = EB)i ® Pp-r (X)C(B-1ap)-
Proof. By (14a), we have

(((R[S,ﬁ"a[SAB,B*'aB) ®Tp-1)o Aa[ﬁ,ﬁ*‘)(x) = (((0 o (g1 ® Tp-rap) © Aup) ® Tﬁﬂ) o Agp -t )(x)(RB,[S"aB ® 1p-1)
or, with the Heynemann-Sweedler notation,

E@).iX(p) ® L1 ap)iX(oap) ® X(o-1) = X(p-)EBi ® P (X(a))Ciprap)i ® X(gr-r)-

6 and we exchange the first and the third factors in the tensor

If, on both sides, we apply T ® Tpg-14p ® §
product, then we get
S (X)) ® Ep).ix(g) ® Tp-1ap)iX(prapy = Sp (K1) ® X(g) Epr.i ® Pp-r (X )Cp-1ap).i-
By applying ug ® T-14 on both sides, and by observing that, by (28),
85" (X)) X() ® Ppor () = €(x{5)) 15 ® -1 (X() = 15 ® 1 (),
we get (36). 2

Proof of Theorem 1.16. By Theorem 1.22 the T-coalgebra D(H) defined as in Theorem 1.19 clearly
satisfies the three conditions in Theorem 1.16. We still have to check that these three conditions determinate
the T-coalgebra structure on D(H), i.e., that the multiplication and the comultiplication we gave in the
definition of D(H) are uniquely determinated by the requests of Theorem 1.16.

Probuct. Suppose that D(H) satisfies the three conditions in Theorem 1.16. Let us check, that, given
o € m, the multiplication on Dy, = Hy— ® H™** must satisfy the relations (24). Let p,, be defined | as in (22).
The bijectivity in the first of the 24 implies (24a). We still have to check the (24b). Let & be in H,, and let
f € Hy € H{**", with y € . By Lemma 36, we have
(37) s (h@ o)) (eyi ®8) (M@ ) ) ® (1ygm1y- @ V) (@)} y1) = (€ ®E) @ Py(h @ E) (1yay @ ).
By observing that

W ® W@ W= (Hyr ® Ayay-riy) © Ay ya) () = (Hyr ® Ay ) (@ralilrgey) © By )
= QyalBgmryay) ® Py(higmy) @ I,
if we compute the left-hand side in (37), then we get
s ((h@e)) (eyi @) (h @) ) ® (1yamiy @ €M) (@ e)([q)
= ((@yr 0 59)7 () @) (4. @ 8) (Pralhig-rya) @ €) ® (Lyaryr @ e’ (Py(ig) ® €)
= ((py © 53 VA eyi@rahlry) @ €) ® (9 (i) @ €77,

where in the last passage we used both the fact that the immersion of H in D(H) is a morphism of T-coal-
gebras and (244). So, if we apply ¢y-+ ® @y~ on both sides of (37), then we get

(38) (55" (B ey i®allilorye) @ €) @ () @ ) = (64, ©2) ® (h@E) (10 @ ™).
If we evaluate both terms of (38) against (f ® 1,,_) ® D,(H), then on the left-hand side we get
(s 85" eqiPalAlgrye)Vhiey © eVl = ey ® Sy 8y _@alhiyo1yq))s
while on the right-hand side we get
(frey)h®e) (140 ® ") = (h®e) (14 @ f).
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coMULTIPLICATION. Let us check that the comultiplication on D(H) is also unique. Given a, 3,y € m,
h€ Hgp,and f € Hj;, we have
Aa,ﬁ(h ®f)= AQ,B((IQ“ ®f)(hee) = Agp(lg & f)Aa,[S(h ®¢)
=1 ®f Q14 ®f )(h@®s®h@® €)
=(1g ® f) (h

=h

@@98)@(1&7. ®f )(h®®a)

@(’Ef ®h(ﬁ—)®f :cpﬁ(h(ﬁ—naq[g,))@f ®h([3—l)®f >

i.e., we found the definition of the comultiplication given in (25).

2

ExamPLE 1.24. Let m be a finite group and let k[sm] the group algebra of m, with the Hopf algebra
structure given be setting A(a)) = o ® a and (g, a) = 1, for any a € ;. We recall that, for any a € 7 we also
have s(a) = a™'. We study the quantum double of the TH-coalgebra H obtained by setting H, = k[x] for
any o € ;t and with the conjugation given by ¢,(_) = o_a™' for any a € m.

The comultiplication of the mirror H of H is given by

Aupy) =Y ® Y,
for any a, B,y € 7. The antipode of H is given by
SaB) =af o,
for any a, p € 7.
The dual of Kk[s] is given by the algebra Funy(s) of set functions from st to k. Let us briefly recall

the Hopf algebra structure of Funi(st) and let us fix some notations. A basis of Funy(m) is given by the
function 8*: @ — k, for any a € m, such that, for any § € =, (8%, ) = 8%, where 6% is the Kronecker

symbol. The multiplication in Funy(r) is given by 8*6F = 6%‘6‘3‘, for any o,p € m. Indeed, for any
v € m, we have (5%0F,v) = (8% ® 8F, A(y)) = 8280 = 6365. The unit is given by Y., 8% = &. The
comultiplication is given by A(0%) = X, ¢ vu=a 0° ® 0", for any a € mt. Indeed, for any B3,y € m, we have
(AB"),B®Y) = (8% Py) = 6%. The counit is given by (e., 8%) = 6% for any o € 7. Finally, the antipode is
given by s(8%) = 8“'. The structure of the cooposite Hopf algebra Funy* () = (Fung ()™ is the same of
Fung(st), but with the comultiplication given by
ABH = > 8 ed,
v, s.t =y

for any a € m.

Let us describe the cooposite inner dual H****. We have H,"*" = s, Fun,”(7r), while the conjuga-
tion of H™*** is given by

(pﬁ(éa) — 6[-}0([5*!

for any f € 7, and 6% € Hy C H{*** with a,y € 7. Indeed, for any A € 7t we have

(@p(8°), 1) = (- (0, 1) = (8, o (M) = (O, B'AB) = & g = 0P .

When, depending on the context, given a € m, it will be necessary to specify to which component 3 of the
sum »’ge Funy”(7r) the function 6“ belongs, we will use the notation RS
Now we have all what we need to compute the structure of D(H).
*tot,cop

e The multiplication of Dy(H), with a € m, is given, for any A,, A, € Hy-1, 8" € H;] C H,;***, and
" e Hy C H*®, with v,, v, € m, by

O ®87) (hy ®8%) = b b, @ 8L o0,
Indeed, we have
M ®8") (M ®8") = Mk ® V(87,57 (My)_@u(h))= Ak @ OV (8%, 17" otk o)

= Mok @ OVO R = )0, @ O T oY,
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Notice that, when m is commutative, then
M@ ®0"”) =A@ 6:26“,

i.e., as a T-coalgebra, D(H) = H® H™=,
The unit of D, (H) is given by 3, 1 ® 8¢,
The comultiplication, for any a, 3, A,y € 7, is give by

MA@ = > BT ed ered,

v, St pv=y

The counit is given by € ® &,.
The antipode is given, for any a, §, A € 7, by

5oL @ 8F) = ok 7o @ o BT e
Indeed, we have
5eA@8P) = G @e) (1@ s(8%) = (ah'a ' @e) 1 ® )
=l 'a @ (8P, s (@l o) (@l T o)) = ad T @ (8, oha oA o)
= ol @ §H BT
e The conjugation is given, for any f3, A,y € 7, by
Pp(h @ 8Y) = PAR™ @ 8PP,

e For any o, 3 € m, the component R, g of the R-matrix is given by

B S _ f A
Rug= Y ree@190" " = Y 105" 0108 ™
hem Lpen

Remark 1.25. The quantum double of a Hopf algebra can be obtained also via the so-called Majid
bicrossproduct [29]. This is true also in the crossed case [53]. Moreover, Vainerman [47] constructed some
examples of nontrivial T-coalgebra with non-isomorphic components. These examples can also be inter-
preted —and, eventually, enlarged— via bicrossproduct of T-coalgebras. However, the material concerning
the bicrossproduct construction is still in a preliminary and will not be included in this Thesis.

Remark 1.26. Street [40] has proved that, starting from any (not necessarily finite-dimensional) Hopf
algebra H, it is possible to construct, via Tannaka Theory, a coquasitriangular Hopf algebra D*(H) such
that, when H is finite-dimensional, then D*(H) = (D(H))". Tannaka Theory for T-algebra was developed
by the author in [54] and, contextually, it is provided an analog for the co-double construction in the case
of a T-algebra. However, this work is still in a preliminary version and, for reason of time, it will not be
included in this Thesis.

1.6. The quantum double of a semisimple T-coalgebra

OLLOWING [13], the quantum double of a semisimple Hopf algebra over a field of character-

g{ istic zero is both semisimple and modular. We start this section by recalling the definition of a
d 1| semisimple T-coalgebra [48], a modular Hopf algebra [37], and a modular T-coalgebra [45, 48].
After that, given any totally-finite T-coalgebra H, we discuss the relation between D(H) the quantum
double of Hpx. Finally, we discuss the semisimplicity and the modularity of the quantum double D(H)
of a semisimple T-coalgebra H € Zewtz, (1) when Kk is a field of characteristic zero. In particular, we prove
that D(H) is semisimple if and only if H is totally-finite. Moreover, when H is totally-finite, D(H) is also
modular.
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Basic pEFINITIONS. Let H be a T-coalgebra. We say that H is semisimple when any algebra H,, (with
o € m) is semisimple. It is proved in [48] that H is semisimple if and only if H, is semisimple. Further,
following [42], infinite-dimensional Hopf algebras over a field are never semisimple. It follows that a
necessary condition for H to be semisimple is that H, is finite-dimensional.

LetH, = (H,,R, =§,,®C,;0,) be aribbon Hopf algebra. Given a finite-dimensional representation
V of H,, and a H-linear endomorphism f: V — V, the quantum trace trq(f) of f is defined as

trq(f) = tr(u, 0, f),

where u, = s5,(C,;)&,; and tr(-) is the usual trace of endomorphisms. V is said to be negligible when
trq(Idy) = o.
A modular Hopf algebra H, is a ribbon Hopf algebra endowed with a finite family of simple finite-
dimensional H,-modules {V;};c; satisfying the following conditions.
e There exists o € I such that V,, = k (with the structure of H,-module given by the comultiplica-
tion).
e For any i € I, there exists i* € I such that V- is isomorphic to V.
e Forany j,k € I, the H,-module V;® Vj is isomorphic to a finite sum of certain elements of {V;};cs,
possibly with repetitions, and a negligible H,-module.
e Let S[H] = (5;)ijer denote the square matrix whose entry §;; is the quantum trace of the
morphism
V,' ® Vj — Vl' ® Vj
X '—)Cl.igl.j®gl.iCl.jx.
Then S[H] is invertible.

A modular T-coalgebra [45] is a ribbon T-coalgebra T such that its component 7', is a modular Hopf
algebra.

THEOREM 1.27. The quantum double D(H) of a T-coalgebra H over a field of characteristic o is
semisimple if and only if H is totally-finite, and, in that case, D(H) is also modular.

To prove Theorem 1.27 we need before to discuss the relation between the quantum double of a totally-
finite T-coalgebra H and the quantum double of the packed form of H.

20

THE QUANTUM DOUBLE OF A TOTALLY-FINITE T-CcOALGEBRA. Let H be a totally-finite T-coalgebra with
conjugation ¢. We have seen that also D(H) is totally finite. So, both H and D(H) have a corresponding
packed form. In particular, we can construct in the usual way the quantum double D(H ) of Hyy. Notice that
neither as an algebra nor as a coalgebra D(Hyy) is isomorphic to (D(H ))pk since neither the multiplication
nor the comultiplication of D(Hx) depend on the conjugation. Indeed, D(H ) and (D(H ))pk are isomorphic
if and only if, for any a, 3 € m, we have H, = Hpqp- and (p[“gt =1dg,.

Explicitly, we can describe the quantum double of the Hopf algebra H as follows.

e As a vector space, D(Hpy) is given by Hyy ® (Hpk)", where Hpx = @ﬁen Hp. Observing that, for
any o € m, we have an isomorphism of coalgebras (H)* = EB[ser[ HE = H™ = H;, we conclude
that, as a vector space

D(Hy) = P Ho ® P Hy = ) Ha @ H™" = (D(H)).

OET Ben a

As an algebra, D(Hyy) is the product of the family {Dy(Hy)} e, Where, for any a € m,
D, (Hp) is H, ® H{* as a vector space and an algebra via the multiplication obtained by setting,
for any h,k € H,, f € H}, and g € Hs, with a,y, 0 € m,

(394) (h® fHk®g) =

hityk ® f(g, so- (h(..))_h(s)) if o and & commute,
0 otherwise.
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e The coalgebra structure of D(H,y) is obtained by setting, for any h € H, and F € H;"", with
o€ m,

(39b) Ah®F) = Z AW (h,y ® F) ® (hy ® F").
v,0€m s.t. yd=a.
The counit is given by
(&, hf) = (e, h)X}f, 1p)s
forany h € Hy and f € HE.
e The antipode is the sum of the family

Hopf Hopf . stot,c Ktot,
o = {SO;P CHy @ H™™® - Hy @ H' P}

stot,cop

where, foranyo e th € Hyand F € H, ,
(390) SE(h @ F) = (sa(h) ® ) (1 ® 5.(F)).

e Finally, for any a € m, let n, be the dimension of H, as a vector space and let (eq;),=,
a linear basis of H, with dual basis (e*');-,
R-matrix

be
..... N,
ne- Then D(Hpy) is quasitriangular with universal

.....

Ry = ) (eai ®8) ® (1® ™).

OETT
Notice that Rpx = 3’ eq Roa-

The canonical embedding of vector spaces H, ® H,""*" < @aen Hy ® H{"*** provides an embedding
of Hopf algebras of D,(H) — D(Hpx), so we can identify D, (H) with its image in D(Hx). Moreover, even
if the universal R-matrix R, , = (e,; ® €) ® (1 ® ') of D,(H) and the universal R-matrix Rpk of D(Hpy) are
different, for any x € H, ® H* we have

(40) XRpk = xR, and Rpxx =R, x.

Remark 1.28. Let H be a finite-type T-coalgebra (not necessarily a totally-finite T-coalgebra). It is
possible to define a T-coalgebra D"*'(H), constructed in the same way as D(H), but with the multiplication
ue™ (for any a € ), given by (394) and the component A’;‘:g (for any o, B € ) of the comultiplication A"
given by (39b). In particular, when H is totally-finite, D(Hpy) is nothing but the packed form of D"*(H).
In general, D™ (H) is not quasitriangular as a T-coalgebra. Nevertheless, when H, = Hy-1, Hy = Hpop
and @p = Idy, for any o, 3 € m, then D(H) = D™"(H). This is true in the case studied in [34], where 7 is
commutative, Hy, = Hy- and ¢, = Id for any a € m.

20

THE QUANTUM DOUBLE OF A SEMISIMPLE T-cOALGEBRA. Let us consider the case of a semisimple
T-coalgebra H over a field k of characteristic zero. In that case, it was proved by [48] that, for any a € m,

(q1) Sq1 © S = Idy, .
LemMaA 1.29. If H is quasitriangular, then it is also ribbon by setting, for any o. € m,
0y =uy'.

Proof. We need to prove that u satisfy axioms @-®. Axiom @ follows by (19g) and (41). Axiom ®
follows by (21¢). Axiom ® follows by (19f). Axiom ® can be rewritten in the form

(42) So1 (Ugm1) = Ug- .

This follow by [48, Theorem 6(b)], by observing that, in that formula, g, = 1, (by [48, Corollary 7])
@(a) = 1 (by [48, Theorem 7]), and h, = 1, (by [48, Lemma 16], since the distinguished group-like
element of H; is equal to € because H; is semisimple by [23]). Finally @ follows by (42). 2

m
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Proof of Theorem 1.27. 1If H is not totally-finite, D, (H) is not finite-dimensional and so it is also non-
semisimple.

Suppose that H is totally-finite. Since H,, is semisimple for any o € m, also Hpy is semisimple. It
follows that D(H,x) is semisimple (see [35]). Since D,(H) can be identified with a subalgebra of D(Hpy),
also D, (H) is semisimple and so D(H) is semisimple and so, by the above lemma, it has a natural structure
of ribbon T-coalgebra with 0 — a = u' for any a € .

Now, since D(Hy) is a semisimple Hopf algebra, its antipode is involutive (see [23]). By [13], we know
that D(Hyy) is ribbon with Op,) = uz); Hy) (so that the quantum trace and the ordinary trace coincide). Let

Irr(D(H)) = {Vilo < i < m} be a set of representatives for the isomorphism classes of the irreducible

,,,,,

is given by
Si,j = (trv/. ® trvj)(()’(Rpk)Rpk).
Since we identified D, (H) with a sub-Hopf algebra of D(Hx), we can choose a set Irr(D, (H)) of rep-

resentatives for the isomorphism classes of the irreducible representations of D, (H) such that Irr(D, (H)) C
Irr(D(Hp)). It is not restrictive to suppose Irr(D, (H)) = {Vilo < i < n}, with n < m. In particular, by (40),

.....

D(H,) is modular. So, by definition, D(H) is modular. 2

s

1.7. The ribbon extension of a quasitriangular T-coalgebra

ET H be any quasitriangular T-coalgebra (not necessarily of finite-type). We describe how to
obtain a ribbon T-coalgebra RT(H) such that, when ;t = {1}, we recover the construction of the
ribbon extension of a quasitriangular Hopf algebra described in [36].

o
DEeriniTION OF RT(H). The ribbon extension RT (H) of a quasitriangular T-coalgebra H is the T-coal-
gebra defined as follows.

e For any a € m, the a-th component of RT(H), denoted RT ((H), is the vector space whose elements
are the formal expressions h + kv, with h, k € H,, and the sum is given by

(h+kvy) + (W +K'vy)=h+h)+ (k+K)vg,
for any h,h’,k, k' € Hy. The multiplication is obtained by requiring v = ugSq— (e ), 1.€., by
setting, for any h, b’ k, k' € H,,
(h+ kvy) (W + k'vg) = bl + hk've + k(B e + ko (K utg a1 (Ug-1)
= (hh' + kpa (K utg a1 (ug-1)) + (k" + kpo(K'))va.

We identify H, with the subset {h + ovy|h € Hy} of RT,(H). The algebra RT,(H) is unitary
with unit 1, = 1 +0v,. Moreover, for any a, f € m, we have R g € H,® Hy C RT(H)®RT(H).
e The comultiplication is given by

Aapplh+ kve) = (R + ki B i V) @ (%) + Ky &P (é(aﬁa*').j)VB)
= Aa,ﬁ(h) + Aa,ﬁ(k)Qa,B(Va ® Vﬁ),

for any h,k € H, and o, B € m. (for the definition of Q and Q, see (21) at page 16). Further, the
counit is given by
<E5 h + kVCt> = <8’ h> + <8’ k)a
forany h,k € H,.
e The antipode is given by
(43) Sa(h + kvg) = 54(h) + (56 © Qo1 )K)Vr1,

for any h,k € Hy and a € 7.
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o Finally, the conjugation is given by

@p(h + kva) = @p(h) + @p(k)vpag-

for any h,k € H, and o, § € 7.

THEOREM 1.30. RT(H) is a ribbon T-coalgebra.
To prove Theorem 1.30 we need a preliminary lemma.
LemMmA 1.31. Forany o,p € m,

Aap(tapSapy+ (apy)) = Oap(Pa ® Pp)(QapitaSa-r (o) ® upsp-+ (up-).
Proof. Since s is both antimultiplicative and anticomultiplicative, we have
(Aap © Sapy Ntapy) = (00 (sp1 ® Sq1) © Ag-1 o1 )(U(ap))
(by (210))
= (00 (sp1 ® )N Dt ® g1)) = (801 (1) @ 5p-1 (1)) (0 © (51 @ 56-1))( D)
and, observing that
(09(sp- ® 50-))(Qup) = (60 (55 ® 56))((0 0 (P ® Hp))(Rp-ra-ra 6 WRp-ra-)
(by the antimultiplicativity of s)
= (00 (g1 ® 5¢-1))(Rp-1,4-1)(0 0 (55-1 ® Sa-1) © 0 0 (Pp ® Hp-1))(Rp-10-1p,5-1)
(by property (14c¢) of the universal R-matrix, see page 13, and by the fact that s commutes with ¢)
= (00 (@p ® H))(Rp.o)((9p ® Hp) © (p-100p ® 5p-)(Rprpp)
(again by (14¢))

= (0o (g ® Ho))(Rp.o)(pp ® Hp) © (Pp-16-1p ® Hp))(Rp-10p.)
= (0 o (CPB" ® Ha))(Rﬁ,a) ((P(x"ﬁ ® Hﬁ)(R[i“otﬁ»ﬁ)’

we have
(A © Scapy ) tiapy) = (Sas (tta) @ 53 (tg))((00 (s @ H))(Rp) (a-1p ® Hp) Ryvasp)) -
So, we obtain
A (o Sopy (Uapy)) = Aap(itag) (Aap © Sapy (Uap)))
= ((0 0 (@a-+ ® Ho))(Rupa-r a)Rap)  (aSa- (tta) ® up - (up-))-
((B. @) 0 (@p ® H))(Rp.a) (furp ® Hp) )
(recalling that for any h € H, ttgSq- (Ut Jh = Qo (W)t Sa-r (a-1), i.€., by (19h), see page 15)
= (00 (Pa-+ ® Ho))(Rupar )Rap)
(e © @) (00 @ © H Ry © Hp)Rpa)) )

(U Som (Ug—1) @ upsp- (up— )
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= Ra,ﬁ((j o (CPor' ® Ha))(iéaﬁ(x“,a)(cpotz ® CPﬁ?)(Rﬁ-'a[s,ﬁ)((CPaz ® (Pﬁl) c0o (CPB-' ® Ha))(R(x,ﬁ)'
(g Som (Ug1) ® upsg-1 (up- )
(observing that we have (¢ ® P ) Rp-rapp) = (P ® Pp)(Rep) and (e ® @p:) 0 0 0 (ppr ® Ho))(Rp o) =
((Pa ® (Pﬁ)(o © (cpor‘ ® Hﬁ)(Raﬁorl,cx)))
= Ra,ﬁ(o o (Pu-r ® Ha))(kaﬁa*‘,a)(cpa ® cpﬁ)(ka,ﬁ)((cpa ® (P[S) 000 (g ® Ha))(Ra[Sa",a)'
“ U S (Ug-1) ® upsp-1 (upg-1)
= Qa,ﬁ((pa ® (PB)(QOL,B)(MCLSOF‘ () ® ugsg- (uﬁ" )

Proof of Theorem 1.30. First of all, we need to check that RT(H) is a T-coalgebra.

Associarivity. Fixed a € m, for any h, b/, b, k, k', k" € Hy, we have
((h+kvy) (W +Kvy)) (B +K'vg) = (W + hk've + ko (B ) + ko (K ugsq-1 (ug-1)) (R + k" vy,)
=hW' W' + hi' K vy + bk o (B Vo + BK @ (k" YugSa- (g1 )+
K Qal WY + keplH K Yt S (t) + Kepea (K it i N+ Kepea (K Vit (- DK v
Moreover, we have
(h+kve) (W +K've) (W' +K'vy)) = (h+ kv )(WH" + WK vg + K @ (B )Wo + K Qo (k" it So (1))
=h'h + WK v + hk @ (R )Wg + hk o (W e + BK Qo (K Yutg S (Ug-1) + ko (B R Y+
+ k(W K" Yuqsa- (a1 ) + kpa(k ) poz (Kt S (a) + ko (K)o (K YaPa(Sam (Ua1))Va
and, by (194), we conclude that both terms are equal.

unit. Fixed a € m, for any h, k € H,, we have
(1 +0vy) (h+ kvy) = h+ kvg + 0@a(h)vy + 0@ (k) tgSe (g ) = h + kv

and
(h+kvy) (1 + 0vy) = h + hovy + ke (1)vy + ko (0)ugSe-1 (Ug—1) = h + kv

MurripLicativiTy oF A. To prove the multiplicativity of A, we need to show that for any i,k € Hgg,
with a, B € m, we have

(44) Agp(Mvapkveg) = Aqp(hvep)Agpkvep).
By computing the left-hand side of (44), we obtain
Aap(hvagkvap) = Ao g(hpag(K)veg) = Aag(D)(Aag © Pup)(k)Aap(UapSiap) (Uap))
(by Lemma 1.31 for the computation of Aq g(uegS(ap)-t (Uap)1)))
= Ao p(N(Aap © Pop)(k) QP ® Pp)(Dorp)(ther St (1) ® upsp-1 (up-1))
= Ao p(M) Qo p(Pap ® Hp)(Apag- g © Pp)K) (o ® Pp)(Dap) (it Sar (ta-1) ® ugsp- (up)),
while, by computing the right-hand side we obtain
Aap(1vap)Aap(kvag) = Aap(n)Qap(Va ® vp)Aup(K)Dap(va ® vp)
= A p(M) Qo p (P ® Pp)(Acp(k) Do p)(va ® Vp)
= Nap(M) Do p(Pa ® Pp) © Aqg(k) (P ® Pp)( Qo p)(tte o (Ua1) ® ugsp- (up1))
(because ((9a ® @p) © Agp)(k) = (Pop+ ® Ha)(Apap-1.p © p)(k)))

= Aa,ﬁ(h)Qa,ﬁ((Paﬁ*‘ ® Hﬁ)(AﬁaB",ﬁ o (PB)(k)((pa ® CPB)(Qa,ﬁ)(uasa" (ttg—1) ® UgSp- (“[3" ))
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For any h, k € Hqg, we also observe

(45a) Aqp(hkvap) = A p(hk)vep = Ag (M) Aap(k)vep = Aqp()Agp(kvap).
Moreover, we claim that, for any 4 € Hyg,
(45b) Aa,ﬁ(v(xﬁh) = AaB(VaB)Aa,ﬁ(h)~

Indeed, if we compute the left side-hand of (45b), we obtain
Aap(Vaph) = Ao p(@op(IVap) = Aap(Pap()Oup(Va ® vp),
while, if we compute the right side-hand, we have
Aa,ﬁ(VaB)Aa,[S(h) = Qa,ﬁva ® VBA(‘L,ﬁ(h) = Qa,ﬁ((cpa ® (Pﬁ) © Aa,ﬁ)(h)(va ® V[S),
and we only need to show that
Aap(@ap(h)Qup = Qup((Pa ® @) © Agp)(h).
Now, the first axiom of the universal R-matrix (axiom (14a) at page 13) gives, for any & € H,p, with
a,p € m,
Aa,[&(h)Ra,[S = Ra,ﬁ(o o (g ® Hy) 0 Aaﬁa",a)(h)~
So, recalling that Qup = Rep(0 0 (o ® Hy))(Ropo- o), We obtain
Aa,B((Paﬁ(h))Qa,ﬁ = Aa,ﬁ(cpa,ﬁ(h))(o © (CPa*' ® H(x))(iéaﬁa*‘,(x)

= Ra,ﬁ(o o (g ® Hy) 0 Aaﬁa“,a) ((Paﬁ(h))(o o (g1 ® Ha))(Ra[ia“,a)

= Ra,ﬁ((j o (g1 ® Ha))(Aaﬁa“,a(cpaﬁ(h))ﬁaﬁa",a)

= Ra,ﬁ(o o (o ® Ha))(iéaﬁa*‘,a(o © (cp(x[ia*' ® Haﬁa*‘) © Aaﬁa[ﬁ"a",aﬁa*' )(h))

= Qa,ﬁ(o o (g1 ® Hy)o oo (cPaB“a“ ® Ha[ior‘ Aa[ﬁa[&"a“,aﬁa“ (h))

= Qu,ﬁ@aﬁ*'a*' (hzaﬁaﬁ"a*‘)) ® Qo (hz;[gg;')) = Qa,ﬁcpa(hza)) ® CPB(hE’ﬁ)) = Qa,[ﬂ((cpa ® (P[S) o AG,B)(h)-
Thus, for any A, k € Hyg, with o, § € 7, we have
Agp(kvegh) = Ao p(k@op(M)vap) = Aap(k)(Aup © Qop)(M)Vap

= Aup()Ap(@ap(MVep) = Aap(R)Aup(Vaph) = Agp(K)Aup(Vap)Aap(h).
Now we can check the multiplicativity of A. For any &, h’, k,k’ € Hyg, with a, 3 € 7, we have
AQ,B((]/I + kvaﬁ) (h, + k,V(x[S)) = Aa,ﬁ(hh/ + hk'vaﬁ + kvaﬁhl + kvaﬁk'vaﬁ)
= Aayﬁ(hh/) + Aa,ﬁ(hk’vaﬁ) + Aa,ﬁ(kvaﬁh’) + Aaﬁ(kvaﬁk’vaﬁ)

(45¢)

(by equations (44), (45a) and (45c¢))
= A (WA (h') + A g (M) Ao p(k'vap) + Agp(kvap)Agp(h') + Ag p(kvap) A p(k'vag)
= (Aa,ﬁ(h) + Aa,ﬁ(kvaﬁ)) (Aa,ﬁ(h’) + Aa,ﬁ(k'vaﬁ)) = Aa,ﬁ(h + kvaﬁ)Aa,ﬁ(h/ + k’vaﬁ).

Finally, it is immediate to show that A preserve the unit because of the inclusion H ¢ RT(H).

CoassociativiTy. We need to check that, for any h, k € Hqgy, with a, 3,y € m, we have
(46) ((Aap ® RT,(H)) 0 Aqsy)(h + kvapy) = (RTu(H) ® Apo) © Aagsy)(h + kvgy).
By the linearity and the multiplicativity of the comultiplication in RT(H) and the coassociativity of the
comultiplication in H, by computing the left-hand side of (46) we obtain
((Aap ® RTy(H)) 0 Agpy)(h + kvagy)
= ((Awp ® RTy(H)) 0 Agg y)(M)+

+((Aap ® RTy(H)) © Agpy)(kK)((Aqp ® RTy(H)) © Aagy)(vapy)

® h(fs) ® h() + (ki ® k([/s) ® k())((Aap ® RTy(H)) 0 Agp y)(Vapy)s

1/
- h(a) a)

)
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while by computing the right-hand side we obtain
((RTo(H)®Agy) © Aqpy)(h + kvagy)
= ((RTa(H) ® Apy) © Aapy)()+
+ (RTo(H) ® Apy) © Aapy)(K)((RTa(H) ® Agy) © Agpy)(Vagy)
= gy ® hiyy ® W) + (ki ® ki) ® k()(RTo(H) ® Apy) © Apy)(Vapy)s

® ($9)
so we only need to check that we have
(47) ((Aa,ﬁ ® RTy(H)) © Aaﬁ,«/)("aﬁy) = ((RTO((H) ® A[%,y) ° Aa,ﬁy)(vcxﬁy)~

By computing the left-hand side of (47) we obtain
((Awp ® RTy(H)) © Agpy)(Vapy) = (A ® RT,(HD)(Qupy(Vap © vy))
= ((Aap ® Hy)(Qupy))(Dap)ioy(Va ® v ® vy),
while by computing the right-hand side we obtain
((RTo(H) ® Ag) © Aapy)(Vapy) = (RTo(H) ® Ag ) (Qapy(Va ® V)
= (Ha ® Dg ) (Qap))(Op a3 (Ve ® Vp ® vy).
‘We only need to show that
(Agp ® H)(Qopy))(Qap)iny = (Hy ® Mgy ) Qap))(Opy)asss
or, equivalently, that
(Qap)izy(Bap ® Hy)(Qapy) = (Opy)azs(Ho ® Apy)(Qapy),
or, also, equivalently (by the definition of Q given in (21a)), that
(00 (Hp ® gu)Rp.a), Rup)ray
((Agp ® Hy) 0 00 (Hy @ @up))(Ry.op)(Aap ® Hy)(Rapy)

(43)
= ((0 o (HY ® q)ﬁ))(Ry,B))OQS(R[i,\/)(x23'
((Ho ® Agy) © 00 (Hpy ® 9a))(Rpy.a)(Ho ® Apy)(Ropy)-
Let us set
x= (((0 0 (o ® Hy) © Aqpor o) ® HY) oco(Hy® (Paﬁ))(Ry,aﬁ)
and

y= ((Ha ® (00 (g ® H) 0 Agygr ) 0 0 0 (Hpy ® cp@)(Rma).
Since, by axiom (14a), we have

(R(l,ﬁ)lz‘{((Aa,ﬁ ® Hy) ©0o (HY ® (Paﬁ))(Ry,aﬁ) = x(Ra,B)lzy
and

(R[i,y)a23((Hu ® AB,y) c0o (H[iy ® (Pa))(RB«/,a) = y(RB,~()u23,
if we substitute these expressions in (48) and we apply axiom (14c) to the left-hand side and axiom (14b)
to the right-hand side, we find that (48) can be rewritten as

(0o(Hp ® ) Rp.), | ¥(Raug)roy(H ® @p-1)(Ragp)) iy (R ey

= ((0 o(H,® CPB))(R\/.B))a%y(Rﬁ,v)an(Rﬁs/)a23(R0w)153(R<13I5)12Y
Thus, by the Yang-Baxter equation (15), we can rewrite (48) as

(49) (00 (Hy ® 9u))Rp.)_ x = (00 (Hy @ @p)(Ryp) y-
Given three vector spaces V, V,, and V;, let us introduce the notation o; jx (with {7, j, k} = {1, 2, 3}) for
the permutation

V,eV,eV, - V,eV,8 V.
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Notice that we have o, ,; = Id.
If we compute the two factors on the left-hand side in (49), then we have

(0o(Hp ® 9u))(Rp.0)

12y

= ((0 ® Hy) 0033,1 ©03,120° (o® Hy))(((O © (H[i ® cp(x))(RB,a))lzy)
= ((0 ® H\/) 0 033,1 © (Hy ® H[3 ® cpa))((Rﬁ,a)~{23)
= ((0® Hy) 0 0231 © (Hp ® g ® @up))((Rp g1 ap)y23)-

(where in the last passage we used axiom (14d)) and

X = (((0 0 (g1 ® Hy) 0 Ag1pga © q)ar)) ® H‘{) ) 0)(Ry,a[3)

= (((0 o (P ® Hy) 0 ((Paﬁ ® (Paﬁ)) ® Hy) 0053, © (Hy ® A[%,B"cxﬁ))(Ry,aB)
=((0® Hy) 0053, © (Hp ® P ® Pap))(Ryp10p)1p3(Ryp) 121 ap)):

(where, in the last passage, we used axiom (14b)). Similarly, on the right-hand side we have

(00 (Hy ® @p)(Ryp))

a23

= ((ch ®0)o 03,1,2 0053, © (Hy ® 0))(((0 © (Hy ® CPB))(RY’B))azg,)
= ((Ha ® 0) 003,120 (Hy ® Pp ® Hu))((Ry,B)lza)
= ((H(x ®0)o 03,12 © (Hy ®Pp® cpa[i))((R~{,|’>)|2(|’r‘a[3))

and
y= ((Ha ®0) 0 (¢u ® (- ® Hp) © Apyprp)) © 0)(Rs«,,a)
= ((Ha ® 0) © (¢up ® Hy ® ¢) © (P ® (Ayps © 1)) 0 6)(Rpy.c)
(by axiom (14d))

= ((Ha ®0) o (pop ® Hy ® @) © (Hp-10p ® Ay p) © 0)(Ryppap-)
= ((Ha ® 0) o (gop ® Hy ® ¢p) © 03,1 0 (Ayp ® Hp-10p))(Ryp pop)
=((Ho®0)003,,0 (Hy®pp ® cPa[S))(((HY ® - )(RY,(X))1[33(R[5,[3“af5)“/23)

(where in the last passage we used axiom (14c¢)).
We observe that (H, ® 0) 0 03,, = (0 ® Hy) o0 0,5,. Moreover, we observe that the application
(Hy ®0) 003,50 (Hy ® Qo ® Qup) is bijective. So, we can rewrite (49) in the form

(Rp.p-rap)ya3(Ryprap)ips (Ryp)iarap) = (Ryp) iz ap) (Hy © @p-)(Ry.a)), g5 (Rp pap)yas
and this last formula is true by the Yang-Baxter equation (15).
MucLripLicaTIvVITY OF €. Let h, b/, k, and k’ be in H,. We have
(e, (h+kv) (W +Kk'v)) = (e, hh’ + hk'vg + kW' vo + kh'v, + kk'u, s(u,))
(because (g, u,) = 1 and, 8o, {&,u,s,(u,)) = 1)
=g, hh')y + (&, k") + (&, kh’) + (&, kk")

and
(& h+kv){e,h +k') = (e h)+(e, k) (e, ) + (e, k"))
= (e, hh’y + (&, hk") + (e, kh") + (&, kk').

The fact that € preserve the unit is immediate because of the inclusion H ¢ RT(H).
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Counir. To prove that RT(H) has a counit, we start observing that, for any a € &, we have
{Qa,. = R!\(0 0 (¢u ® HO)(R;L)
Q10 =R (00 (9, ® Ha))(R,)) = Ryt (e 1)(RS))
and, so,
(Hy ® €)( Q1) = (Ho ® €)(Ryy (0 0 (P ® Ho))(R, L))
= (Ha ® €)(R,',)(0 0 (ot © Ha) © (@ HW))(R ) = 14
and
(e ® Ho)(01.0) = (e ® H)(R ,0(R,) = (e ® Hu)(R, ,)(0 0 (Ho ® &)(R;)) = 1.
Now, for any &,k € H,, we have
((e®RTu(H)) 0 A, o)(h + kve) = ((e ® RTo(H)) 0 A, o )(h) + (e ® Hy) © Ay o) (K)((€ ® Hy) © A, 0)(va)

=h+k(e® Ha)(Ql’avl ®Vy)=h+k(e® Ha)(Ql,a)(e QH)W, ®vy) =h+kigvy = h+ kvg.

and, similarly,
((RTa(H) ®¢) 0 Aq, )(h +kve) = (Ha ®€) 0 Ag, ) )(h) + (Ha ® €) © Mg, J(K)((Ho ® €) © Ag,i )(v1)
=h+kigve = h+ kvg.
AnTIPODE. To prove that sgr(x) defined as above is an antipode, we first show that it is antimultiplic-
ative. Let h, h, k, and let k¥’ be in H,, with a € . We have
Sa((h+kve) (W + K'vy)) = sq(hh + hk've + k(K" )y + ko (K )ity o1 (tg-1))

= Sa(hh') + (s © Pa- ) (MK ot + (S © Qo) (kpa(h))var + Sa(kpa(kuaSa (a-))
(by (19i) of u, see page 16)

= Sa(h)sa(h) + (S0 © Qa1 )k )50 © Qa1 )(MVart + $a(h')(Sa © Yo )(K)Var1+

+ (50 © Qo )(K')(Sa © Qo )(K)ttg1 So(Ua)

= (Sa(h) + (50 © Qo )k va-1) (80 (h) + (5o © Yo )(K)Var) = Sa(h' + k'va)sa(h + kvy).

Now, given h, k € H, as above, we have
(Ha © (RTo(H) ® sa-1) © Aga )(h + kvy)

(o © (RTo(H) ® sa-1) © Mgt )(h) + (o © (RTo(H) ® sa1) © Mgt )(kvy)
e(M1q + kéa)(Vu)Za)sa(kz&—n)((V/.I)E&—l)) =e(h)1q + kéa)(Vl)Ea)Sa((Vu)2&-1))%("{&—-)).

To prove that this is equal to (h + kv,)1, we only need to show the equality vga)sa(vgrl)) = 1,. We have

(1ta © (RTo(H) @ 50+) © A J1) = (e © (RTo(H) @ 504))( D (Ve & vers))

= ((S(x" o (Pa)(é(a")j)z(a).jva) (Va(sor‘ O 8Sq © (Paz)(g(a).j)sa“(C(a").i))
= Vz(scr‘ O Qg )(E(or‘).i)cpor2 (C(a).j) ($q-1 0 §g 0 clt)otﬂ)(%(0.).]‘)50&*l (C(a*‘).i)

(recalling C(a).i(sa-r © 56)(E(.i) = ug')
= V(o © Qa1 ) Ea).)Uy ' So' (Carn).i)

(recalling (5o © $¢)(h) = ugPa- (h)uy,' for any h € H,)
= Voltg (Samr © S © S )(E o) .i)Sam (Cam).i) = Vo' Sot ((Sa © S )(E (o)) Carr) i)
= Vally ' Soo (o) = Vg (St (g i)™

(by (19¢))

= Vz(uasorl(ua"))_l = lg.
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The proof that i, o (s¢- ® RT(H)) 0 Ag-1 o = €1, is similar.
Consuagation. Given f € m, let us check that g is an algebra homomorphism. For any o € s and
h, W, kk € H,, we have
@p((h + kvy) (W + k'va)) = @p(hh’ + hk've + koo (W )Wvo + k(K g So (1))
= @p(hl’) + @p(hk )vpap-+ + Pp(kpa(h))vpap-r + Pp(kpa(k itgsa- (Ua))
(observing that @g(#aSa (1a)) = Ugap-' Spap-r (Upa-1p-1))

= pg(Mpp(h") + (M) pp(k Wpap- + Pp(k)Ppa(h Wpap- + Pp(K)Ppa(k Vitpop-1 Spap-+ (Upa1p-1)
and
Pp(h + kv)pp(h' + k've) = (@p(h) + @p(k)pap- ) (9p(r") + @p(K vpop)
= pg(Mpp(h") + (M) pp(k Wpap- + Pp(k)Ppa(h )pap-1 + Pp(K)Ppa (K itpop1 Spap-+ (Upa1p-1)
The fact that ¢ preserves the unit is immediate because of the inclusion H C RT(H). Moreover, ¢p is
obviously bijective, so that it is an algebra isomorphism.

We still have to check that, for any a, B € 7, we have @qp = ¢y © @p. Lety be in i and let 4, k be in H,,.
We have

CPa(CPB(h + kVy)) = CPa(CPB(h)) + CPa(CPﬁ(k)Vy) = cpot[:’)(h) + cpaﬁ(k)v(aﬁ)‘/(aﬁ)" = (P(x[:’)(h + kV~,/)~
This conclude the proof that RT(H) is a T-coalgebra.

It is trivial to show that R € H ® H c RT(H) ® RT(H) is a universal R-matrix for RT(H), so RT(H) is
also quasitriangular. By the second version of the axiom of a ribbon T-coalgebra, see page 17, we have that
RT(H) is ribbon. ¢

COROLLARY 1.32. Let H be a finite-type T-coalgebra. By constructing firstly the quantum double
D(H) of H and then the ribbon extension RT(D(H)) of D(H), we obtain a ribbon T-coalgebra.






CHAPTER 2

T-categories, their center, and their quantum double

2.1. Tensor categories

ategory, and some related notions (including the notion of “mate” for an arrow under a duality).
In that way, we fix some notations. Moreover, we recall some properties we will use in the sequel.
We also briefly recall the proof that any tensor category is equivalent to a strict tensor category, since in the
next section we will need to generalize this proof to the case of a T-category. As usual in category theory,
in this chapter and in the following one, the set of the arrows from an object X to an object Y in a category
¢, will be denoted with the Eilenberg notation & (X, Y).

i‘e X T’E recall the definition of a tensor category, the definition of a duality for an object in a tensor
c

o

TENSOR CATEGORIES. A fensor category ¢ = (¢,®,a,l,r) (see [26, 27]), also called a monoidal
category, is a category & endowed with a functor ®: & x & — & (the tensor product), an object I € &
(the tensor unit) and natural isomorphisms in &~

a=ayyw: (U®V)®W—> U®(V®W)
for any U, V, W € & (the associativity constraint) and
I=1ly:1eU — U, r=ry: U1 —->U

for any U € & (the left unit constraint and the right unit constraint, respectively) such that, for any object
U V,W,X e ¢, the diagram

UsV)e(WeX)

aueV,w.x au,vwex

(UeV)@W)® X U (Ve ((WeX))

aUN %ﬂvw_x

Ue(VeW))eX — U (Ve W)®X)

ayyvewx
(called the associativity pentagon) and the diagram

ayLv

UeheV UeAQV)
r\M Mf
UV

commute.
A tensor category & is strict when all the constraints are identities.

39
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Given two tensor categories ¢ and &, a tensor functor F = (F,F,,F,): € — & consists of the
following items.

o Afunctor F: ¢ — .
e A natural family of isomorphisms in &

F.(UV): FU)® F(V) > FlU®YV)
(for any U,V € %), such that, for any U, V, W € &, the following diagram

F(U)® (F(V) ® F(W))
avvw FU)F,(V,W)
(FU)® F(V))® F(W) FU) F(Ve W)
F(U,V)®F (W) < > FA(U,VeW)
F(U®V)® F(W) FU® (Ve W)
Fl(m Aw)
F(UsV)®W)
commutes.
e An isomorphism in &
Fo:1T—- F)
such that, for any U € ¢, the following diagrams
F(U) F(U)
rnw/ \F(ru) lnu/ \F(lw
FU)®I FU®TI) I® F(U) FIe®U)
F(U)®F(\ /I\:Q(Uv][) F()®F(U)\/ /\2(]1-(])
F(U)® F() FI) e FU)

commute.
F is said strict when F, and all the F,(U, V) are identities.

Remark 2.1. Let € be a tensor category. We recall [26, 27] that & is equivalent to a strict tensor
category .¥(¢") via a tensor functor F: . (&) — ¢ and a tensor functor G: & — .¥(%). More
precisely, the category .#”(£") and the functors F and G can be obtained as follows.

e The objects of .7 (&) are the finite sequences u = (U,,...,U,) of objects U,, ..., U, € €. Also
the empty sequence, denoted u,, is an object in .7 (&€").
e For any u € .7 (), the object F(u) is given by

Fu) = Ji§ if u = u,,
(m_(m«M®UQ®UQ®~)®M,Huz@h“”wxmmneNHm,

where on the right all pairs of parenthesis begin if front. For any u, v € .%(%), the arrows from u
to vin ¢ are given by
A u,v) = C(F(v), F(v)).
In that way, with the composition induced by ¢, we obtain the category . (%).
e .7 (%) becomes a tensor category with the tensor product of objects given by the concatenation
product and the tensor product of two arrows f € . (% ")(u,v) and g € .7 (€ )(u’, V") given by the
composite

o (Faan)” . feg s Fa0) ,
Fuou) — FuW)QFW) — FW)® F(V') —— F(veV),
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where, for any w,w’ € .¥(&), the arrow F,(w,w’) is the canonical isomorphism in &~ from
F(w) ® F(w’) to F(w ® w’) obtained iterating the associativity constraint a (well defined by the
coherence theorem in [26]).

e The definition of the functor F is completed by setting

F(Hy=r1
for any arrow f € .S(€ ) u,v) = € (F(u), F(v)), with u,v € .9(&). F becomes a tensor functor
by defining F,(:,-) as above and
F, = Idj.
e The category Z can be embedded in . (%) by identifying ¢~ with the full subcategory of .7 (&)
given by the sequences of length one. The functor G is given by the immersion of & in .7 (%).
G becomes a tensor functor by setting

G.(U, V) =ayy
forany U,V € ¢, and
G, = Idy € .S (&), 1) = € (L.

o

DuaLrtigs. Let & be a tensor category. For simplicity, allowed by Remark 2.1, we suppose that & is
strict. Given U, V € &, a pairing between V and U is an arrow in &

d:VeU — 1.

Given a pairing d between U and V, if, for any arrow f: X - U® Y in &, we set
Ver
d4f) = (V®X Y veuey Y),

we obtain an application
& X, URY) — (Ve X,Y).
The pairing d is exact when dt is bijective for any X,Y € &, i.e., if we have an adjunction of functors
V®_— U®_. It follows that d is exact if and only if there exists a map

b:I-U®V
(b = (d*)"'(Idy)) such that the diagrams (called adjunction triangles or duality relations)
UdVeU VeUsV
b®U/ \l/]@d V®l/ \i@V
(50) U U and v ’
~_ ~_ 7
U v

commute. As a consequence, we also have an adjunction of functors _®@ V — _® U.
When the pairing is exact, we say that the pair (b, d) is an adjunction or a duality between V and U.
We also say that V is left adjoint or left dual to U, that U is right adjoint or right dual to V, and we write

b,d): v—U.
We call b the unit and d the counit of the adjunction.
Given two adjunction (b,,d,): V, — U, and (b,,d,): V., — U, in &, we have a bijection
O): W, V,) - €U, U,)

with inverse
): WU, U,) - €(V,, V),
obtained by setting, for any f € Z(V,,V,)and g € € (U,, U,),

§=(V.8b)o(V,0g®V,)o(d,®V,),
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f=b.0U)o(U,® fOU,) o (U,®d,).

When g = f we write
f—8.

We say that & is left (respectively, right) autonomous when any object has a left (respectively, right)
dual. We say that £ is autonomous if it is both left and right autonomous.
When # is left autonomous, for any V € & we can choose an adjunction

(by,dy): v:—V
obtaining a functor
O -7
determinated on f € &'(V, U) by the condition
.
The functor (-)* is called duality functor. This functor is always fully faithful and it is an equivalence of
categories if and only if £ is autonomous.

Let ¢ and & be two (not necessarily strict) tensor categories and let F: ¢ — < be a tensor functor.
Ifd: V® U — 1 is a pairing in &, then, we have a pairing d7: F(V) ® F(U) — 1T in &, given by the
composite

F(V)®F(U) F(V®U)—>F(II)—>]I
If d is exact, sois d¥,ie,V— U implies F(V) — F(U). Moreover, given two arrows f and g in & such
that f — &, then we have the adjunction F(f) — F(g).
Let ¢ be a tensor category and fix two adjunctions
(by,dy): U*— U  and  (by,dy): V* —iV.
Given f € (X ® U,V ®Y), the mate of f is the arrow

V*@X®by feU

2.2. T-categories

1) f° (V X 22 v e X Ue U —>V*®V®Y®U*M>Y®U*).
Y73| OLLOWING [45], we introduce the notions of a T-category and of a strict T-category. Then, we
- =% discuss the properties of a duality in a T-category and we introduce the notion of an autonomous
23| T-category and of a stable left dual. A crossed group-category as in [45] will be, in our termin-
ology, a left autonomous T-category. Finally, we provide the definitions of braided, balanced and ribbon
T-categories. We also recall the definition of the mirror of a T-coalgebra following [45]. As an example of
T-category, we describe the T-category of representations of a T-coalgebra.

&0

Basic pEFINITIONS. Let 7t a discrete group. A T-category.7 (over m) is given by the following data.

e A tensor category .7 .
e A family of subcategories {7 }qex such that .7 is the disjoint union of this family and that for
any o, 5 € @ we have

UV e T, forany U € .7 and V € ..

e Denoted aut(.7") the group of the invertible strict tensor functors from .7 to itself, a group ho-
momorphism
@: T— aut(.7)
Pr—" o
called the conjugation, such that, for any a, § € m,

(p[g,(‘%) = ,7[3-(1[3—1 .

k)
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In the nomenclature of [45], a T-category is called a crossed group category. Notice also that we do not
require that a T-category is a linear category, differently from [45].

Given a € 7, the subcategory .7 is called the a-th component of .7~ while the functors ¢ (with § € 7)
are called conjugation isomorphisms. Notice that, when T = 1, then .7 is nothing but a tensor category.
The T-category .7 is called strict if is strict as a tensor category.

Given two T-categories .7 and .7, a T-functor F: .7~ — .7 is a tensor functor form .7 to .7’ that
satisfies the following two conditions.

(1) Forany a e m, F(%) c .7 ".
(2) F commutes with the conjugation isomorphisms. This means that, denoted, F,, for any a € m,
the restriction of F on .7, the following diagram

T
wV \Ijliaﬁ"
L 7
Ta Zhap-
F\‘ %3
T

[¢3

commutes.
Two T-categories .7~ and .7’ are equivalent as T-categories if they are equivalent as categories via a
T-functor F: .77 — .7’ and a T-functor G: .77 — .7,

o

LEFT INDEX NOTATION. Let .7~ be a T-category. given 3 € i and an object V € .73, the functor ¢pg will

be denoted (-), as in [45], or also ﬁ(-). We introduce the notation v(') for Bfl(-). Since Y() is a functor, for

. f g . = . . "
any object U € .7 and for any couple of composable arrows - — - — -in.7, we obtain the identities

(52a) Idy = Idv,
and
(52b) "(go f)="g0o"f..

Since the conjugation ¢: ;t — aut(.7") is a group homomorphism, for any V, W € .7, we have

(530) Ve = (")
and
(53b) 10 = () = () =14

Finally, since, for any V € ¢, the functor () is strict, we have
(540) feg="re's
(for any arrow f and g in.7"), and

(54b) "T=1
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STRICT EQUIVALENCE FOR T-CATEGORIES. We prove that any T-category is equivalent to a strict one.
This is the analog for T-category of Mac Lane’s theorem for tensor categories recalled in Remark 2.1 (see

page 40).
THEOREM 2.2. Let.7 be a T-category. Then, .7 is equivalent as a T-category to a strict T-category
AT).
Proof (sketch). Define the category .(.7") and the functors F' and G as in Remark 2.1. We need to
complete the structure of a T-category is such a way that the functors F and G become T-functors.
o Letu=(U,,..,U,)bein.#(%),withn>1and U, € 7% ,U, €.7%,,...,U, € 7, . We set
m(u) = 0,0, -~ d,
and also
m(uo) = 1’
where u,, is the empty sequence. For any a € 7, the a-th component of .°(.7") is defined as the
full subcategory .%(.7") of . (.7") whose objects are the objects u of .”(.7") such that m(u) = o.
e The conjugation ¢* of .%°(.7") is obtained by setting, for any o € ,
(Pf;r(u) = sztr(Un, LUy = ((Pa(Ul), cees (Pa(Un)),
forany u = (U,,...,U,) € .¥(7), and

(szr(u()) = Up.

The definition is completed by setting, for any arrow f € . (.7),
Po () = @a(f).

It is easy to prove that, in that way, .¥(.7") becomes a T-category and the functor F and G become
T-functors. Notice that the hypothesis that the functor @, (a € ) is strict is essential to obtain the functor
Vo' :

In virtue of Theorem 2.2, often, in the following, we will consider only strict T-categories. In particular,
this will allow us to use to introduce some technique of graphical calculus in the study of the T-categories.

(&)

ADJUNCTIONS IN A T-CATEGORY. A left autonomous T-category .7 = (7 ,(-)*) is a T-category .7
endowed with a choice of left dualities () satisfying the following two conditions.

g,

e If U is an object in .7 (with a. € ), then U* is an object in .71, i.e.,
““="0.
e The conjugation preserve the chosen dualities. This means that, for any § € wand U € .7,

denoted by: I — U ® U™ and, respectively, dy: U* ® U — 1 the unit and the counit of U and
bys(vy and dggv) the unit and the counit of @g(U) for the dualities (-)*, we have

(55a) @pbu) = bguwy  and  @p(dy) = dyyw)-

In particular, we have p(U*) = (¢p(U))". With the left index notation, given V € .7, axiom (55a)
can be rewritten in the form

(55b) Yby=by, and  Ydy =dv,.

In a similar way, it possible to introduce the notion of a right autonomous T-category. An autonomous
T-category is a T-category that is both left and right autonomous.

Given two left autonomous T-categories .7~ and .7, a left autonomous T-functor F: .7 — .7 ' is a
T-functor from .7 to.7 ’ that preserves the dualities. This means that, for any U € .7, denoted by and dyy
the unit and, respectively, the counit of U for the chosen dualities of .7~ and b () and dp(y) the unit and the
counit of F(U) for the chosen dualities of .7/, then

(56) F(by) = brw) and F(dy) = drw).
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In particular, we have F(U*) = F(U)*. Notice that, the conjugate automorphisms of an left autonomous
T-category are left autonomous T-functors.

Two left autonomous T-categories .7 and .7’ are equivalent as left autonomous T-categories if they
are equivalent as categories via a left autonomous T-functor F': .77 — .7’ and a left autonomous T-functor
G: 7 -7

In a similar way, it is possible to introduce the notions of a right autonomous T-functor and of autonom-
ous T-functor and the notions of equivalence of right autonomous T-categories and of autonomous T-cat-
egories.

Remark 2.3. Let.7 be aleft autonomous T-category. Define the T-category .¥”(.7") and the T-functors
F and G as in Theorem 2.2. Given u € . (.7), if we set

u' = G(F(u)),
then the exact pairing in.7~
~ dr
Fu'* ® u) — F(u)" ® F(u) — 1T
gives also an exact pairing ¥* ® u — I under the identification
AW Qu,uy) =.7 (Fu" @ u), ).
It is easy to check that, in that way, .%"(.7") inherits a structure of left autonomous T-category and that .7~
is equivalent to .¥”(.7") as a left autonomous T-category via the functors F and G.
2o

STABLE LEFT DUALS. Let.7 be a T-category and U € .7 (o € i) an object endowed with an adjunction
(by,dy): U* — U. We say that (by, dy) is a stable adjunction and U™ a stable left dual of U when, for any
B., P> € 7 such that B,0p7" = B.aps’,

(57a) it qp,(U)=qp,(U)  then  (qp,(bv), 9p,(dv)) = (@p, (bv), 9p, (dv)).
Equivalently, we can ask that, for any 3 € t that commutes with a,
(57b) if  @pl)=U  then  (¢p(bv). gp(dv)) = (by,dv).

Obviously, condition (57a) implies condition (57b). Conversely, given f3,, 3, € m as above, since ¢, (U) =
@p,(U), we have @p-1p,(U) = U and, by (57D),

(p; 6. (b, @p;p.(dv)) = (bu, dy).
Finnaly, if we apply the functor ¢, , then we obtain (574).
Now, if we set
D(U) = {@p(U) gy
then, given V € ®(U) and 3 € 7 such that V = ¢g(U), the stable adjunction (by, dy) induces an adjunction
(pp(bu), @p(dy)): @p(U*) —1 V. This adjunction does not depends on 3 and is stable too.

By using the notion of a stable dual, we can give an alternative description of a left autonomous T-cat-
egory as follows.

LEMMA 2.4. A T-category .7 admits a structure of left autonomous T-category if and only if, for any
U € .7, there exists an object U, € ®(U) endowed with a stable adjunction (b,,d,): U5 — U,,.

Remark 2.5. The terminology concerning a category with dualities is not completely fixed. In par-
ticular, if some authors [18] only require that an object V in a left autonomous category admits an exact
pairing, other authors [21, 43] also require the choice of a pairing, i.e., they only consider a fixed adjunction
for any object of the category. To be coherent with the definition of a crossed m-category given in [45], in
the definition of a T-category we choose the second solution. This will also be useful in the next chapter,
when the considered left autonomous categories will be endowed with a natural choice of stable dualities
and the considered functors will be autonomous is the sense of the definition above. However, we will see
that, starting from a T-category .7~ endowed with a twist 9, it is possible to obtain a ribbon subcategory
N(T) of .7, i.e., a subcategory of .7~ endowed with stable dualities compatible with the twist. With the
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exception of the trivial case in which we just know that.7 is ribbon (so that we have ./ (7)) =.7), there
is no natural way to obtain a canonical duality (-)* for ./ (7).

e

BRAIDING. A braiding for a T-category .7 is a family of isomorphisms
c= {CU’V € f(U oV, (V)e U)}

satisfying the following conditions.
e For any arrow f € .7 (U, U’) (with a € ), g €.7 (V, V') the diagram

U,VeOb.7

0‘V QU

cu, 7 \(“g)@f

(58a) UeV (“v)ev

f®& /U’.v'
uev

commutes.
e Forany U, V,W €.7, the two diagrams

(U®VW)®(U®V)ﬂ(U®V)®W%U®(V®W)

(58D) “WWUJ PMW
(W)ev)or sy Wom)ov e ve((w)ev)

Cy Wy a
uvw® uVwy

and

Cuvew

(%V@W))@U%U®(V®W)%(U®V)®W

(58C) a&[@vwww lcuvv®w

(V)& ((UW) ® U) ———(W)eUeWw) T ((UV) ® U) W

vy ®cy,w

commute.
e Forany U,V €.7 and f§ € m, we have

(58d) Pplcuy) = Cop)ppv)-

A T-category endowed with a braiding is called a braided T-category. In particular, when 7t = 1, we recover
the usual definition of a braided tensor category [20].
Given two braided T-category .7 and .7 ', a braided T-functor F: .7~ — .7’ is T-functor from .7 to
7 that preserves the braiding, i.e., such that

F(cyy) = cru)rw)

forany U,V €.7.
Two braided T-categories .7 and .7 ' are equivalent as braided T-categories if they are equivalent as
T-categories via a braided T-functor F: .77 — .7’ and a braided T-functor G: .7" — .7

Remark 2.6. Let .7 be a braided T-category with braiding ¢ and define the equivalent T-category
S (7") and the T-functors F and G as in Theorem 2.2. The family of arrows

Cuy = (F(u ®V) = F(u)® F(v) BN (’"(“)F(V)) ® F(u) N F((“v) ® u)) € .,V(.;7)(u ®vV, (”v) ® u)
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(for any u,v € .°(.7)) is a braiding in .%”(.7"). With this structure of braided T-category on .7 (.7"), the
functors F and G become braided T-functors and so .7 is equivalent to .#(.7") as a braided T-category.

Remark 2.7. Let .7 be a strict T-category endowed with a braiding ¢. Applying the commutativity
of diagram (58b) for U = V = I, the commutativity of diagram (58¢c) for V = W = I, and observing that
oy = Id, we obtain

,_=C_ 1= 1d.
e
Twist. A twist for a braided T-category .7 is a family of isomorphisms
- . U
6= {eU' v- U}UeOb.7'
satisfying the following conditions.
e 0is natural, i.e., for any f € .7, (U, V) (with o € m), the diagram

‘U
"N
U v
N2
\%
commutes.

e Forany U € .7 and V € 9% (with o, f € ), the diagram

(594)

Ous
UV — UV gV)

(59b) 0@0{ TCUMUU

(‘Uv)eV——— ((UU)(VV)) ®U

Cuy vy
commutes. Notice that we used

(UU)(VV) = Quaa (9p(V) = ap(V) = 'V
and o)
(UU) = Qppap)y (Pa(D)) = @op(U) = V*'U.
e Forany U €.7 and a € m,
(590) @a(Oy) = By, w)-

A braided T-category endowed with a twist is called a balanced T-category. In particular, for T = 1 we
recover the usual definition of a balanced tensor category [20].

Given two balanced T-categories .7 and .7 ’, a braided T-functor F: .7 — .7 ' is a balanced T-func-
tor if it preserves the twist, i.e., if, for any U € .7,

F(Oy) = Opw).

Two T-categories .7 and .7’ are equivalent as balanced T-categories if they are equivalent as T-cat-
egory via balanced T-functor F: .7 — .7’ and a balanced T-functor G: .7" — .7".

Remark 2.8. Let.7 be a strict T-category endowed with a braiding ¢ and a twist 6. Since 61 o 6] =
G100 (I®06f) =0 ® 0O = 0 (Where we used Remark 2.7), we have

Oy = Idy.

o
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A ribbon T-category .7 is a balanced T-category that is also a left autonomous T-category such that
for any U € .7, (with a € m), the diagram

b
————————UQU"

(60) buul l()uew*

(‘v)e VU W (‘v)e v

commutes. Notice that we used
vu* * * * *
( )(UU ) = Qaara (Pa(UY)) = @, (U") = U™

For m = 1 we recover the usual definition of a ribbon category [36, 43] also called tortile tensor category [19,
20, 39].

Given two ribbon T-categories .7~ and .7 ', a T-functor F: .7 — .7’ that is at the same time a
balanced T-functor and a left autonomous T-functor is called ribbon T-functor.

Two ribbon T-categories .7~ and .7’ are equivalent as ribbon T-categories if they are equivalent as
T-categories via a ribbon T-functor F: .7~ — .7 " and a ribbon T-functor G: .7" — .7

Remark 2.9. Let .7 be a balanced T-category and define the equivalent braided T-category . (.7")
and the functors F and G as in Theorem 2.2 and Remark 2.6. The family of arrows

Ou = Orw) € 7 (Fu),"“F(u)) = . (7)(u."u)

(withu € .7 (7)) gives a twistin . (.7") such that .7 is equivalent to .(.7") as a balanced T-category via
the functors F and G defined above. If .7 is ribbon, then, with the structure of left autonomous T-category
on.#(.7") provided in Remark 2.3, .(.7") becomes a ribbon T-category and .7~ is equivalent to . (.7")
as a ribbon T-category via the functors F' and G.

e
MirrOR T-cATEGORY. Let. 7 be T-category. The mirror T of T (see [45]) is the T-category defined
as follows.

e For any a € , we set.7, = .7 as a category. So, as a category, .7 =.7 .

e The tensor product U®V in.7 of U € .7 = Z+ and V € .7 g = % (with a,p € m) is given
by

UBV = ¢ (U)®V € Tp.

Given an arrow f in .7 o and an arrow gin T p (with a, B € ), the tensor product f®g of f and

gin.7 is given by
feg =g (H®g.

The associativity constraint @ of .7 is obtained by setting, for any U € .7, V € T, and W e 7
(with a, B,y € n),

AUVW = Qi1 (U),y-1 (V), W+

The left unit constraint [ and right unit constraint 7 of .7 are obtained by setting, for any U € 7,

ZU = lU and 7[] =ry.

The conjugation is given by

@ T— aut(./)

O“_)$ach(1.
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g,

When .7 is a left autonomous, .7 is left autonomous by setting, for any U € .7, (with o € ),
by = gu(by),  dy =dy,

and obtaining, in that way, an adjunction (EU, EU): U*— Uin 7.

When .7 is braided, .7 is also braided with the braiding ¢ given by
cuy = (cyy)™" = Cuyy.

forany U,V € .7 .
When .7 is balanced (respectively, ribbon), .7 is also balanced (respectively, ribbon) with the twist 6
given by

0y = Oy, w) -

forany U € 7(1 (with a € 7).

g,

Notice that the mirror construction is involutive, i.e., we have .7~ = .7 . This is true also when .7 is
left autonomous or endowed with a braiding or a twist.

Two (left autonomous, braided, balanced or ribbon) T-categories .7~ and .7’ are said mirror equi-
valent (as left autonomous, braided, balanced or ribbon T-categories) if .7 is equivalent to .7 as (left
autonomous, braided, balanced or ribbon) T-category.

o

T-CATEGORIES OF REPRESENTATIONS. Let H be a T-coalgebra over a field k. The T-category .7%24.(H)
(see [45]) is defined as follows.

e For any a € m, the a-th component of .%2,.(H), denoted .72, ,(H), is the category of representa-
tions of the algebra H,,.

e The tensor product U ® V of U € Ay (H) and V € Fgus(H) (with o, f € 7) is given by the
tensor product of k-vector spaces U ® V endowed with the action of H,g given by

h(u®v) = A p(hu® v = hi,u® hig, v

forany h € Hyg, u € U,andv € V.

e The tensor product of two arrows f € .%24.,(H) and g € ,%gr///ﬁ(H ) is given by the tensor product
of k-linear morphisms, i.e, by requiring that the forgetful functor from .72..(H) to the category
of vector spaces over k is faithful.

e The unit [ is the ground field k endowed with the action of H, provided by the counit €.

e Given f € i, we need to define the functor I3(-). To avoid confusion, in this context we reserve the
notation g for the isomorphism of algebras qg: H, — Hpop- given by the T-coalgebra structure
of H. Let U be in .%24.,(H), with o € 7. The object PU has the same underling vector space of
U. Given u € U, we denote Pu the corresponding element in PU. The action of Hpgyp- on U is
given by

61) hPu =P (qp- (yu)

forany u € U and h € Hpqp-.
The objects of . 72..(H) are called representations of H.
When H is quasitriangular (with universal R-matrix R = {Ryp = E).i ® C(ﬁ),,-}a’ﬁen), the T-category
S24(H) is braided with the braiding
coy: UeV —  (W)eU
UV ((L(C(B).iv)) ® E(wy.ilt
(foranyu e U,veV,U € Ly (H),V € .,%}(/,B(H), and a, € 7).

Let us consider the full subcategory .%2,.(H) of the finite-dimensional representations of H, i.e., of
representations U of H such that dimy U € N. The T-category .%24(H) has a structure left autonomous
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V
14
@f:V-oWw (b) Idy (©gof

Ficure 1. Representation of morphisms in a T-category .7~

T-category obtained in the following way. For any U € .7, we set U* = Homg(U, k), with the action of
Hq- on U” given by

(62a) (hf,uy = {f, s (R)u)

forany h € Hy-, f € U* and u € U. Then, U™ is a left dual of U via

by: T—-UQU*
1— e;®eé

(62b)

(where {e;} is a basis of U as a k-vector space and {e'} its dual basis), and
dy: U'U — k

62¢

(020 feu — (fu) = f)

(forany f € U* and u € U).
If H is endowed with a twist {0, € Hy}qex, then . 224.(H) is a balanced T-category, with the twist given
by
0y: U— WU
u — “(Oqu)
for any u € U, with U € . %2, (H), and a € . In the same way, .%24.,(H) is a ribbon T-category.
Notice that the mirror .%24.(H) of .%2,.(H) is isomorphic to the category Q%%///(ﬁ) of representations

of the mirror T-coalgebra H of H (see page 15). Similarly, we have .22, (H) = %By,f(ﬁ)

2.3. Graphical calculus

h‘v grE briefly recall the graphical calculus for a (braided) tensor category in the form described in [43]
‘\\v‘ T, and its generalization for a T-category derived form [45]. Formally speaking, given a T-category
WY || .7, we describe a category of diagrams equivalent to .7 as a T-category [see also 18, 21, 36].
We start by providing a version of this calculus for any strict T-category. Then we consider the case when
.7~ autonomous, and, finally, the case when .7 is braided, balanced or ribbon.

Z

&0

GRAPHICAL CALCULUS FOR A T-cATEGORY. Let.7 be a strict T-category. In the graphical calculus for
.7, an arrow f €.7 (V, W) is represented as in Figure 1(a), with the identity represented as in Figure 1(b).
The composition of two morphisms f € .7 (W, V) and g € .7 (X, W) is described in Figure 1(c), where
“=” means the equality of the represented arrows in.7". Anarrow f: V, ® .. V,, > W, ® ... W, in
.7 is represented as in Figure 2(a) while the product of two arrows f: V — Wand f': V' - W’ in.7 is

represented as in Figure 2(b). The associativity of the tensor product in .7 is represented as in Figure 2(c).

Given an arrow f € .7 (V,W) and an object U € .7, it is convenient to introduce the notation in
Figure 3(a) for the arrow UYf. The tag (U) can be placed on the left or on the right of the box labeled
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W, ®.0W, W w W W
Wew W ¢W l l
f = 7 = =
; g, RS
V8.8V, v Vv VIV vy vy v Yy
@f:Vi®.9V, ->W®.0W, (b) Tensor product of f and f” (c) Associativity of the tensor product
Ficure 2. Representation of the tensor product in.7~
I
Ux
W) |
‘w *”W { = () |gof
. by
(U) i WUy [y | = ()
vy vy *UV vy vy
(@ Yf (b) Ydy (axiom (52a)) (©) (Yg)oVf = Ugo f) (axiom (52b))
UW/ iUW U(W/ ® W) ®UV U’®UV
) w = W (U'ev) = Uy
UV/ UV U(V/ ® V) U/®UW U’®UW
@ (Vf)eVf = Uf @ f) (axiom (54a)) (@ U=V'f = /(U'f) (axiom (53a)
w U@UW ¢U@UVV ¢ w

® = O = (UYD)

i
v ﬁ@l/v U@UV 1%

0'f = 1) = [7F) = 1 (axiom (530)

Fi1GUre 3. Graphical calculus and automorphisms ¢_ of .7~

with f with the same meaning. With this notation, the functoriality of Y(-) (axiom (52)), where U is an
object in .77, in described in Figures 3(b,c), where f: V. — W and g: W — X are arrows in .7 . The
fact that the functor Y(-) preserves the tensor product (axiom (54)) is described in Figures 3(d), where
fe7(V,W)and f’ €.7 (V',W’) are generic arrows in .7 . Finally, axiom (53), i.e., the fact that ¢ is a
group homomorphism, is described in Figures 3(e,f), where, as above, f € . 7 (V,W)and U, U’ € .7.

Notice that, when we have more that one tag attached to a box, as in Figure 3(e), we will write all the

tags always on the same side and we will read them from left to right (i.e., the first functor acting is the
functor corresponding to the first tag on the left).
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| 444
- ] = L= L] =
U ! ve v Tu UU f\:]

(a) Idy~ b) f: U > V* (o) by (d)dy

(e) Duality relations (50) e - w-v: (g) The mate 1@ of an arrow
h: XU - VeY

weu V) o
b=\/ ’ SN

v v U e U)
(h) Yy = buy, (for a stable left dual) ) Vdy = dyy; (for a stable left dual)

F1GURE 4. Graphical calculus for the adjunctions in.7~

20

Duatiries. Let U be an object endowed with a left dual U* in a T-category .7 via unit by and counit
dy. The identity of U* is representable as Figure 4(a). Moreover, given another object V € .7 with
left dual V*, an arrow f € .7 (U*, V*) can be represented in each of the forms in Figure 4(b). The unit
by: T — U®U" is represented in Figure 4(c), while the counitdy : U*®U — I is represented in Figure 4(d)
and the duality relations (50) in Figure 4(e). The left adjoint g* of an arrow g: U — V in .7 (see page 42)
in represented in Figure 4(f) while in Figure 4(g) we have a representation of the mate 7 of an arrow
he 7 (X®U,V®Y), see (51). If U is a stable left dual, then we have the supplementary relations pictured
in Figure 4(f,g), corresponding, in the case of a left autonomous T-category, to (55).

(&)

BRrAIDING. Let us consider a T-category .7~ endowed with a braiding ¢. For any U,V € .77, the arrow
cy,y will be denoted as in Figure 5(a), while the arrow éyy = (cU,pV)‘l will be denoted as in Figure 5(b). The
fact that cyy has an inverse is described in Figures 5(c,d). Finally, the axioms for the braiding (axiom (58))
are described in Figures 5(e,f,g,h).

Notice, that if X €.7 has a stable left dual X*, then we have also the relations represented in Figure 6.
For example, the relation in Figure 6(a) follows by the naturality of ¢y applied to the arrow by.
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(a) cuyv (b) Cvu (c) z‘UV,U ocyy (d) CU,ﬁV olyuy

v’

53

U’ Uy \ U’

v Wl gl T

(e) Axiom (58a)

W((Uv) ® U) ("etv) e MU

!

|

W®UV WU

\

A N
\\ \*
w U Vv vVew U V W MU ® V) ("v)e"v vy o Wy
(f) Axiom (58b) (g) Axiom (58¢) (h) Axiom (58d)

Ficure 5. Representation and properties of a braiding ¢ in .7~

R A

NG AN

() (d)

Ficure 6. First Reidemeister move

F1Gure 7. Representation of ¢y« y (Lemma 2.10)

LemMA 2.10. Let U be an object in .7~ endowed with a stable left dual U*. For any V € .7, the arrow

cy~y is the mate of Eyy, i.e., it can be represented as in Figure 7.
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/
%]
U%VU v U| yV

Ficure 8. Proof of Lemma 2.10

FI1GURE 9. Lemma 2.11

ya'

U®UU

F1GuURE 10. Representation of w

Proof. Composing on the top with (cy-v)™"' and applying the first Reidemeister move we obtain the
equality in Figure 8. ]

iy

LemMA 2.11. Let U and V be objects in .7 . Suppose that U has a stable left dual U*. Then we have
the equalities pictured in Figure 9.

Proof. The first passage follows by Lemma 2.10, while in the second we applied the duality relations.
¢

Let U be an object in.7 endowed with a left dual U* via an adjunction (by, dy). We set
(63) Oy = Opy.dy) = (dvevy. @ U) o ((U®UU*) ® EUU,U@?Uu) ° ((C vy vy © buy) ® U®UU).

The arrow wy can be represented as in Figure 10.
LEMMA 2.12. oy is independent from the choice of the stable left adjunction of U.

Proof. Let (by,dy): U* — U and (by.dy): ] — U be two stable adjunctions in .7”. We need to
prove W, 7,) = Owy.dy)- Represent by as in Figure 11(a) and dy as in Figure 11(b). The proof is given in
Figure 11(c), where in the second passage we used the naturality of cvy; . 2

20

Twist. Let .7 be a balanced T-category with twist 6. The naturality of 6 (axiom (59a)) can be rep-
resented as in Figure 12(a). The compatibility with the braiding (axiom (59b)) can be represented as in
Figure 12(b). The compatibility with the conjugation (axiom (59c¢)) can be represented as in Figure 12(c).
Finally, in the case of a ribbon T-category, the supplementary condition (60) can be represented as in Fig-
ure 12(d).
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(a) by (b) dy (©) WGy dy) = Oby.dy)
FIGURE 11. Proof of Lemma 2.12
vy v l \

v
¢ - vouyy

}
. \ l V®U1]
- Uuev W) - Ouy by U Uy U
F ¢
U U |4 U U
(a) Axiom (59a) (b) Axiom (59b)

(c) Axiom (59¢) (d) Axiom (60)

FIGURE 12. Axioms of a twist 6

2.4. The center of a T-category

‘9 generalize the center construction of a tensor category described in [20] to the case of a T-cat-
W T:,gory .7, obtaining a braided T-category Z(%"). We start by providing the definition of Z(%").
VX Then we prove that Z(.7") is a T-category and that it is braided. Notice that, even when .7 is a

left autonomous, Z(.7") is not necessarily left autonomous. The end of this section is devoted to study of
when an object in Z(.7") admits a left dual.

20

DEFINITION OF THE CENTER. Let.7 be a T-category. Suppose, for simplicity, that .7~
The braided T-category Z(.7"), called center of .7, is defined as follows.

e The objects of Z(.7"), called half-braidings, are the pairs (U, ¢ ) satisfying the following condi-

is strict.

tions.
— U is an object of .7,

— c_is a natural isomorphism from the functor U ® _ to the functor Y ) ® U such that for any
X,Y €.7, we have

(640) cror = ((X)® er)o (x@ 1)
(corresponding to the commutativity of ¢y, in diagram (58¢)).
e The arrows in Z(.7") from an object (U, ¢ ) to an object (V,d ) are the arrows f € .7 (U, V) such
that, for any X € .7, we have

(64b) ((UX) ® f) ocx = dy o (f®X).
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The composition of two arrows in Z(.7") is given by the composition in .7, i.e., by requiring
that the forgetful Z(7) — .7 : (U, ¢ ) + U is faithful.

e GivenZ = (U,c),Z" = (U',') € Z(7), their tensor product Z ® Z’ in (") is the couple
(U U’,(cm ) ), where (¢@¢’) _is obtained by setting, for any X € .7,

(64¢) (ca )y =(wy®U)o (U ).

e The tensor unit of Z(.7") is the couple Zy = (I, Id ), where I is the tensor unit of .7

e For any a € m, the a-th component of Z(.7"), denoted Z,(.7"), is the full subcategory of Z(.7")
whose objects are the pairs (U, ¢ ) with U € .7.

e For any 3 € &, the automorphism ¢ z g is obtained by setting, for any (U, ¢ ) € Z(.7),

(64d) ¢zpU, ) = (pp(U), 9z p(c)),
where, for any X € .77,
(64¢) P2(Ox = Pplcq; )

or, with the left index notation,
(9, =)

The definition of g is completed on the arrows by requiring that the forgetful (7)) — .7 isa
T-functor.
e The braiding ¢ in Z(.7") is obtained by setting, for any Z = (U,¢ ), Z" = (U’,¢) € Z(7),

Czz = .

Notice that, when it = 1, the above definition coincide with the definition of the center for a tensor category
described in [20].

Remark 2.13. The definition of the double given here, generalizes the most usual convention adopted
also in [20, 22]. However, in [21], the center of a tensor category is constructed in a similar way, but
considering the natural transformation of the kind _® U — U ® _ instead. The choice in [21] seems more
appropriate in some context, e.g., in the construction of the isomorphism between the center of the category
of representations of a Hopf algebra H and the category of representations of D(H).

20

Given a half-braiding (U, ¢ ), for any X € .7, we introduce the notation
= ()t X0 U — U X.

In that way, we obtain a natural transformation t_ satisfying the relations

tuoyocey =l oy =U®X,
(65) X
oty =G oty =X®U.

THEOREM 2.14. (&) is a braided T-category.

Z(.7") is obviously a well defined category. To prove Theorem 2.14, we need to show that it is also a
T-category and that it is braided. With this purpose, following [22] we start by introducing some techniques
of graphical calculus for Z(%") similarly to what we have done in the case of a braided T-category.

&0
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wLop o ;o
o 6l g

v o x x U x X U
(a) (b) (c) tuy o cx (d) gy © [5'¢ (e) Naturality of ¢_ (f) Naturality of €

x ZX
Ux ¢v UX\/v
/ \

\»Z i} U\»XX\Y X \\

[~

U X®Y U X U X u v X
(g) Axiom (64a) (h) Axiom (64b) (i) Axiom (64c¢)
(tensor product)

F1cure 13. Representation and properties of half braidings

GRAPHICAL CALCULUS FOR THE CENTER. Let Z = (U, ¢ ) be an object in (7). Forany X € .7,
the arrow ¢x: U ® X — UYX ® U will be represented as in Figure 13(a). Of course, this notation is not
complete, since we can have another couple Z' = (U, ¢’) with the same underlying object U, but with
cx # ¢. However, instead of introducing a more complicated notation, e.g., applying a label “c” near the
conjugation, we prefer to avoid ambiguities declaring explicitly in the text the couple (U, ¢ ) to which a
picture refers.

Similarly, the arrow €y will be represented as in Figure 13(b). In that way, equality (65) can be described
as in Figures 13(c,d). The naturality of ¢_is described in Figure 13(e), while the naturality of ¢ _is described
in Figure 13(f). The axiom (64a) for an half-braiding, is described in Figure 13(g). Axiom (64b) for an
arrow in the center, is described in Figure 13(h). Finally, axiom (64c¢), defining the tensor product in Z(.7"),
is described in Figure 13(7).

e

Proor oF THEOREM 2.14. We split the proof in three lemmas. In Lemma 2.15, we prove that Z(.7")
is a tensor category. In Lemma 2.16, we prove that it is a T-category. Finally, in Lemma 2.21, we prove
that it is braided.

LemMA 2.15. Z(.7) is a strict tensor category.

Proof. Let Z = (U,c) and Z' = (U’, ") be objects in Z(.77). We need to prove that Z ® Z’ =
(U®U’,(cm¢’) ) is an object in Z(.7"). Since both ¢_and ¢’ are invertible, also (¢ @ ¢’)_ is invertible. So,
we only need to check axiom (64a). The proof is given in Figure 14(a) (see page 58). In the first passage,
we used the definition of (¢ @ ¢)xgy (Where X,Y € .77). In the second passage, we used axiom (64a) for
both ¢ and ¢’. Finally, in the third passage, we used again the definition of (¢ @ ¢’)xgy.

After this, we need to show that, given two arrows f: (U,¢) — (V,d) and f': (U’,¢) — (V',d’) in
Z(.7), their tensor product f ® f’ in.7 is an arrow in Z(.7"), that is done in Figure 14(). In the first
passage, we used the definition of (¢ @ ¢’)x (for ant X € .77). In the second passage, we used axiom (64b)
for both f and f’. In the third passage, we used again the definition of (b @ d)y. 2

LemMA 2.16. Z(.7) is a strict T-category.
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(a) Axiom (64a) for (c@ ')
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(b) Axiom (64b) for f ® f’

FiGURE 14. Proof that Z(.7") is a tensor category

Proof. Let o and f be in &, with a # . GivenZ = (U, ¢y ) € Lo(F), Z' = (U',cpr, ) € Zp(T),
since .7 (U, U’) = 0, we have Z(7)(Z,Z") = 0.
To complete the proof that Z(£) is a T-category, we need to prove that, for any § € m, pzpis a
functor and that the application
Qz: 71— aut(Z(7))

pr— Pz
is a group homomorphism. The proof that ¢z g is a functor is given in Lemma 2.17 and Lemma 2.18. The
poof that ¢z is a group homomorphism is given in Lemma 2.19. 2

LeEMMA 2.17. Let Z = (U, ¢ ) be an object in Z(.7") and let V be an object in 7. We have VZ =
("0.(%) ) e 22,

Proof. First of all, we check that (Vc) is a natural isomorphism from the functor VU ® _ to the functor
(VU)(_) ® "U. Given f €.7 (X, Y), by the naturality of ¢;;_applied to Vf we have

((U®Vf) ® U) Ol = yy O (U ®Vf)
Now, applying the functor ¥(-) to this equation and observing that
\% 573 &3 vV
(66) (Ve%0)) = Yeren = (U,
we have
()0 "0)o ") = ) (U 1),

So, recalling that, by definition, (Vc) = V(cv( )), we proved that (Vc) is natural transformation from the

functor YU ® _ to the functor (VU)(_) ® YU. Moreover, it is an isomorphism since, for any W € .7, the
component (Vc)w = V(cvW) is invertible in .7~ as image by the functor ¥(-) of the invertible arrow Ty
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F1GURE 15. Proof of Lemma 2.20

To complete the proof of the lemma, we only need to check that Z satisfies (64a). Let X and Y be
objects in.7". We have

V 17 —
(VC)X®Y =" (ergeny) = (((U®VX) ® cVY) ° (CVX ® VY))
and, by (66), we obtain
(VC>X®Y = ((VU)X ® (Vc)y) o ((VC>X ® Y).
[

LemMA 2.18. Let Z = (U,c ) and Z' = (V,d) be objects in (7 ) and let f be an arrow in
Z(TNZ,Z). The arrow Pf: PU — BV lift to a morphism in Z(7) from *Z 10 PZ'.

Proof. We need to check axiom (64b) for Pf. For any X € .2, by axiom (64b) for Z', we have
B B
((ﬁaﬁ"X) ®ﬁf) o (Bc)x - ((aﬁx) ® f) o P(cyiyp)= (((aﬁx) ® f) ° c.‘-xx)
p
= [rae(rem) = (v), () x)

B -3

LEMMA 2.19. @z is a group homomorphism.

Proof. Let 3, and 3, be in 7w and let (U, ¢ ) be an object in Z(.7"). For any X € .7, we have

(928,6.(D)x = Pp,p. (Cprpry) = 05, (@26, xy) = (Pzp, © 92p.)(O)y
SO Q.zp,p, = Pz, © Pz p, on the objects. To show that this is true also on the arrows, we simply observe
that, for any f € Z(%"), we have
©z.p,p.(f) = p,p. () = (@p, © Pp,)(f) = (Pzp, © Pzp,)(f)-
[

This complete the proof of Lemma 2.16. To prove that Z(%") is a braided T-category, we need a
preliminary lemma.

LemMA 2.20. Let (U, c_) and (V, ") be objects in Z(.7") and let W be an object in.7". We have

(<U®VW) ® cv) o (ciy ® V) o (U ® ) = ((Bc’)w ® U) 0 ((Uv) ® cw) o (cy ® W).
Proof. The proof is given in Figure 15, where in the second passage we used the naturality of ¢ . @

LemMA 2.21. Z(.7) is a braided T-category.

Proof. LetZ, = (U,c ) and Z, = (V,d ) be objects in Z(.7"). We need to show that ¢z, 7, = ¢y is an
arrow in Z(.7), i.e., it satisfies axiom (64b). This is done in Figure 16, where the second passage follows
by the previous lemma. This is sufficient to prove that Z(.7") is braided, since ¢y satisfies (58a) by the
definition of an arrow in Z(.7"), equation (58¢) by the definition of an half-braiding, equation (58b) by the
definition of the tensor product in Z(.7") and, finally, equation (58d) by the definition of the conjugation
isomorphisms in Z(.7). 2

i
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F1GURE 16. Proof of Lemma 2.21

KU UK

FiGure 17. (U*,t ) is an object in Z(.7") (Lemma 2.22)

Y

20

DUALITIES IN THE CENTER. Even when .7 is a left autonomous T-category, Z(.7") is not necessarily
a left autonomous T-category since an object in Z(.7") not necessarily admits a left dual. The following
lemma characterizes the objects in Z(.7") that admit a stable left dual and will be used when we will give
an explicit description of the quantum double of a T-category.

[e0)

LEMMA 2.22. An object Z = (U, ¢ ) € Z(.7) has a stable left dual if and only if

e U has a left stable dual U* in .7 and
o the natural transformation mate ¢_of ¢, given, for any X € .7, by

= (&)°,
is invertible.
In this case, (U*,t ) is a left dual of Z.

Proof. Suppose that Z has a stable left dual Z* = (V,d ) with unit by : I - Z®Z* and counitdy : Z* ®
Z — 1. Since the forgetful functor Z(7) — .7 is a T-functor, V is a stable left dual of U in .7
Moreover, by Lemma 2.10 and the definition of the braiding ¢ in Z(.7"), it follows that > = cz-_ is the
mate of T and so ¢ _is invertible.

Conversely, suppose that U™ is a stable left dual of U in.7 and that ¢ is invertible. We need to prove
that (U*, ¢ ) is an object in Z(.7") and that by, and dy are arrows in Z(.7"). Since the functor Z(7) — .7~
is faithful, this will prove that (U*,t ) is a left dual of Z. Since this functor is a T-functor, this will prove
that (U*,t ) is stable. The prove that ¢ is an object in &Z(.7") is given in Figure 17, where in the first
and in the last passage we used Lemma 2.10. The prove that by and dy are arrows in Z(.7") is given in
Figure 18(a) and, respectively, Figure 18(b). In both cases, in the first passage we used Lemma 2.10. 2

2.5. The twist extension of a braided T-category

ET .7 be a braided T-category with braiding c. Generalizing the construction described in [40],
l 1| 1| we obtain a balanced T-category .7 4, 2, the twist extension of .7 . Even if, when m # 1, we do
(]| not have, in general, an embeddmg .7« .7 %, the name is justified by the observation that,
however we have an embeddmg I — .7[“. We will see in the next chapter that, when H is a T-algebra
and .7 = Sy(H) or .7 ﬁ(/q(H), we still recover an embedding .7~ < .7 %. At the end of this
section, we discuss the properties of the dualities in .7 %.

o
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Fi1Gcure 18. by and dy; are arrows in Z(.7) (Lemma 2.22)

DEFITION OF .7 2. Let .7 be a braided T-category. Suppose, for simplicity, that .7 is strict. The twist
extension of .7 is the balanced T-category defined as follows.
e The objects of .7 7 are the pairs T = (U, t), where U €.7 and t € .T(U, UU) is invertible.

e Forany T, = (U,,1,),T» = (U,,1,) € .74, the arrows from T, to T, in .7 % are the arrows
fe.7 (U,,U,) such that

(67a) (Uf) ot, =t,0 f.
The composition is given by the composition in .7, i.e., we require that the forgetful functor
from.7 % — .7 : (U,t) — U is faithful.
e The tensor productof 7', = (U,,t,),T, = (U,,t,) € 7% is the couple 7, v T, = (U, ®U,,t, ®t,),
where

(67b) LRt = Cuevyy, vy © Cuy vy, © (1, ®1,)

e The tensor product of two arrows in.7  is given by the tensor product of arrows in .7

o The tensor unit in .7 7 is the couple Ty = (I, Idy), where 1 is the tensor unit of .7".

e For any a € m, the component .7, = (.7 %), is the full subcategory of .7~ # whose objects are the
pairs (U, f) with U € .7,.

e For any B € m, the functor cpg is obtained by setting, for any (U, 1) € .7 2,

(67¢) @5 (U, 1) = (@p(U), pp(1)
and, for any arrow f in.7 2,
@“(f) = p(f).

e The braiding in.7 Z is obtained by requiring that the forgetful functor form.7 # to.7 is braided.
e Finally, the twist 0 of .7 7 is obtained by setting, for any T = (U, ) € .7 2,

Or =t.

Given T, = (U,,1,),T> = (U,,t,) € 7% and f € .7 4(T,,T,), by mean of the graphical calculus for
the braided T-category .7 (Section 2.3), we can represent (67a) for f as in Figure 19(a). Moreover, the
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F1GURE 19. Graphical calculus for .7 2

arrow ¢, R t, defined in the tensor product 7, ® T, = (U, ® U,,t, ®t,) of T, = (U,,t,), T, = (U,,1,) € Tz
can be described as in Figure 19(b).

THEOREM 2.23. .7 7 is a balanced T-category.

77 is obviously a well-defined category. In the following two lemmas we prove that .7 Z is a T-cat-
egory (Lemma 2.24) and that it is braided (Lemma 2.25). Then, we complete the proof of Theorem 2.23
showing that .7 Z is balanced.

LEMMA 2.24. .7 7 is a strict T-category.

Proof. LetT, = (U,,t,) and T, = (U,,1,) be objects in .7 Z. Since the braiding ¢ of .7 is invertible,
the arrow ¢, B, is also invertible. So, T, ® T, is an object in.7 Z. To complete the proof that.7 Z is a tensor
category, it only remains to verify that, for any 7, = (U,,t,), T, = (U,,1,),T, = (U, %), T, = (U.,t,) €
TZand f: T, > T, f': T, - T, in.7 %, the tensor product f ® f’ in.7 induces an arrow in.7  form
T,®T, toT,®T,. The proof is given in Figure 20. In the first passage, we used the definition of 7, ® #].
In the second one, we used (67a) for both f and f’. In the third one, we used twice the naturality of the
braiding in .7 In the last one, we used the definition of £, ® 7.

This proved that .7 is a tensor category. The rest is trivial. 2

LEMMA 2.25. .7 2 is braided.

Proof. Since the forgetful functor .7 % — .7 is faithful, we only need to verify that, given two objects
T, = (U,t,),T, = (U, t,) € .7 7%, the arrow cy, y, in .7 induces an arrow in .7 Z from T, ® T, to
(T' T2) ® T,. The proof is given in Figure 21. In the first passage, we used the definition of ¢, ® #,. In

the second one, we used the naturality of the braiding in .7”. In the last one, we used the definition of

(V) mt.. 2

Proof (of Theorem 2.23). By Lemma 2.24 and Lemma 2.25, .7 Z is a braided T-category. We still
have to check that it is balanced. Axiom (59a) follows by the definition of the arrows in.7 # (axiom (67a)).
Axiom (59b) follows by the definition of the tensor product in .7 % (axiom (67b)). Axiom (59¢) follows by
the definition of the conjugation in .7 # (axiom (67¢)).

iy
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veUy; l iU,@U;U/ veUy; vieu g
2 2 2l i 2

U, eU;) U, eU) (vvr) )
= (u) wy = (Vv wy =

veliy, @ U;)l

ﬁ
U, eU,
U,

Ui

F1GURE 20. Proof of Lemma 2.24

(U, ® U,) Ccu,U,

R,

U,®U2¢

F1GURE 21. Proof of Lemma 2.25

DuaLITIES IN .7 Z. Even when .7 is left autonomous, an object in .7 Z necessarily admits a left dual.
So, in particular .7 Z is not necessarily ribbon. The following lemma gives a characterization of the objects
in .7 % endowed with a stable left dual.

LEMMA 2.26. Let T = (U,t) and T* = (U*,7) be objects in .7 %. Then, T* is a stable left dual of T
with unit by and counit dr if and only if
e U* is a stable left dual of U in .7 via unit by = br and counit dy = dr and
o 1= whereic :/7'(U, UU) satisfies the equality

(68) oY% = wy,

where wy is defined as in (63), see page 54.
A graphical representation of (68) is given in Figure 22.

Proof. Suppose that T* is a stable left dual of T. Since the forgetful functor.7 # — .7 is a T-functor,
U™ is a stable left dual of U in.7 via by and dy. We still need to check that (68) is satisfied. Since by is an
arrow in .7 7, we have the equalities pictured in Figure 23(a). If we compose on the top by (U*t") ® %,

then we multiply on the right by the identity of YU, and, finally, we compose on the top by (U*U ) ® 'dy,
then we obtain the second passage in Figure 23(b). The first passage follows by Lemma 2.11, while the last
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FiGure 23. Proof of Lemma 2.26 (first part)

passage follows by the duality relations. If we apply the functor Y(-) to both hands of the relation found in
Picture 23(b), then we obtain (68).

Conversely, suppose that U* is a stable left dual of U in .7 via the unit by and suppose the counit dy
and that (68) is satisfied. To prove that T* is a stable left dual of T, we only need to show that both by and
dy are arrows in .7 2 (since the forgetful functor .7 % — .7 is faithful). Let us prove that by is an arrow in
.7 7. Starting from Figure 22, if we multiply on the right by the identity of Y®’U* and we compose on the
bottom with buev;, = Y®Uby;, we obtain the last passage in Figure 24(a), while in the first one we used the
duality relations. If we compose on the top with ¢ ® YUz, then we obtain the first equality in Figure 24(b),
while the second one follows by the definition of # ® t. Finally, by the equalities pictured in Figure 24(b)
and applying the functor Y1), we get (t® 1) o by = by, i.e, by is an arrow in.7 2. Let us prove dy is an
arrow in .7 2. By duality, (68) gives the equality pictured in Figure 25(a). This proves the last passage in
Figure 25(b) and, so, that dy; is an arrow in .7 %. In the first passage in the second line in Figure 25(b) we
used the naturality of ¢y, , while in the next passage we used the naturality of cu;, . 2

m
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U U®UU

Yu Yu

\
T | (UeU)

X . IRT (U)
UUU N Ty

<u>

Yu

S5

(®)

F1GURE 24. Proof of Lemma 2.26 (second part)

2.6. Dualities in a balanced T-category

) ﬂ | ET .7 be a balanced T-category. Generalizing some results in [19, 20, 22, 43] to the case of a
l @ T-category, we study the properties the dualities in .7 . In particular, this will allow us to obtain
(Baetl| a full subcategory ./ (.77) of .7 that will be the biggest ribbon category included in.7". This is
the analog, in the case of a T-category, of the construction given in [40] in the case of a tensor category.

20

REFLEXIVE OBJECTS. Let.7 be a balanced T-category and U € .7 . We set

0y = (U5 BN veuy)

and

0, =(O7)".
We say that U is reflexive if it is endowed with a stable left dual U* (via unit by and counit dy), such that
(69) eaz = Wy.

LeEmMMA 2.27. If U € .7 has a stable left dual U* such that the ribbon condition (60) is satisfied, then
U is reflexive.

Proof. Since 0 is natural, the diagram

U U*
bU/ \G/U®U*
I U U*

o~

I
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U®UU

Ure U

(®)

F1cure 25. Proof of Lemma 2.26 (third part)

commutes, i.e., we have
(70) by = Oygy- o by.

Now, since 0 is a twist, Oygy- can be represented as in Figure 26(a). So, by (70), by can be represented as
in Figure 26(b), where in the third passage we used the ribbon condition (60). The prove of the reflexivity

condition (2.27) is given in Figure 26(c). a
CoRroLLARY 2.28. any object in a ribbon category is reflexive.
o
REVERSED DUALITY. Let U be a reflexive object in.7. We set
UreVoy
—_—

Up, . , Veyue .
bez(II——U»UUQaUU*—LU*@ U U*®U)

0,0U" CUrr e Ug
dbz(U@U*LUU®U*%—’U>UU*®UU—U>H)
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U U*
D o] o] Do
T 1
U U U U
(a) Oysu*

UeU”

U U U
”
UU = = / = / =
-IdU®U‘
N\,

U

/Q:

) by
U
U U
U U l -
| | ] |
(U* ® U*)
U®UU
U®UU U®UU U®UU
U®UU

(c) The reflexivity condition (69)

F1GURE 26. Proof of Lemma 2.27

and we represent by, and dj, as in Figure 27(a) and Figure 27 (b) respectively.

LEMMA 2.29. U is a left dual of U* under the couple (by, z]) i.e., we have

(71a) (dyoU)o(U®by) =

and

(71b) (U*@d))o (b, @U*) =U

67
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NPT Gl

(a) by, () dy, (c) Equality (71a) (d) Equality (71b)

F1GuRre 27. Duality relations for b}, and d;, (Lemma 2.29).

(@)

YU
” Lo | W)
N \ R i K
v
YU U

(b)

Ficure 28. Proof of (71a) (Lemma 2.29)

i.e., U is a stable left dual of U* with unit by, and counit dy,.
The duality relations (71) are represented in Figure 27(c,d).
Proof. The proof of (71a) is given in Figure 28(b), where the second passage in proved in Figure 28(a)
and the third passage is proved by the equality
(“00) o (“037) 0 0u = @3 0 002 o (“00) o (“057) o 00

=0y o ((UOZ) o (U*sz)) 0Oy =U.

The proof of (71b) is given in Figure 29(b), where the first passage follows by (71a) and the third
passage is proved in Figure 29(a). In the first passage in Figure 29(a) we used the definition of b}, and d},
and in the third passage we used the reflexivity condition (69).

Finally, U is a stable left dual of U* since the braiding and the twist are preserved by the conjugation
isomorphisms and the duality (by, dy) is stable by hypothesis. 2

The adjunction (b}, d;,) will be called reversed adjunction of the adjunction (by, dy).

o
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(@)

G ]

)

F1Gure 29. Proof of (71) (Lemma 2.29)

= Oy | (U
U

Fi1cure 30. Good left duals (definition (72))

Goobp LEFT DUALS. Let U be a reflexive object via a stable adjunction (by,dy): U* — U. We say that
U™ is a good left dual if further we have

(72) Oy = U*e’{,.
i.e., if it satisfies (72) (see page 69). A graphical representation of (72) is given in Figure 30.

LemMA 2.30. Let U be an object in a balanced T-category .7~ endowed with a stable adjunction
(by,dy): U* — U. The ribbon condition (60) (page 48) is satisfied if and only if (72) is satisfied. In
particular, T is ribbon if and only if any object U € .7 satisfie (72).

Proof. The proof in given in Figure 31. In Figure 31(a), we show that if U satisfies the commutativity
of (60) (represented in Figure 12(d)), then it satisfies (72). In Figure 31(b), we show that if U satisfies (72)
then it satisfies the ribbon condition (60). ]

LEMMA 2.31. Let U* be a good left dual of U € .7. If we set U™ = U via the reversed adjunction
by, dy)), then we have
(7361) b'[; =by and d;} =dy.

If V* is a good left dual of V € .7 and, again, we set V** =V via the reversed adjunction (b;,, d;,),
then, for any f € .7 (U, V), we have

(73b) =1
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) U‘U U‘U
7
U U U

(a) Equality (60) implies (72)

u U v v Yu U
Uy = =

(b) Equality (72) implies (60)

F1Gure 31. Proof of Lemma 2.30

Ul U Ul U Ul U
wy U e U ?/
U U U

(U@ U (U* ® U*) ”

F1Gure 32. Proof of (73a) (Lemma 2.31)

&

Proof. The proof of (73a) for dy is given in Figure 32, where in the first passage in the second line we
used Lemma 2.11. Since d}; = dy is exact (see page 41), it follows that b, = by.
The proof of (73b) is given in Figure 33.

E
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\4 \4
: :
v
U U
v \4
\%4
v v
U
0
v
U
U

F1cure 33. Proof of (736) (Lemma 2.31)

THE CATEGORY ./ (7). Let .77 be a balanced T-category. By definition, ./'(.7") is the full subcat-
egory of .7 of the object U € .7 that admits a good left dual. For any class ®(U) in ./ (7") we also
fix an object U, € ®(U) and a good left dual U; of U,, obtaining, in that way, a good left dual V* for any
Ve dU).

THEOREM 2.32. . (.7) inherits from .7 a structure of balanced T-category. Moreover, NV (7) is
a ribbon T-category and any other ribbon subcategory of .7 is included in N (7).

Proof. The proof that. /" (.7") inherits a structure of balanced T-category is given in Lemma 2.34. The
proof that .//"(.7") is autonomous in given in Lemma 2.35. Since, by hypothesis, any object of . /(")
satisfies (72) by Lemma 2.30, ./ (.7") is ribbon. The fact that any other ribbon T-category included in .7~
is also included in ./ (.7") follows by Lemma 2.27 and Lemma 2.30. 2

To prove that.//”'(.7") is a tensor category, we need the following preliminary result.

LeEmMA 2.33. Let U and V be objects in.7 and let U* be a stable left dual of U and let V* be a stable
left dual of V. Consider the dual (U ® V)* = V* @ U* of U ® V via the unit bygy and the counit dygy
represented in Figure 34(a,b). We have

Cv-ur = C)‘k/’V*U)
i.e., the equality represented in Figure 34(c).

Proof. Since cy- y- is invertible, we only need to show (cy+ y+)~"' o C;V*U = V*® U". This is done in

Figure 35. 2
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N K1Y

(@) buev () dyev (©) ev=u+

FIGURE 34. cy+y- for (U® V)" = V* @ U* (Lemma 2.33)

eI

F1Gure 35. Proof of Lemma 2.33

LEMMA 2.34. . (.7) inherits by .7 a structure of balanced T-category.

Proof. The only non trivial part is to show that .//"(.7") inherits a structure of tensor category. Since
A7) is a full subcategory of .7, we only need to prove that the tensor product of two object in U, V €
A(T) is an object in . (7)), i.e., that U ® V admits a good left dual. Let U* be a good left dual of U
and V* a good left dual V. Take V* ® U™ as a stable left dual of U ® V with the same unit bygy and the
same counit dygy as in Lemma 2.33, see Figure 34(a, b). V* ® U* is a good left dual of U ® V since, by
Lemma 2.33, we obtain

_ _ _ v
Owevy = Oveu: = Ougu: = Crisv g vy © (( 6U*) ® ev*) o ¢y u
_ V*U*n* Vin* % V*U*n* Vin* *
= Cvieut s vy © (( GU) ® GV) O CYr U+ = Cymauey vrorsy, © (( GU) ® GV) °Cyvy

* V*eu*
= (CV,V*U o ((V*ev) ® V*®U*6U) o CV*@U*U’V*c&U*V) = (CU@VV,UU((Uev> ® 9(]) o CU,V)

= V'ev e*U®V'

*

LEMMA 2.35. . (.7) is an autonomous T-category.

Proof. Given U € .4 (.7") and a good left dual U* of U, we need to prove that also U* is an object in
N(T). Since U* is a good left dual of U, by Lemma 2.30, it satisfies the ribbon condition (60). So, by
Lemma 2.27, U* is reflexive and so U is a stable left dual of U* under the reversed duality (see page 66).
We only need to show that, if we set U™ = U via the reversed duality, then (72) is satisfied. Now, by (73b)
(Lemma 2.31), we have (07,)" = 0y, so we only need to check

(74) eU = Uey;]* .

Applying the functor () to (72), we get
U, _N*
0y = 0y,.

E

Dualizing this equation we find (74).



2.7. The quantum double of a T-category

2.7. The quantum double of a T-category 73

OO 1| ET .7 be T-category. Apply the center construction obtaining the braided T-category Z(.7).
E Then consider its twist extension (Z(.7~ ))Z. Finally, consider its maximal ribbon subcategory
el P(T) = U/l/'((%(,T ))Z). Starting from .7, we obtain a ribbon T-category, the quantum double
of .7~. This construction generalizes, in the case of a T-category, of the quantum double of a tensor category
described in [22]. In particular, a choice of dualities in .7, i.e., a structure of autonomous T-category,
induces a choice of dualities in Z(.7"). Here, we give an explicit definition of & (.7") in the case of a left
autonomous T-category (the analog to the definition given in [22] in the case of a tensor category). Then,
generalizing the proof in [40], we show that .} (7") coincides .}/ ((32(7 ))Z).

o

DEFINITION OF Z(.7). Let .7 be a left autonomous T-category. Suppose, for simplicity, that .7 is
strict. The quatum double of .7 is the ribbon T-category defined as follows.
e The objects of Z(.7") are the triples D = (U, ¢ _, ), where
— U is an object in .7,
- ¢ : U®_ — Y_)® U is a natural isomorphism that satisfies the half-braiding axiom (64a),
-te .7(U, UU) is an isomorphism such that

(75) ((Ut) o t)_] = wy.

e Given two objects D, = (U,,¢ ,t,),D, = (U,,d ,t,) € Z(T), an arrow f € (7 )\(D,,D,)
is an arrow f € .7 (U,, U,) that is compatible with the half-braidings and the twist, i.e., it satis-
fies (64b) and (67a).

e The tensor product of two objects D, = (U,,¢ ,t,), D, = (U,,d ,t,) € Z(.7), is the triple

D, ®D,=U, U, (c@bd) ,t, BL),

where @ is defined as in (64¢) and ® as in (67b). The tensor product of arrows is obtained by
requiring that the forgetful functor Z(.7") —» .7 : (U, ¢,t) — U is a tensor functor.

e The conjugation @ of Z(.7") is obtained defining the functor @ g, for any € m, as follows.
For any (U, ¢ ,ty) € Z(.7), we set

@ pU, ¢, 1) = (pp(U), pp(Z.c ), p(1)),

where ¢z g(c ) is defined as in the case of the center of .7 (see (64d)). For any arrow f in Z (&),
we set

@ p(f) = Pp(f)
o Let D = (U, ¢ ,0p) be an object in (.7 ). We obtain a stable left dual D* of D in Z(.7") by
setting
(76) D" =(U,¢,vr)
and
bD = bU’ dD = dU»
where by and dy are the unit and the counit of U in.7.
e For any D, = (U,,¢ ,t,),D, = (U,,d ,1,) € & (7)), the component cp, p, of the twist ¢ of
D (T) is given by
CD,.D, = CUZ-
e Finally, for any D = (U, ¢ ,t) € Z(.7), the component 0, of the twist 6 of Z(.7") is given by

Op =1t.

THEOREM 2.36. Z(.7) is a ribbon T-category isomorphic to /V((OZ(T ))Z) as balanced T-category.
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Proof. To show that this is nothing but an explicit description of the category ./} ((#Z(”/' ))Z), in virtue
of Lemma 2.12, Lemma 2.22 (see page 60), Lemma 2.26 (see page 63) and the definition of .//"(-) (see
Section 2.6 at page 65), we only need to prove that, given D = (U, ¢y_, ty) € Z(.7) and a stable left dual
U* of U such that (75) is satisfied, then ¢ _is invertible. Let X be an object in.7 . By mean of the reversed
duality (b},,dy,) (see page 66), define the morphism €y as in Figure 36(a). We need to show

&= ()"
This is proved in Figure 36(b) and in Figure 36(c). In the first passage in the first line and in the second

passage in the second line in Figure 36(b), we used the definition of the reversed adjunction and the same
in the first passage and in the fourth passage in Figure 36(c). 2

s
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(a) The arrow ¢x

" { "
U

X U X

(bytxotx =U"®X

©txoty=(VX)oU*

F1Gure 36. Proof of Theorem 2.36






CHAPTER 3

Categories of representations

3.1. Yetter-Drinfeld modules and the center of .7%2,.(H)

S77| ET H be a T-coalgebra of finite-type. Denote by B(H) the mirror of the double D(H) of H.
E The goal of the first part of this chapter is to prove that we have an isomorphism of braided
Al T-categories .%24+(D(H)) = Z(.#24.(H)) between the category of representations of D(H) and
the center of the category of representations of H. We prove this isomorphism by generalizing the proof
given for the standard case in [22]. In particular, we need to introduce another T-category Y% (H), the
analog of the category of Yetter-Drinfeld modules over an Hopf algebra [52]. We also need to generalize
some of the results in [52] and [30].
In this section, we give the definition of Y/Z/(H) and we prove that Z/Z(H) is a braided T-category
isomorphic to Z(.#24.(H)). In Section 3.2, we discuss the structure of a D(H)-module. In Section 3.3, we
complete the proof that . %2,.(D(H)) and Z(.#24.(H)) are isomorphic.

o

REecaLLs. Let us fix a T-coalgebra H over a group = and a field k. Given o, € m, we recall that
the conjugation functor Ay, (H) — Hyngs-(H) is denoted f.), while the symbol (g is reserved to the
algebra isomorphism H, — Hpp-+. We also recall that, given any H,-module X, the Hpqp-1-module P is
defined as follows. PX has the same underlying vector space of X and the element corresponding to x € X
in PX is denoted Px. The action of h € Hpqp- on Px € PX is given by h(f’x) = ﬁ(cpﬁfl(h)x). Finally, given any

morphism of Ha—modules XY, for any x € X we have B ﬁx = f (x) .
Tp y
&0

DEFINITION OF A YETTER-DRINFELD MODULE. Let us fix a in w. An a-Yetter-Drinfeld module or,
simply, a YDgy-module is a couple V = (V, Ay = {Ayj}ien), Wwhere V is an H,-module and, for any A € m,

Ayy: V- Ve H,

is a k-linear morphism such that the following conditions are satisfied.

e Vis coassociative in the sense that, for any A,, A, € m, the diagram

Ve H,

Av,xz/ \?ml ®H,,
\%

Ve H, ® H,

Av.mq\ /@AM,;&

V®H)\.k2

(770)

commutes.

77
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e V is counitary in the sense that the diagram

/i\

(77b) 1% Vek
AV.\ /@s
V®H,

commutes (the horizontal arrow is the canonical identification between V and V ® k).
e V is crossed in the sense that, for any A € mt, the diagram

H,® H,®V®H,

Amx®Av,/ Na@m@m

Hy®V H,® Ve H), ®H,
Aamﬂ.aé‘BV Hy QL .
(770) Hya ® Hy® V V®H,
Hypam Jwv Vow
Hyo ®V Ve H,®H,
\ /v.x ® Pt
V ® Hypar

commutes (W, is the product of H, while uy is the H,-module structural map of V).

If, for any v € V, we set
(78) V) ® vy = Ayp(v),
then we can rewrite the axiom for the coassociativity, i.e., the commutativity of (77a), as
(79a) ) ® Vw)a,) ® Vo) = vy @ (Va,in)o,) ® (V6,1))(,)-
Moreover, we can rewrite the axiom for the counit, i.e, the commutativity of (77b), as
(79b) e(vay)vy) = V.
Finally, we can rewrite the axiom for the crossing property, i.e, the commutativity of (77¢), as
(79¢) hyvevy ® hizyvay = (igy )y ® (higy VI Pamt (igpeer)s

forany A € mand h € Hy.
Given two YDg-modules (V, Ay) and (W, Ay), a morphism of YDy-modules f: (V,Ay) — (W, Ay), is
a Hy-linear morphism f: V — W such that, for any A € m, the diagram

w
V \?Wm
|4

W ® H,

AV,}\/ /J:®Hk

V® H),

(8oa)

commutes. With the notation provided in (78), the commutativity of (8oa) can be rewritten as

(8ob) Fow) ®vay = (f))w, ® (f(1))y,

foranyve V.
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We complete the structure of the category /%, (H) by defining the composition of morphisms of
YD,-modules via the standard composition of the underlying linear maps, i.e., by requiring that the forgetful
functor Y7, (H) = Sye (H): (V,Ay) = V is faithful.

Let 2/Z(H) be the disjoint union of the categories /7, (H) for all a € n. The category Y7 (H)
admits a structure of braided T-category as follows.

e Given a, 3 € m, the tensor product of a YD,-module (V,Ay) and a YDg-module (W, Ay) is the
YD g-module (V ® W, Aygw), where, forany v e V,w € W, and A € m,

(81a) AV®W,)\(V ®w) = V) @ wawy @ woyPp-1 (V(B)\ﬁ*'))
The tensor unit of Y/Z(H) is the couple T, = (k, Ax), where, for any A € 7 and k € k,
A,k’)\(k) =k®1,.

Finally, the tensor product of arrows is given by the tensor product of k-linear maps, i.e., by
requiring that the forgetful functor /Y (H) — .%2,.(H): (V,Ay) — V is a tensor functor.
e Given f € 7, the conjugation functor i-) is obtained as follows.
Let a be in 7. Given a YD,-module (V, Ay), we set

bv, Ay = (W, Aw),

where, for any A € wand w € fV,

(81b) Ay (W) = (ﬁ((ﬁ_‘w)(w)) ® cPﬁ((ﬁ_lw)(ﬁﬂm))'

Given a morphism f: (V, Ay) — (W, Ay) of YD-modules, for any v € V, we set
(*r)(%) = Pro),

i.e., we require that the forgetful functor from Y/Z(H) — .%24.(H) is a T-functor.
e The braiding c is obtained by setting, for any YD,-module (V,Ay), any YDg-module (W, Ay),
andanyve Vandwe W,

B1c) cwan.wan (v ®w) = “(sg- (V)W) ® V().

To prove that Y/Z(H) is a T-category and that it is braided, we prove before that 2/Z(H) is isomorphic
to Z(.A.(H)) as a category.

THEOREM 3.1. The category Y/ Y (H) is isomorphic to the category Z(-S2ye(H)). This isomorphism
induces on Y/ (H) the structure of crossed T-category described above.

Firstly, we construct two functors
F.: Z(LRy(H)) — YL(H) and F.: YL (H) - Z(Ryp(H))
and we prove F, o F, = Idyo ) and F,oF, = Id(‘ LoD Via this isomorphism, Y/Z(H) becomes a

braided T-category. We complete the proof of Theorem 3.1 by proving that this structure of T-category is
the structure described above.

20

THE FUNCTOR F,. Let o be in 7t and let (V, ¢y) be an object in Z,(.#2¢-(H)). For any A € &, we set
(82) Avs(v) = c,;;\((m) ® v).

LemMA 3.2. The couple (V,Ay = {Ayphen) is a YDq-module. In that way, we obtain a structure of
YD-module for any object in the center of .S24.(H). With respect to this natural structure, any morphism in
the center of S2g.(H) is also a morphism of YD-modules. By setting

Fi(V,o) =V, Ay) and F.(H=1
we obtain a functor F,: Z(Sg.(H)) — YL (H).

To prove Lemma 3.2 we need some preliminary results.
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Remark 3.3. Given A € m, the algebra H) is a left module over itself via the action provided by the
multiplication. Similarly, Hy,- is a left module over itself. By definition (61) of the action of Hy-1), on
the module * 'H, (see page 49), the k-linear map

$at Hoia — “'H,,
b —" (ga) =h("1)
is Hy-1po-linear and so it is an isomorphism of H-1p,-modules. Notice that
“(Ga(m) = pa(h)
and that, for any a,.a, € m,
(g, = (“Ga,) © G-
Let X be an H)-module (with A € 7t) and let
X:Hy, - X
be the unique H,-linear map sending 1, to x. We set

9 Hypor —— “Hy, — °X.

Since, for any 1 € Hyyo1, ¥ (h) = “((F 0 G- )(h)) = *((F 0 -1 )(h)) = *(go-1 ()x) = hx. we have that F@
is the unique Hpq- -linear map sending 14+ t0 x € “X, i.e., ¥ = .

LeEmMMA 3.4. Let V be a YDy-module. For any v € V and x € X we have
(83) & 0 ®v) = vy ®voy(“Y):
Proof. The proof follows by the commutativity of the diagram

Ay, V®H,

(84) Vi S Huya @V —bev— (*H)) @V VeX

V101 Qv

*X)eV
for x = “y. The top triangle commutes by definition of Ay;. The bottom triangle commutes by definition
of ¥, The square commutes because ¢_is an isomorphism of functors. 2

Proof of Lemma 3.2. Firstly, we check that (V, Ay, ) satisfies the axioms of YD,-module, then we con-
clude the proof of Lemma 3.2 with the part concerning morphisms.

Coassociativity. Let X, be a H) -module and let X, be a H; -module, with A,, A, € 7. By (644a),
page 55, we have ¢,/ = (CJ_(.I ®X2) ° ((“Xl) ® c)‘(z‘), so,forany v e V, x, € X, and x, € X,, we get

V) ® (Vo,1))0,) X1 ® (V)% = Cxlex, ((“‘()cl ® xz)) ® v) = ((c;(: ® Xz) ® ((“Xl) ® cy ))(x1 ® X, ®V)

= (c;(" ®X2>(x. ® V() ® Vi) X2) = (Vy)wy ® (Vv X1 @ Vi) Xa.
If we evaluate this formula for X, = H, , X, = H)_, x, = “1;,, and x, = “1;_, then we obtain
V) ® V0,0:0)0.) © M) = o)) ® Vna) ® V-
Counir. Since we have vy, ® v;) = v® 1, we get
e(vay)vy) = e(1)v = v,

i.e., Ay is counitary.



3.1. Yetter-Drinfeld modules and the center of .72,.(H) 81

CRrOSSING PROPERTY. Let X be a Hy-module. For any v € V and x € X we have
hey' ((“x) ® v) = Ar(h) &' ((“x) ® v) = Aap (M) @ vo)x = (g vy ® B vy
and
& (h((“x) ® v)) = & (Maaao5) ) = eIty ® )i G

so the crossing property (79¢) follows by the H-linearity of ¢;'. This completes the proof that (V,Ay) is a
YD,-module.

Morpaisms. Let (W, d ) be another object in Z,,(.#2,+(H)). Define Ay in the same way as above for
Ay. Given any arrow f: V — Win %((%%//(H )), we prove that f gives rise to a morphism of YD,-modules
from (V, Ay) to (W, Ay), i.e., that (80) is satisfied.

By the commutativity of

We H,

f®H, / \b ;’;»

V® H, (aH)L)(X)W,

c;,k\ /“H;.)@vf

(‘H)®V

we have
(f8HoARW) = (FoHec)(()ev) = (vato(CH®S))((n)ov) = o3 (“1:)0r0)) = Buae )

The proof that F, is a functor is now trivial. 2

)
THE FUNCTOR |A=l . Let (V, Ay) be any YD,-module. Given A € m, for any representation X of H; set

x: VX — “X)eV

8s) VR X —> (a(s;\—l (v(p))x)) V)

LemMA 3.5. The couple (V, ¢ ) is an object in Z(S2qe(H)). In particular,

C)_(l ev) = Vi) ® v(x)(“_'y)

foranyy € X and v € V. With respect to this natural structure, any morphism of YD-modules gives rise to
an arrow in Z(.S24.(H)). By setting

Fl(V.Ay) = (Vo) and F.ih =1,
we obtain a functor from YL (H) to Z(Sy(H)). The functors F, and F. are mutually inverses.
To prove Lemma 3.5, we need another preliminary lemma.
LEMMA 3.6. Foranyv € V we have
o)w) ® Vw)asanHVa) =ve 1,

and

o)) @ s ((vv)a)vay = V@ 1y
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Proof. Since Ay is counitary, the proof follows by the commutativity of the diagram

Ay ®H; - VOH,®s)-1
VoH- — " \5VeH, @H- — " VO H,®H,

Ayy-1 T V;AM-. J/V@m

1% Av, V®H, Ve(m.oe) Ve H,

Av,)l VQLAr 1 TV@’M
1

—_ . —_
V®H,), Aoty Ve H- ®H, T—— V®H),®H,

where the two squares on the right-hand side are commutative because of the coassociativity of Ay, while
the two squares on the left-hand side are commutative because s is the antipode of a T-coalgebra. 2

Proof of Lemma 3.5. Let us check that (V, ¢ ) is an object in Z,(.%2.(H)).
InverTIBILITY. Let X be a representation of Hj, with A € ;. We set
t: (“X)oV— Ve X
Y®V vy ® v(x)(aﬂy) ’
Let us prove that ¢y is the inverse of c¢x. For any v € V and x € X we have
vex —— (Y5 (o)) ® vy 2 Ww)w ® iy Sa (Va-)x = V@ x

(where the last passage follows by Lemma 3.6). Similarly, for any v € V and y € “X we have

tx o ! (9%
YOV —— V) ® VO»)( y) > s ((V)an)vayy ® viv) = ¥y ® e(vay)vy) = y ® v

LiNeaRrITY. Let X be a representation of H), with A € . It is a bit easier to prove that tx (instead of
¢x) is Hy-linear. Foranyve V,y € “'X, and h € Hy, we have

htyx(y®v) = h(V(V) ® Vm(“_'Y)) = higyvw) ® h&)‘“%)(a_'y)
and
Ex(h(y @ V) = tx (Mg 1)y ® hizyv) = Ex((“(cpor. (hzam—:)))’)) ® f'k)v) = (higy )y ® (Mg V) Par gy 1))
By the crossing property (79¢) of (V, Ay), these two expressions are equal.

NaturaLiTY. Let us check that ¢ is a natural transformation from the functor V ® _ to the functor
() ® V. Given two representations X, and X, of H; and a Hy-linear map f: X, — X,, forany v € V and
x € X, we have

(((af) ® V) o cx, )(v ®x) = ((“f) ® V)((a(sw (v(xﬂ))x)) ® V(v)) = (a(f(sw (v(;;.))x))) ®Vw)
:(G(SX" ("(k"ﬂf(x))) ®vw) = (sz o(Ve® f))(v ® X).

HaLF-BrRAIDING AxIOM. We still have to check that (V, ¢ ) satisfies the half-braiding axiom (64a) (see
page 55). Let X, be a Hy -module and let X, be a H; -module, with A,, A, € 1. We want

Xex,(VOX, ®X,) = (((“X) ® sz) o (cx, ®X2))(v ® X, ®X,).

forany x, € X,, x, € X,,andv e V.
We have

Cvxex,(V® X, ® X5) = (a(s(x.hl)*' V()51 ® Xz))) ®Vw)

= (“(512 Oy P )) @ (5151 12) @00
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and
(((“Xl) ® sz) o(tx, ® Xz))(v X, ®X,) = ((“Xl) ® cxz)((a(shl—n (v(h]—n))xl)) V) ® xz)

= (a(SA;' (va;H)x, )) ® (a(sx;' ((V(V))(x;'))xz)) ® (Vr)w)-

By the coassociativity of Ay these two expressions are equal.
This concludes the proof that (V, ¢ ) is an object in (.22 (H)).

Morpuisms. Let (W,d ) be another object in (. #2¢+(H)). Define Ay in the same way as for Ay
above. Given an arrow f: V — Win %(.%g///(H)), we prove that f gives rise to a morphism of YD,-mod-
ules from (V, Ay) to (W, Aw). Let X be a Hy-module, with A € 7. Given v € V and x € X we have

(wo(f®X)vex) = ("(sx-. ((f(V))a—!))X)) & (Fy, = ‘(s o)D) ® Fvwy)
= ((“X> ® f)((a(Sw (V(rw)x)) ® V(v>) = (((QX) ® f) ° cv)(v ® X)

(where in the second passage we used (80)).
The proof that F, is a functor is now trivial. We still have to check that F, and F, are mutually inverse.

IsomorpPHISM. Let us prove that F, o F, = Idz(.m,,(y))' Let (V,¢ ) be an object in Z,(.%2.(H)),
with a € . We have F,(V,¢ ) = (V,Ay), where, for any A € &, vy @ v = c,‘ii((“u) ® v). We set

WV, c)= (|A=l oF)(V,¢) = IEI(V, Ay). Given any H)-module X, with A € 7, for any v € V and x € X we have

&' ((“x) ® v) = V) @ VX = cl__l:((“ 1)») ® v)x = ((“x) ® v)

(where the last passage follows by the commutativity of the square in diagram (84)).
Let us prove that F, o F, = Idy ). Given a € i and a YD,-module X, we have F,(V,A ) = (V, cy),
where, for any representation X of H; (with A € ) and for any x € X and v € V, we have cx(v ® x) =

(“(s1 (va)x)) @ v, If we set (V, Ay) = (F, o F\)(V,A ) = F,(V,c), then we obtain

A(v) = 51_1:\((“1)\) ® V) = V) ®Voylr = V) ® vay = A (V)

(where the second passage follows by (3.5)).
This concludes the proof of Lemma 3.5. ]

Proof of Theorem 3.1. By Lemma 3.5, the categories c%(.%()/&(]‘l)) and Y/Z(H) are isomorphic via

the functor F, and the functor F,. This isomorphism induces on Y (H) a structure of a strict T-category.

ComponenTs. Let a be in . Since /7 (H) = (F, o IA:I)(L?JEZL(H)), the a-th component of YZ/(H)
is Y7, (H).

TENSOR CATEGORY STRUCTURE. Let (V,Ay) be a YD,-module and let (W, Ay) be a YDg-module. Sup-
pose (V,¢ ) = F,(V,Ay) and (W,d ) = F,(W, Ay). We set
(V,Ay) ® (W, Aw) = F,(F,(V,AY) ® F, (W, Ay)) = F, (V. )® (W,d)) = F,(V® V', (ca b))

(for the definition of @ see page 56).



84 3. CATEGORIES OF REPRESENTATIONS
By observing that (¢ ®d)g,)”" = (V® (dg,)™") o ((tey,) ™" ® W) and that, for any v € V,

(tagg,)™" ((‘@ﬁ] 1) ® v) = (o) ™" © (@10 ® V))(Laprgra—r ® V)

= ((CBHAA)_I o ((afpﬁ*l) ® V) 0 (P ® V))(lar)xﬁlal ® V)
(by the naturality of ¢ )
= (V& dp-1) o (et )" 0 (Gamr ® V))(1apipiar ® V)
= (V© )0 Gy (1) V) = (V8 G )iy v )
= vw) ® Pp (Viprp)
we obtain, forany ve Vandw e W,

Avews(v@w) = (B D)y, )™ ((“®B 1x> RV W) = ((V ®(dy,) ") o ((quk)_1 ® W))((O‘@’B 1x> VR W)

= (V& (01, ) () ® Gt (1) ® w) = vy, @ wwy @ woy (P - (vnp)
= V) @ W) ® waoy P (Vpig))-
The part concerning the tensor unit of 2/Z(H) is trivial.

ConyucatioN. The T-category structure of 2/Z(H) is completed by setting, for any f§ € I,
= .
0 = () 2 Zpan) 2 2ty 2 s

In particular, given a € 7 and a YDy-module (V, Ay), if (V,¢ ) = IA=1(V, Ay), then, forany A e mandv eV,

p
ABV,)\(BV) = (BC)H;\ ((B“ﬁ 1)\) Q (BV)) = (Cﬁ—ka ((a”\) [0z V)) = B(V(V) 24 C’pB(V(BﬂMS))) = (ﬁ(V(V))) Q@ \}(ﬁﬂ;\ﬁ).
By setting w = Py, we get (81b).
Braming. Finally, the braiding in 2/Z/(H) is obtained by setting, for any (V, Ay), (W, Ay) € Y/Z(H),

CVAY)(WAy) = FI(CF.(V,AV),IE.(WAW)) = tw,

where (V,¢ ) = IEI(V, Ay). By definition (85) of ¢ , we get (81¢).
This concludes the proof of the theorem. 2

3.2. Representations of D(H)

OO Y irstly we give an explicit description of both the mirror of H***, denoted H*, and of the mirror
ﬁ‘% D(H) of D(H). After that, we discuss the structure of a module over D(H). More in detail, we
24U 1| prove that a k-vector space V is a D(H)-module if and only if it is both a H-module and a H*-mod-

ule and the actions of H and H* satisfy a compatibility condition. Finally, we prove that Z(.%2..(H)) and

S,(D(H)) are isomorphic as braided T-categories.

e
THE MIRROR OF H™**, If we apply the mirror construction (see page 15) to the TH-coalgebra H* <
(see page 12), then we obtain the T-coalgebra H* = H*°-» explicitly described as follows.

e For any o € m, the component HY is equal to @[& o HE as a vector space, with the product of
f € Hj and g € H (with v, d € 7) given by the linear map fg € Hj;é defined by

(f8.%) = (.2 (8. x5

for any x € Hyg.
The unit of H, is the morphism ¢ € H} c HY.
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e For any a, 8 € t (with y € ), the component A 6 of the comultiplication A* of H* is given by

Ajﬁ(f) = Ap(f) € HEY[:;—- ® H,
for any f € Hj, where
(Ap(f), x® )= (f.ypp- (1)),
for any x € Hpyg+ and y € H. We introduce the notation
Sip ® fup = Ap(f).
The counit €*: H* — k is given by
€ ) =(fi1y

for any f € H},, with y € 7.

e For any a € m, the component s? of the antipode s* of H* sends f € H, to
) = (s @a (g (D)) € Higrrgen
e Finally, for any 3 € m, the conjugation isomorphism cp’é‘ is given by
P = Ppe-
e
THE MIRROR OF D(H). The mirror of D(H) is the quasitriangular T-coalgebra D(H) explicitly described
as follows.

e For any a € m, the a-th component of B(H), denoted BQ(H), is equal to Hy, ® @Bert HE; ,as a
vector space. Given h € Hy and F € @ﬁen HE, the element in D, (H) corresponding to & ® F is
denoted i ® F. The product in Dy(H) is given by

(h® ) (k®g) = hilyk® (g, 53" (Hy-1))_Par (W)

forany h,k € Hy, f € Hy, and g € Hj, with Y, 0 € m.

H, has unit 1, ® €.

The algebra structure of D,(H) is uniquely defined by the condition that the inclusions
Hy, HY — D,(H) are algebra morphisms and that the relations

(86a) (1e®f)(h@e)=h® f
and

(86b) (h®e) (10 ® 1) =}y ® (f. 57 (WYL )_ QU )),

(for any h € H, and f € H}, with vy € m) are satisfied.
e The comultiplication is given by

h® F)&T) ®*h® F)z/ﬁ = (hi, ® Fip) ® (hgé) ® Fyp),

forany o, € w, h € Hyg and F € H*.
The counit is given by
&he f)=(enf 1y),
forany h € H, and f € H}, with y € m.
e The antipode is given by
Su(h®F) = (sq(h) ®¢) (14 ® SL(F)),
forany o € w, h € Hy, and F € H*.
e The conjugation is given by
Pph® f) = pp(h) ® - (f)
forany o,p € w, h € Hy, and f € H, with a,y € .
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e The universal R-matrix R of D(H) is given by
Rap = E(a).i ® E(B).i =1,®ef T ® s (e ) @
for any a, 3 € ;. The inverse of R p is
ka,ﬁ = é(a).i ® i(ﬁ).i =1,0eM® egi®E.
(where (e ;) is a basis of Hp and (eP) the dual basis).
e

THE CATEGORY .%2..(H, H*,®). Given a € =, a (H, H*,®),-module is a k-vector space V endowed
with both a structure of left module over H, and a structure of left module over H* = H* (via an action
denoted ») satisfying the compatibility condition
(87) B(f > 9) = (F, 55 GG (i)Y > ().
forany v € V, h € Hy, and f € H}, with y € 7. A morphism of (H, H*, ®),-modules is a morphisms that
is both a morphism of H,-modules and a morphism of H*-modules. In that way, with the obvious compos-
ition, we obtain the category . %24, (H, H*,®) of (H, H*, ®),-modules. The disjoint union .%2,.(H, H*, ®)
of the categories . %2, (H, H*, ®) for all o € m is a braided T-category as follows.

o Sy (H,H*,®) is the a-th component of . 72,.(H, H*, ®).
e Let U be an object in . %24, (H, H*, ®) and let V be an object in .%%/;B(H, H*, ®), with a, f € .
The tensor product U®V of (H, H*, ®)-modules is given by the tensor product of U and V as both
H,-modules and H*-modules, i.e., givenu € U and v € V, the action of i € Hp and, respectively,
J € Hy (with y € ) on u ® v given by
hu®v) = hga)u ® hE[’i)v and frw®v)=figru® fugrv.
e The conjugation is obtained in the obvious way by the conjugation of .#2,»(H) and the conjugation
of Sy (H™).
e The braiding is obtained by setting,
8) cuv: UV — ("v)ev
u®v +— “(sp(epr V) ®el o u
for any U € Ay, (H, H*,®) and V € l%%/z/ﬁ(H, H*, ®), with a, § € m.
THEOREM 3.7. Sye, (H, H*,®) is a braided T-category and isomorphic to :%ﬂ/l/(B(H)).
Proof. The simplest way to prove the theorem is to construct an isomorphism of categories
F3 : (%jf//(B(H)) — I ,ﬁ/za(H, H*, ®)

such that F; induces on .,%BW(B(H )) the structure of braided T-category described above.

Let Vbea BQ(H)-module, with a € m. Since both H, and HY = HY can be identified with subalgebras
of Dy(H) via the canonical embeddings, V has both a natural structure of left H,-module and a natural
structure of left H*-module. Explicitly, for any v e V, h € Hy, and f € Hf; C H*, with y € m, we set

h=(h®eg) and frv=_>® f)v.

Let us prove that the compatibility condition (87) is satisfied. By the associativity of the action of D(H)

on V and by (86) we get

h(fev) = (h@e)(1a® V) = (h@e)(1a ® OV = (hisy ® (s 5y (W) _ Qe (g ) )V
= (100 ® (2 5y ) Ul ) Uil @ €00 = (o 53 () _Pers () > (L ).
We set F,(V) equal to V endowed with that structure of (H, H*, ®),-module.
Given another D, (H)-module V and a k-linear morphism f: V — W, it is easy to prove that f is

a morphism of D,(H)-modules if and only if it is both a morphism of H,-modules and a morphisms of
H*-modules. By setting F,(f) = f, we obviously obtained a functor.
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Let us prove that F, is invertible. Given a (H, H*, ®),-module W, we define an action of Ba(H )on W
via the tensor lift of the linear map Hy X H:X X W — W: (h, F,v) — F » (hv), we have to prove that we
obtained a D «(H)-module. For any h,k € Hy, f € H. v’ and g € H, with vy, d € m, we have

(1a®e)v=¢p(14v) =E>V =1,
and
(h® (k@) = (he f)g> k) = £ (hg> (k) = £ (253 (g )G Bfyq)) > Uik v)
= 8. 551 () (o)) > (Hpkv) = (HiGk @ F{g. 558 (i) (g )V
=((he f)(keg)v.

To prove that F; is invertible and to complete the proof of the theorem is now trivial. 2

3.3. 2( Py(H )) and . ﬁip/;(D(H)) are isomorphic

n this section we prove that Z(.72..(H)) and .,’/&y;,(ﬁ(H )) are isomorphic as braided T-categories.
We start by defining a braided T-functor F,: Y/Z(H) — Y24.(H, H*,®). After that, we set
2 G=F,0F,0F,: &(A2y(H)) — .#y(D(H)) and we prove that G is invertible.

o

THEOREM 3.8. Z(.%2.(H)) and . S2,.(D(H)) are isomorphic braided T-categories.

THE FuNcTOR F,. To prove Theorem 3.8, we start by constructing the functor F,. For this, we need
two preliminary lemmas.

LeMMA 3.9. Let (V,Ay) be a YDy -module (with o. € m). Given f € H.,, withy € m, for any v € V we
set

(39) fev=L{fivpvw).
With this action, V becomes a H*-module and a (H, H*, ®),-module.

Proof. Let us prove that the action » is associative and unitary.
Associativity. Given f € Hf; and g € H., with v, € m, for any v € V, we have

fr(grv) = fr(gvevm =& vey {fs o) (van)w)
and
(f8)»v ={f8vao v = {fs V)i (8 Vep))igy V-
By the coassociativity of a YD-module, these two expressions coincide.
Unit. By (77b), for any v € V we have
E>V = (& V)V = V.

i.e., > is unitary.

CoMPATIBILITY CONDITION (87). Givenh € Hy and f € H},, with y € m, for any v € V we have

'\/7
h(f > v) = (fovep) hvery = (fove) <& B Mgy vovy = (F & W WMty vy = (s sy (- DG ven ) By von

(by the crossing property (79¢))

={f, 5_1 hw ))( I(X)V)(Y) CPCV'(hzaya"))>(hgx)v)(v) ={f, S_] hm )) Pa- (h((wa l))> > (hf;)")-
2

m

LeEmMA 3.10. Take two YD-modules (V, Ay) and (W, Aw) and define the action of HY on both V and
W via (3.9). A morphism of YD-modules f: V — W is also a morphism of (H, H*, ®)-modules.
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Proof. We only need to show that f preserves the action of H¥. Letv € V and g € H,, with y € 7.
Since f is a morphism of YD-modules, we have

g> fv) = <g7 (f(V))(Y)>(f(V))<W) =& v fvw)) = f(g vep) vivy) = f(g > V).
2

m

LEMMA 3.11. For any YD-module module (V, Ay), set F,(V, Ay) = (V,»), with the action> of H* on V
defined as in (3.9). For any morphism f of YD-modules, set F,(f) = f. In that way, we obtain a braided
T-functor F,: YL (H) — Sy.(H, H*, ®).

Proof. By Lemma 3.9 and Lemma 3.10, F, is well defined. The proof that it is a functor (i.e., that
preserves identities and composition), is trivial. We have to check that it is a tensor functor, that it commutes
with the conjugation and that it is braided.

Tensor propuUCT. Let (V, Ay) be a YD,-module and let (W, dw) be a YDg-module module (with a, 3 €
7). By the definition (81a) of the tensor product in /Z(H), the action » of H? of V ® W is given by

frew) = {f,(0®w)y) = {(fswe@p- (Veyp-)) vy @ Wawy = (fip > V) ® (fup > W),

i.e., F, preserves the tensor product. The fact that F, preserves the tensor unit is trivial.

Crossing. Let a and § be in & and let (V, Ay) be a YD,-module. The action of H* on f’(FZ(V, Ay)) is
given by

o= (6.0 () = 4500 () = () (0,

for any f € H*, with y € m, and w € PV. By (81b), both B(Fz(V, Ay)) and Fz(ﬁ‘(V, AV)) has the same structure

of H*-module and so of (H, H*,®)-module. Since both B(-) and F, are the identity on the morphisms, we
conclude that F, commute with the conjugation and that it is a T-functor.

Braming. Let (V,,Ay,) be a YD, -module and let (V,, Ay,) be a YD, -module module. By (88), the
braiding cr,(v, Ay, )F.(v.,A,,) 1S given by

CR(Vi Ay ) Fa(Vadi) (V1 @ 15) = P (5051 (€a )V) ® €% o vy = M (501 (e IV5) ® (€™, (V)i YV,
o,y
= (Sa;‘ ((Vl)((x;'))vz) ® (Vl)(V,)»

for any v, € Vl and V, € V2. By (88) we have CF,(V, Ay ) Fa(VaAy,) = C, Ay ) (VauAy,) = Fz(C(V,,Av, ),(VZ,AVQ))'

e
Proor or THEOREM 3.8. To prove Theorem 3.8, we need a preliminary lemma.

*

LEMMA 3.12. Given f € H}, withy € 7,

f = (f, 6(«{)_51«{>€(Y)'1.

Proof. By evaluating (f, e,1,)e"Y" against a generic h € H, we obtain

((fsepityye P 1) = (f, eity) (€M by = (f,(eV, hY eqyity) = (f, h1y) = (f, h).

Ea

Proof (of Theorem 3.8). Let us set
G=Fy0F,0F,: Z(Zy(H)) = Ay(D(H)).

Since both F, and F, as well as F; are braided T-functors, G is a braided T-functor. To complete the proof
of Theorem 3.8, we only need to show that G is invertible. Given a D(H)-module V, we set

G(V) = (V,ev).
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Of course, G(V) is an half-braiding and by setting
G =rf

for any morphism of YD-modules, we obtain a functor G: .22,.(D(H)) — Z(.#24.(H)). Let us prove that
G and G are mutually inverses.

G oG =1d. Let (V,c ) be an object in Z(.22.(H)). Since G is braided and G(f) = f for any arrow f
in Z(SgH),
cave),. = Glewe), ) =G(0) = ¢,
$0
GoG)(V,c) = (Vcam,) = (Vo)

GoG=1Id. LetVbea D, (H)-module, with o € . Clearly, (G o G)(V) and V have the same structure
of k-vector spaces and the same structure of H,-module (via the embedding H, — BQ(H)). To prove
Go G(V) =V, we only have to check that the action » of H¥ on V and the action & of H* on (G o G)(V)
(both obtained via the embedding H¥ — D, (H)) are the same.

Let f be in H}, with y € . By observing that, forany v € V,

C(/,‘H,(Ol ly) = E.V ® Lty = (14 @ eV W ® () ® €)1y = € (Y).i> v @ eyily,
we obtain
13 = (fovepIvy = (e ity e = £,

where the last passage follows by Lemma 3.12.

¢

COROLLARY 3.13. The categories Z(Sy(H)), YL (H), Roy(H, H*,®), and .A2..(D(H)) are iso-
morphic braided T-categories.

Proof. We have seen that both the functor F, and the functor F; are isomorphisms of braided T-cat-
egories. By Lemma 3.11, F, is an braided T-functor and, by Theorem 3.8, F, is invertible with inverse
F,=F 0GoF, 2

Let Y/Z(H) be the category of finite-dimensional YD-modules, i.e., the category of YD-modules
(V, ¢ )such that dimy V < N, and let . %2,.(H, H*, ®) be the category of finite-dimensional (H, H*, ®)-mod-
ules.

COROLLARY 3.14. The categories Z(Rgye(H)), YL(H), Sy (H, H*,®), and S, (D(H)) are
isomorphic braided T-categories.

Proof. The functor F, sends the full subcategory Z(.#24+;(H)) of Z(.#24.(H)) to the full subcategory
YZ(H) of YD(H), Similarly, the functor F, sends %/Z;(H) to the full subcategory .#24..(H, H*,®) of
Hye(H, H*, ®) and the functor F; sends .#2¢;(H, H*,®) to the full subcategory So(D(H)) of the cat-
egory .2y (D(H)). 2

m

Remark 3.15 (modular T-categories). The categorical analog of the notion of modular Hopf algebra is
the notion of modular category [36, 43]. A T-category .7 is modular when the component .7; is modular
as a tensor category [45].

Let .22 be a semisimple tensor category. It was proved by Miiger [31] that, under certain conditions
on .72, the quantum center of .72, is modular. We expect that it will be possible to generalize the result
to the crossed case when m is finite. On the contrary, when m is not finite, since the quantum double of a
semisimple T-coalgebra is not modular, the theory fails to be applicable to the crossed case. However, is
some case, for instance when the isomorphism classes of the H,, (for all a € ) are finite, Z(.#2) should
be modular, or at least, premodular in the sense of Bruguieres (see Remark 3.21, page 93) and, in that case,
they should give rise to a modular category.
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3.4. Ribbon structures

h"’ grE conclude this chapter by discussing the relation between algebraic and categorical ribbon ex-
Fensions. Given any quasitriangular T-coalgebra H, we prove that the categories .22, RT(H))

LN and .,/V((a%"/tf(H ))N) are isomorphic as balanced T-categories. To prove this statement we start
by introducing an auxiliary ribbon T-category .#2.#(H). Then we prove that .72,.(RT(H)) and .72.#(H)
are isomorphic as ribbon T-categories while .72.#(H) that L/f/'((,%f/,f(H))N) are isomorphic as balanced
T-categories. Finally, we prove that, if H" is a T-coalgebra of finite-type, then .%%/zf(RT(D(H’))) and
Y (Syei(H')) are isomorphic as ribbon T-categories.
e

THE CATEGORY .72.#(H). Let us start by introducing the ribbon T-category .%2.#(H), where H is a

quasitriangular T-coalgebra.

e For any a € m, the objects of the component .%2.#,(H) of .72.#(H) are the couples (M, t), where
M is a finite-dimensional representation of H, and t: M — MM is a H,-linear isomorphism such
that, if we set

M,
= (M 5y s M®MM)
and
t72 = (t2)7l’
then we have
(90a) t’z(“zm) = UgSo- (Ug-1)M

for any m € M (where u, is the a-th Drinfeld element, see page 15).
e Given two objects (M, 1,), (M., t,) € .Sy (H), amorphism f: (M,,t,) = (M,,1,) is a H,-linear
map f: M, — M, such that the diagram

M,
M, Mg,
Nz
M, M,
commutes.

e The composition of morphisms in .22.#,(H) is obtained in the obvious way via the compositions
of H,-modules.
e The tensor product of two objects (M, 1), (M’,t") € .S2.#(H), is given by

(90b) M,H (M ,f)=(MIM',t=rt),

where we recall that, by definition (see (67b) at page 61),
(90¢) IR = Citem’pyr Mg © Ciagg Mpg, © tet) = (((MM/)f) ® Ml') O CMppr a1 © CMYs

where c is the standard braiding in .%2..(H).
e The tensor unit of .72#(H) is the couple (k, Idy), where k is a H,-module via the counit of H.
e The action of the crossing on an object (M, t) € .72.#(H) is obtained by setting. for any 3 € m,

v, 1) = (P, Py),

while the action of the crossing on morphisms in obtained by requiring that the forgetful functor
i (H) = Sye(H): (M, t) — M is a T-functor.
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e The braiding is given by
Cmn My = CMm

for any (M, 1), (M’,t') € Y24 (H).
e The twist is given by

G(M,,) =1

for any (M, t) € . 724 (H).

e The duality in .72#(H) is obtained as follows. Let (M, ) be an object in .22#(H). The dual
object of (M, 1) is given by the couple (M*, M*t*) where M* is the dual H-module of M (via unit
by and counit dys defined in (62), see page 50). Finally we set

b(M’,) = bM and d(MJ) = dM.

THEOREM 3.16. .72/4(H) is a ribbon T-category and it is isomorphic to Sy (RT(H)). Moreover,
Se#(H) is isomorphic to N '(((%%//f(H))N) as a balanced T-category.

To prove Theorem 3.16 we need three preliminary lemmas.
LemMmaA 3.17. For any o € Tt we have
(91) So (o) = E(ay.iSamr (Cram).i)-

Proof. By (16a), see page 14, we have )i ® Ty = (55 © Qa1 )(Ewy.i) ® Sg' (Cor).i)» SO we get
g = (80 © Qo ) (Cay.i) i = (500 Por 055 ) Can.)(5e" © Part ) Ew.i) = o (G551 © P ) E i) =
T84 (§(.i)- By composing both sides by s, we get (91). e

Lemma 3.18. Forany o € mand h € Hy, we have
(92) So- (g1 ) = (S&l o S:rll ° cpa)(h)sa*‘(ua")'

Proof. Letkbein Hq-. By (19g), see page 15, we have (5q 0 5q-1 0 Qg1 )(k) = ug-1kuy,. By composing
both sides by s,,' and observing that, by (19e), s (Ug—1) = 55" (Ug1), W get Sq-1 (U1 )(Ser © Qo1 )(k) =
8o (k)Sq- (ug-). For k = (g4 0 571,)(h), we get (92). 2

LEMMA 3.19. Let M be a finite-dimensional representation of H and let wy defined as in (63) (see
page 54). For any m € M we have

QM<C‘2m) = U S (Ug ).

Proof. Let (e))]_, (where n = dimg(M)) be a basis of M as a vector space and let (e’);’=I be the dual
basis of (¢;)]_,. We have that (“¢;)_, is a basis of “M and that (O‘e’)"=l is the dual basis of (“e;);_, while
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(azel);': , is a basis of “M and that (O‘zel)?:l is the dual basis of (“261)7:1. For any m € M we have
QM(CLZI/I’[) = ((dM@MM* ®M)o ((M®MM*) ® EMM,M®MM) o ((C Mg Mg+ © bMM) ® M®MM)) (azm)
= ((dM@MM* ® M) o ((M@MM*) ® E'MM,M®MM) o ( Cong ® M®MM)) (a 0 ®% ® “2m)
= <(dM®MM* ®M)o ((M®MM ) ® 5MM,M®MM))( (C(w).,f“el) ® Ew.j e ® OLzm)
= (dwemy. @ M )( (Can.ie) @ (Ewi“m) @ Ewi (Sw. ja€z>)
= (dvewy. @ M )(CPa(C(a-'), ) e (g(a).iazm) ® Cw.iPa . j)el)
= <Cpa(C(a-'). j) e, é(a).iazm>i(a).icpa“ Ew. e
= <a2€l, (Sg1 © (Pa)(C(a*‘).j)é(a).iazm>i(0.).icpa*‘(E(a). e
2y o7 ~ ~
= <“el, ((Por: (o= © P )(Ciomny. j)%(u).i)m)>§(a).icpa*'(E(Q). ier
2y o7 ~ ~
= <ael, ((Sa-' 0 Pg-1) (o). j)q)a‘z(E(a).i)m)>C(a).icPa“(E(a). ier

= (€', (51 © Qo ) Comr), )P Eoy )My i Pt By e
= (e, Sar (Ca) NP> )Mo i€ jer = o iEiy.jSa Sty ) Po> Ege.i)m-
The lemma follows by observing that
Ewi&w.jSar Can NPa=Ew) = Ewisar (a-)Pa=Ew) = Ew.ils3" © 574 © Qo) E i) Som (Ua)

= Lew.is gt Ban)i)Sa (o) = S (Ca).)Part (Eay.i) S (Ug)
Qa1 (Ue) S (Ug1) = UgSamr (Ug1)s

where, in the first passage, we used Lemma 3.17; in the second one we used Lemma 3.18; in the third one
we used (16b), see page 14; in both the fourth one and the fifth one we used (16a). 2

m

Proof of Theorem 3.16. .7/2,#(H) is obviously a well defined category. We start by proving that.22.#(H)
is isomorphic to .72,.(RT(H)) as a category. Let M be a finite-dimensional representation of RT(H). Set

GM: M— M
x +— M0x)

By property (20f) of the twist 0, see page 16, the couple (M, 0,,) is a object in .72.#(H). Conversely, let
(N, t) be an object in .22.#,(H), with a € 7. Define the action of RT,(H) on N via

(93) (h+ kvg)n = hn + kt~' (“n)

for any h,k € H and n € N. Let us check that the action defined in (93) is RTy(H)-linear, i.e., that we
provided N of a structure of RT,(H)-module. For any &,,k,, h,,k, € Hand n € N, we have

((hy + Ky vo) (o + eava))n = (hyha + Ky oo )it S (o) + (ks + Ky Qa(a)va )
= (hihy + ko ko) Sam (g + (ks + ko (ho))t" (“n)
and
(hy + kva)((ha + k2)n) = (b + kyva)(han + kat™ (“n))
= hyhan + bt ™ (n) + ko' (M) + kot (M(Rat ™ (")),

By observing that
klt_l(a(hzn)) = klt_l(q)a(hz)an) = klcpa(hz)t_l(an)
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and that
(Mt (“n)) = kit (%(kz)“(f' (“n))) = ki @a(ka)(™" 0“7 )(“n)
= ki a(k)r(“n) = ky o (ko it S (g ),
we obtain
(hy + kyva) (s + ko) = (B + ke Qs S () + (ks + Ky (b))~ (“n),

i.e., the action defined in (93) is RT,(H)-linear. To complete the proof that .72.#(H) and .72..(RT(H)) are
isomorphic categories is now trivial.

Since . #2#(H) and .#2.(RT(H)) are isomorphic, the ribbon T-category structure of .#24.(RT(H))
induces a structure of ribbon T-category on .72.#(H). This structure is exactly the structure described
above. In fact, the only nontrivial point is to show that the tensor product induced in .72.#(H) is the same
given in (9o0). Let (M,,t,) be an object in .#2.#,(Nm) and let (M,,t,) be an objects in .72#3(M), with
o, P € m. Let us check Op,01, =1, R 1,. By ® (see page 16), for any m, € M, and m, € M, we have

Or, o0, (m, ® m) = “NOup(m, ® m2)) = P((Oup)gym) ® P((Oup)(fym2)
= Olﬁ(eoctJ(OL).iE(a).jm1) ® aﬁ(eﬁcpa" (E(a[&a").i)@([ﬁ).jmz)

and

(t, ®1,)(m, ®m,) = (( ", )t 1[2) O Cvipr, M, © CM, .Mz) (m, ® m,)

(( (M' M )t 'lz) ° chMz,M') ((“Cp.jm2)) ® B jms)

(((m M, )t 't2)<aﬁal(((;(q).i§(a)-jm‘) ® 0[(‘3Por' (E(aﬁa“))mz))

(tl (C(a).ig(a).jml )) ® a(tz(cpa*' (E(a[&a*'))mz»
aBa”y a

( (eaC(a).iE(a).jmu)) ® (ﬁ(eﬁCPaﬂ(E(aﬁaﬂ),i)@(ﬁ).jmz))
aﬁ(eaC(a).iE(a). M) ® aﬁ(e[icporl Eapa).)T@).jMo)-

Let us prove that .72.#(H) and .}/ "(((%?p/zf(H ))N) are isomorphic. If (M, 6,,) is an object in .%2.#,(H),
with a € m, then, by Lemma 3.19, for any m € M we have QM(“_zm) = uq0;;(m), so that (M, 0y) is an
object in ./}~ '((.,%ﬂ/z/f(H))N). Conversely, if (M, 1) is an object n ./} '((l%p/,/f(H))N), then, by Lemma 2.27,
and Lemma 3.19 for any m € M we have #(* m) = U037 (m), i.e, (M, 1) is an object in .72#(H). The rest
follows easily. 2

Since, by Theorem 3.16, ./ '((l%p/z/f(H))N) is isomorphic to .%24.(RT(H)), the balanced T-category

N '((.%?r///f(H ))N) has also a natural structure of ribbon T-category. In particular, when H is the quantum
double of a finite-type T-coalgebra H’, this structure of a ribbon T-category is the same induced by the
isomorphism between l,/f/"((.%f/»f(H ) ) and Z(A2y.:(H")), so that we obtain the following corollary.

COROLLARY 3.20. If H' is a finite-type T-algebra, then ﬁ(y/f(RT(D(H’))) and S ( Sy (H")) are
isomorphic as ribbon T-categories.

Remark 3.21. The invertibility of the modular matrix & of a ribbon category .72 dominated by a finite
family of simple objects (see, for instance, [43]), can be very difficult to be proved. However Bruguieres [3]
(see also [32]) has show that, under some quite general conditions, a category of such kind can be embedded
in a convenient way into another category .72’ that is modular. We expect that similar results can be applied
in the crossed case. This should provide a large family of examples of HQFT.
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The above construction could also have an application concerning the ribbon extension of a tensor
category or of a T-category. Let H be a T-coalgebra over a field of characteristic zero. We conjecture that
RT(H) is also semisimple, although we do not expect that, in general, RT(H) will be modular. However,
by generalizing the Modularization Theory by Bruguieres to the crossed case, one should expect to obtain
a modular category.
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