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— Regardez, monsieur, que ceur qui paraissent la ne sont pas des géants, mais des
moulins a vent et ce qui semble des bras sont les ailes, lesquelles, tournées par le
vent, font mouvoir la pierre du moulin.

— 1l parait bien que tu m’es pas fort versé en ce qui est des aventures : ce sont
des géants, et, si tu as peur, dte-toi de la et mets-toi en oraison, tandis que je vais
entrer avec eur en une furieuse et inégale bataille.

M. de Cervantes, L’Ingénieuxr Hidalgo Don Quichotte de la Manche, 1605.
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Introduction

Depuis les travaux de M.Dehn et de J.Nielsen, qui, les premiers, utilisérent 'existence
d’une métrique & courbure négative sur des surfaces pour étudier leur groupe fondamental,
les méthodes géométriques en théorie des groupes discrets se sont révélées parmis les plus
fructueuses. Un point culminant de cette approche est sans nul doute la théorie des groupes
hyperboliques de M.Gromov (on peut citer [G], [Gh], [C-D-P]). Depuis 15 ans, un travail
important a été réalisé dans cette théorie, par de trés nombreux auteurs. Parmis eux, quelques
auteurs se sont interessés au cas des groupes relativement hyperboliques ; citons [G], [G2] [Bo6],
[Bo7], |[F], [Szczl], et plus récemment [Y]. C’est dans ce cadre que se situe le présent travail.
On y expose des méthodes (cones, construction de bords) et des résultats originaux concernant
les groupes relativement hyperboliques.

0.1 Groupes relativement hyperboliques, un survol.

Le concept de groupe relativement hyperbolique apparait pour la premiére fois dans 'in-
épuisable article de M.Gromov |G|, en 1987. Il y définit les groupes hyperboliques comme étant
ceux qui admettent une action discréte isométrique sur un espace localement compact hyper-
bolique (au sens de Gromov !), et & quotient compact, c’est & dire, & quotient quasi-isométrique
a un point.

L’approche primordiale des groupes relativement hyperboliques (|G],8.6) consiste & autori-
ser les quotients quasi-isométriques & 1'union d’un certain nombre fini d’exemplaires de rayons
[0,4+00[, et & exiger que des horiboules centrées en les relevés des points limites des rayons
soient deux & deux disjointes. Nous allons préciser cette définition.

0.1.1 Finitude géométrique

Pour suivre l'idée directrice, on devrait penser au groupe fondamental d’une variété hy-
perbolique possédant un certain nombre fini de cusps, et dont le complémentaire des cusps
est compact. Plus généralement, on peut penser aux groupes Kleiniens géométriguement finis,
que nous allons revoir ci-dessous.

Ces groupes discrets d’isométries de H", ’espace hyperbolique de dimension n (la motiva-
tion vient de n = 2 ou 3), furent introduits par Greenberg, Ahlfors, Marden, Beardon, Maskit,
et Thurston, et ont fait ’objet de plusieurs définitions. De nombreux auteurs étudiérent les
liens entre les diverses définitions proposées, et ’article le plus complet sur ce sujet est sans
doute celui de B.Bowditch [Bol], qui clarifia la situation en dégageant 1’équivalence de quatre
définitions. Plus tard, Bowditch a montré que cette équivalence est en fait vraie dans un cadre
plus vaste que celui des groupes Kleiniens (& savoir, le cas de la courbure négative pincée
[Bo2]). Voyons les quatre définitions équivalentes généralement admises.
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Commencons par celle de Marden [Ma]. Notons € le domaine de discontinuité du groupe
' dans la sphére a linfini de H", et considerons M,(T') = p\(#'YY. On dit quun bout
topologique de M (T") est parabolique s’il correspond & 'unique bout de M.(G), o G est un
sous-groupe de I' fixant un et un seul point dans la sphére a l'infini de H", laissant stable
ses horisphéres, et maximal pour ces propriétés. Dans ce cas, on dit que G est un sous-goupe
parabolique maximal. Grace & ce vocabulaire on peut énoncer la définition : le groupe Kleinien
T est géométriquement fini si M(T") n’a qu’un nombre fini de bouts topologiques, et si chaque
bout est parabolique.

On peut aussi définir la finitude géométrique grace & la décomposition de Margulis des
variétés (ou des orbifolds) en partie mince et partie épaisse. Rappelons que la partie mince
d’une variété est ’ensemble des points en lesquels le rayon d’injectivité est plus petit que la
constante de Margulis. Etant donné un groupe Kleinien T', on note AT son ensemble limite
dans la sphére a 'infini, et Hull(AT') 'enveloppe convexe de AT". Le groupe Kleinien I est alors
géométriquement fini si le quotient F\H“”(AF) a une partie épaisse compacte. Cette approche
est due a Thurston en dimension 3.

Une troisiéme maniére, également due & Thurston, de définir cette finitude géométrique
est d’exiger qu’il existe un voisinage uniforme de F\H“”(AF) de volume fini.

Gréace a ces trois premiéres formulations, on peut comprendre I'idée géométrique. Beardon
et Maskit [Be-Ma| ont proposé une approche en termes de dynamique sur l'ensemble limite,
qui peut étre exprimée de maniére intrinséque a cette action. A nouveau, Bowditch, dans [Bol]
[Bo2], a prouvé I’équivalence avec les formulations précédentes. Soit I" un groupe Kleinien, et
AT son ensemble limite. On dit qu’un point & de AL est un point limite conique §’il existe
une suite (v, )n d’éléments de T et deux points distincts a et b de AT, tels que la suite (y,&)n
tende vers a et tels que pour tout point ¢ different de &, la suite (y,(), tende vers b. On dit
qu’un point & de AT est un point parabolique borné si le stabilisateur de & agit sur AT\ {£}
de maniére proprement discontinue, & quotient compact (cf Définition 3.1.2). Un groupe I est
géométriquement fini si son ensemble limite AT" ne contient que des points limites coniques et
des points paraboliques bornés.

0.1.2 Hyperbolicité relative : deux approches

L’équivalence précédente justifie la dénomination “d’action géométriquement finie” pour
une action de convergence sur un compact ne contenant que des points limites coniques et
des points paraboliques bornés [Bo3], [Tu]. Elle donne aussi un moyen d’étendre la finitude
géométrique aux groupes agissants sur des espaces hyperboliques au sens de Gromov. En 1998,
Bowditch propose une définition, et entame 1’étude des groupes relativement hyperboliques.

DEFINITION 1, |B06| : Soit T un groupe de type fini, agissant sur un espace X, hyper-
bolique au sens de Gromow, géodésique, et propre, de maniére a ce que l’action induite sur le
bord 0X soit géométriguement finie, et telle que les sous-groupes paraboliqgues mazimaux soient
tous de type fini. Soit G la famille de ces sous-groupes.

On dit alors que T' est hyperbolique relativement a la famille G. On dit aussi que la paire
(T, G) est un groupe relativement hyperbolique.

Simultanément, entre 94 et 98, et indépendamment, B.Farb a proposé dans sa thése une
approche alternative des groupes relativement hyperboliques.

Soit Cay(T") un graphe de Cayley d’un groupe I'. Etant donnée une famille de sous-groupes
H,...H,, on construit le graphe C/’a\yI‘ a partir de Cay(T") en recollant sur chaque classe a



gauche de chaque sous-groupe H;, un cone de diamétre 1 (le cone recollé est égal a (H; X
[0, %D/(h,;):(h',%),vn,h'eﬂi)-

Si les groupes hyperboliques sont ceux dont un (donc tout) graphe de Cayley est hyper-
bolique au sens de Gromov, les groupes hyperboliques relativement & une famille finie de
sous-groupes (au sens de Farb), sont ceux dont un (donc tout) graphe Cay(T') est hyperbo-
lique (au sens de Gromov). Ici, la famille des sous-groupes est finie, alors que dans I’approche
de Bowditch, elle peut étre infinie. Ce n’est pas une différence essentielle, car les sous-groupes
paraboliques pour Bowditch correspondent & la famille de tous les conjugués des sous-groupes
de la famille considérée par Farb.

DEFINITION 2, [F| : Soit I' un groupe de type fini, et Hy,...,Hy certains sous-groupes
de type fini de L. Soit Cay(T") un graphe de Cayley de T.

Soit @(I‘) le graphe obtenu de la maniére suivante : les sommets sont les sommets de
Cay(T), auzquels on a rajouté les familles (vym,)yer/m; pouri=1...n; les arétes sont celles
de Cay(T") auzquelles on a rajouté une aréte de longueur 1/2 entre vyg, et chaque élément de
vH;, cela pour tout i et tout v € I'/H;.

On dit que T' est faiblement hyperbolique relativement a la famille des (H;)i=1..n, au sens
de Farb, si le graphe Cay(T') est hyperbolique au sens de Gromov.

On a raison de dire “faiblement relativement hyperbolique” dans ce cas. A.Szczepariski
explique, dans [Szczl], que tout groupe relativement hyperbolique au sens de Bowditch ’est
au sens de Farb, mais que la réciproque est fausse.

La situation est la suivante : si les sous-groupes Hj ... H, sont de type fini, on peut choisir
un graphe de Cayley de I' qui contient un graphe de Cayley de chaque H;.

L’approche de Farb consiste donc & recoller & chaque sous-groupe H;, un espace (non
localement compact) de diamétre fini, de compléter la construction par translations a gauche,
et de s’'intéresser au cas ol le résultat est hyperbolique.

Bowditch quant & lui, recolle une horiboule hyperbolique le long de son horisphére qui
s’identifie au graphe de Cayley du groupe H;, et compléte également la construction par
translations. Cette fois, le diameétre de 1’horiboule est infini (le raccourci provoqué est donc
moins “fort”) mais 'espace obtenu est encore localement compact. Szczepanski vérifie alors
qu’effondrer les horiboules, lorsqu’elles sont bien disjointes, préserve '’hyperbolicité.

L’approche de Farb ne s’arréte en fait pas 13, et il introduit une propriété supplementaire
inspirée de I’étude des groupes automatiques [E et al| : la propriété BCP (Définition 1.1.4 |
[E]).

Pour chaque chemin p dans Cay(T'), on marque, par ordre d’apparition, les segments
disjoints maximaux de p qui restent dans une méme classe & gauche de l'un des sous-groupes
paraboliques H;. Sil'un de ces segments a ses extrémités distantes de r, on dit que p pénétre
la classe sur un longueur de r. On définit alors le chemin p, la projection de p dans C/’cZy(F),
tel que chaque segment marqué de p de longueur superieure & 2 soit changé en un chemin de
deux arétes, passant par le sommet singulier associé a la classe & gauche.

On dit que la paire (I, G) satisfait la proprieté de Bounded Coset Penetration (BCP),
si pour tout L > 0, il existe 71, tel que, pour tout p; et po, chemins de Cay(T") partant et
arrivant a une distance inféri/e_lire & 1 1'un de 'autre, et tels que leurs projections p; et po sont
des L-quasi-geodesiques de Cay(T"), on a ce qui suit : si p; pénétre une classe sur un longueur
superieure a rr, alors ps pénétre dans la méme classe.



0.1.3 Equivalence des deux approches

On peut désormais compléter le résultat de Szczepariski. Bowditch introduit une troisiéme
définition, et montre ([Bo6], Théoréme 7.10) qu’elle équivaut & sa premiére. On peut voir
qu’elle équivaut également a I’hyperbolicité relative au sens de Farb, avec la propriété BCP
(ce fait est évoqué dans [Bo6], on en donne une preuve ici dans ’Annexe A). Ainsi la Définition
1 équivaut a la Définition 3 ci-dessous, qui équivaut a la Définition 2 avec la propriété BCP.

DEFINITION 3, |[B06]| : Soit T’ un groupe de type fini, et G une famille de sous-groupes de
type fini. On dit que T' est hyperbolique relativement & G s’il existe un graphe K hyperboligue
et fin sur lequel T' agit simplicialement, avec un nombre fini d’orbites d’arétes, tel que le
stabilisateur de chaque aréte soit fini, et tel que les stabilisateurs des sommets de valence
infinie soient exactement les éléments de G.

Dans ce cas, on dit encore que la paire (T',G) est un groupe relativement hyperbolique.

Il faut expliquer ce que ’on entend par graphe fin (traduction “libre” de ’anglais fine graph,
[Bo6]). Un graphe est dit fin si pour toute aréte e, et pour tout nombre L > 0, I’ensemble
des lacets simples passant par e de longueur L, est fini. C’est une propriété triviale pour les
graphes localement finis, mais nous pouvons 'utiliser comme propriété de finitude moins forte
pour les graphes quelconques.

0.1.4 Premiers exemples

Nous l’avons vu, ’exemple fondamental dans ’approche de Bowditch est la classe des
groupes discrets d’isométries d'une variété de Hadamard & courbure négative pincée, qui sont
géomeétriquement finis (voir [Bo2]).

On peut également penser aux groupes hyperboliques : si I’on choisit un sous groupe quasi-
convexe H d’un groupe hyperbolique I', qui est son propre normalisateur, on peut montrer que
I" est hyperbolique relativement & la famille des conjugués de H (cf. [Bo6]). Pour la définition
de Farb (sans la propriété BCP), on peut se contenter de la quasi-convexité de H, comme le
remarque S.Gersten [Ge]. En général un tel groupe est d’indice fini dans son normalisateur.

Un autre exemple important est le cas des amalgames, ou extensions HNN, au dessus d’un
groupe fini : si par exemple I' = A xp B, ou F est un groupe fini, et ol A et B sont de type
fini, alors I" est hyperbolique relativement & la famille des conjugués de A et de B. L’arbre de
Serre de "amalgame (ou de I'extension HNN) satisfait en effet, les exigences de la Définition
3 pour étre le graphe K.

Malgré trois définitions, nous avons donc une seule notion d’hyperbolicité relative (au sens
fort) et principalement trois classes d’exemples : les groupes géométriquement finis sur une
variété de Hadamard & courbure négative pincée, les amalgames ou extensions HNN au dessus
de groupes finis, et les groupes hyperboliques.

D’apres [M-M], le groupe modulaire d’une surface est faiblement hyperbolique relativement
aux stabilisateurs des courbes simples, au sens de Farb. Hélas, il ne vérifie pas la propriété
BCP. En fait, Masur et Minsky montrent que le complexe des courbes d’une surface est hyper-
bolique, mais on peut facilement voir qu’il n’est pas fin. Une autre preuve de ’hyperbolicité
du complexe des courbes a été donnée récemment par Bowditch [Bo8]. D’autres exemples de
groupes relativement hyperboliques au sens faible, sans la propriété BCP, sont connus (par
exemple : [F], [Ge], [Ka-S], [Szcz2]).

Dans toute la suite, sauf mention du contraire, les groupes relativement hy-
perboliques le seront au sens fort (Définition 1, Définition 3, ou Définition 2 +



BCP).

0.2 Angles et cones

L’une des difficultés majeures de la théorie des groupes relativement hyperboliques est que
le graphe hyperbolique dont on dispose grace & la Définition 3, et sur lequel le groupe agit,
n’est pas localement fini. Ses boules sont infinies, alors qu’on a souvent besoin (en particulier,
ici, aux chapitres 1, 2, et 4) d’exprimer 'hyperbolicité grace a des sous-ensembles finis (ou
compacts). Par exemple, dans le cas des groupes hyperboliques, on utilise classiquement les
boules d’un graphe de Cayley.

Dans le cas relatif, le graphe hyperbolique dont on dispose d’aprés la Définition 3 est
cependant uniformément fin au sens de Bowditch. Voila comment on exploite cette propriété.

On peut construire (et on introduit dans cette thése) des cones dans un graphe arbitraire :
il s’agit de voisinages d'une aréte dépendant de deux paramétres, un rayon et un angle (cf
Définition 2.2.7). Précisément, I’angle entre deux arétes consécutives (v,v1) et (v,v2), est la
longueur d’un plus court chemin entre vy et vy, parmis les chemins ne passant pas par v. Le
cone centré en laréte e = (v,v') de rayon r et d’angle 6 est I’ensemble des sommets w a
distance inférieure a r de v et tels qu’il existe un segment géodésique [v,w] dont les arétes
consécutives ne font que des angles inférieurs & 6 entre elles, et dont la premiére aréte fait un
angle inférieur & 0 avec e.

Alors qu’un graphe est localement fini si, et seulement si, toutes les boules sont finies, un
graphe est fin si, et seulement si, tous les cones sont finis (voir Lemme 2 de I’Annexe A). De
plus, les cones se comportent bien vis-d-vis de I’hyperbolicité. Cette remarque un peu vague
est peut-étre assez bien illustrée par le lemme suivant (dont la preuve est similaire & celle de
la Proposition 4.1.5).

LEMME : (Finesse coniques des triangles géodésiques)

Soit X un graphe hyperbolique. Il existe deux constantes r et 0 telles que, pour tout triangle
géodésique ([z,y], [y, 2], [z, z]), le coté [y, z] est contenu dans l'union des cones de rayon r et
d’angle 0 centrés en les arétes des deuz autres cotés :

[y, Z] - U Coner,e(e)'

e€lz,y]U[z,z2]

Ce qui est intéressant c’est l’existence de parties finies (ce qui est le cas des cones si le
graphe est fin) vérifiant cette propriété pour les triangles : on pourra idéalement exprimer
I’hyperbolicité grace & elles.

0.3 Résultats

Dans cette thése, on veut étudier en particulier les bords des groupes relativement hy-
perboliques. Par bord, nous entendons compactification équivariante du groupe muni de la
topologie discréte, pour laquelle on peut exiger de surcroit un certain nombre de propriétés.
Nous sommes guidés par la richesse du bord des groupes hyperboliques de Gromov.



0.3.1 Bord topologique

Un premier type de bord auquel on s’intéresse, est un bord possédant de fortes propriétés
topologiques. Il s’agit des Z-structures, introduites en 1995 par M.Bestvina. Pour un groupe
T, une telle structure est la donnée d’un espace classifiant fini BI" pour I' (c’est un complexe
cellulaire fini, asphérique, dont le groupe fondamental est I'), et d’une compactification équi-
variante, et minimale au sens des Z-ensembles (cf Définition 1.4.1), du revétement universel
ET de cet espace : ET'U OT'. On exige par ailleurs que ce dernier compact soit de dimension
topologique finie, et qu’il satisfasse une propriété d’indépendance de point base : si pour une
suite (v )n d’éléments de T', et un point z de ET', on a y,z — & € 9T, alors pour tout y € ET,
on a encore Y,y — &, la convergence étant uniforme sur les compacts.

En particulier, les propriétés des Z-ensembles assurent qu’une telle compactification pré-
serve ’asphéricité : I’espace ET est contractile, et son compactifié¢ ET' U JI" I’est aussi.

En elle-méme, l'existence d’un espace classifiant fini pour un groupe est une propriété
importante : elle illustre le fait que le groupe est de dimension cohomologique finie.

Une éventuelle Z-structure fournit alors un compact (le bord) contenant toute l'informa-
tion cohomologique du groupe. Dans [Be-Me]|, puis dans [Be], M.Bestvina, et G.Mess montrent
un isomorphisme H*(T,ZT) = H*~1(9T,Z). Un groupe admettant une Z-structure est semi-
stable & l'infini, et Ferry et Weinberger [F-W| ont prouvé qu’il satisfait la conjecture de Novi-
kov.

Des 1987, E.Rips montre que tous les groupes hyperboliques sans torsion admettent un
espace classifiant fini. Il construit en fait directement son revétement universel : le complexe
de Rips. Une fois le groupe muni d’une métrique du mot, on considére le complexe simplicial
dont les sommets sont les éléments du groupe et dont les simplexes sont les parties du groupe
de diamétre inférieur & une constante fixée & l'avance. Si la constante est suffisament grande,
le complexe est contractile. De plus, c’est toujours un complexe simplicial de dimension finie,
et localement fini; son quotient par ’action a gauche du groupe est un complexe fini.

En 1991, M.Bestvina et G.Mess [Be-Me| montrent que pour tout groupe hyperbolique sans
torsion I', le bord de Gromov est une Z-structure sur I'.

Le premier résultat de cette thése est ’étude de l’existence d’un classifiant fini, et d’une
Z-structure pour les groupes relativement hyperboliques. On voit déja une difficulté dans le
fait que, pour un groupe relativement hyperbolique, la construction de Rips & partir d’un
graphe non localement fini donne un complexe qui n’est ni localement fini, ni de dimension
finie.

THEOREME [Chapitre 1, Thm 1.0.1]

Soit T un groupe sans torsion, hyperbolique relativement a une famille de sous-groupes G.
Si chaque élément de G admet un classifiant fini, alors I' admet un classifiant fini.

On peut alors donner la construction d’'un bord qui compactifie notre complexe de Rips
relatif. On a le second théoréme :

THEOREME [Chapitre 1, Thm 1.0.2] :

Soit I' un groupe sans torsion, hyperbolique relativement a une famille de sous groupes G.
Si chaque élément de G admet une Z-structure, alors T' admet une Z-structure.



0.3.2 Codage et dynamique symbolique

Un systéme dynamique est canoniquement associé & un groupe relativement hyperbolique
quelconque. 11 s’agit de son action sur son bord de Bowditch donné par la Définition 1. Un
tel bord est uniquement bien défini, comme le montre I’étude faite dans [Bo6]. L’étude des
systémes dynamiques par des méthodes de dynamique symbolique est classique. En général,
on entend par systéme dynamique, ’action par homéomorphismes de Z sur un compact. Ici,
il s’agit de I'action d’un groupe de type fini.

Rappellons briévement quelques définitions. Un sous-décalage de type fini sur un groupe
GG, dans un alphabet fini A, est une famille d’applications de G dans A, invariante par ’action
naturelle du groupe & gauche, qui induisent sur un sous-ensemble fini de I" I'une des appli-
cations prescrites a ’avance, et qui est une famille maximale pour ces propriétés. Si G agit
par homéomorphismes sur un compact K, on dit que ’action (ou le systéme dynamique) est
de type fini, si elle se factorise & travers un sous-décalage ® de type fini, par une applica-
tion 7 : ® — K continue, surjective, équivariante. Considerons ¥ C ® x ® par 1’équivalence
(p1,d2) €V & w(h1) = 7(¢p2). C’est une famille d’applications définies sur G & valeurs dans
I’alphabet A x A. On dit que ’action est de présentation finie si elle est de type fini, et si de
surcroit, ¥ est un sous-décalage de type fini. Cette propriété supplémentaire est équivalente
au fait que l’action soit expansive (cf [CP]).

M.Gromov indique dans [G] que ’action des groupes hyperboliques sur leurs bords est
un systéme dynamique de présentation finie, dans ce sens généralisant naturellement celui de
D.Fried [Fr| pour les actions de Z. M.Coornaert, et A.Papadopoulos donnent dans [CP| deux
preuves de ce fait.

Pour les groupes relativement hyperboliques, nous menons cette étude avec AsliYaman.
Cependant, un phénoméne inattendu apparait : pour effectuer une construction inspirée de
celle de [CP] pour les groupes hyperboliques, nous avons besoin d’une hypothése asymptotique
sur les sous-groupes paraboliques.

Soit G un groupe infini discret, il agit par translations & gauche sur son compactifié
d’Alexandroff K = G U oo. Supposons qu’il existe 7 : ® — K une présentation de cette
action par un sous-décalage de type fini ®. On dit qu’un élément de ’alphabet a est un sym-
bole spécial pour 7, si chaque élément o de ® ne prend qu’au plus une fois la valeur «, de
maniére & ce que o(g) = « si, et seulement si, 7(c) =g € G C K. (voir Définition 2.1.5).

THEOREME [Chapitre 2, Thm 2.3.1] (F.D, et A.Yaman)

Soit (T', G) un groupe relativement hyperbolique, et OT' son bord de Bowditch. Alors ’action
de T" sur O est expansive. Si de plus l'action des éléments de G sur leur compactifié¢ d’Alexan-
droff admet une présentation finie avec un symbole spécial, alors 'action de ' sur O est de
présentation finie.

Une fois de plus, la non-finitude locale du graphe hyperbolique dont on dispose est un pro-
bléme. Si ’on suit I’approche originale pour les groupes hyperboliques, on arrive invariablement
sur deux problémes : ou bien I'alphabet que ’on construit est infini, ou bien ’application du
sous-décalage sur le bord n’est pas continue (ni méme bien définie). L’introduction des cénes,
et leurs bonnes propriétés permettent d’éviter le premier probléme, tandis que la condition
sur le compactifié d’Alexandroff des sous-groupes paraboliques permet de resoudre le second.

L’alphabet, et le sous-décalage est construit & l’aide des cocycles associés aux fonctions de
Busemann, et aux fonctions distances, et le codage du bord est donné par le comportement
des lignes de gradient de ces cocycles.

La classe des groupes agissant sur leur compactifié d’Alexandroff en admettant une pré-



sentation finie avec un symbole spécial est mal comprise. Quelle est la signification, sur un
graphe de Cayley, d'une telle propriété ? On sait que cette propriété est invariante par passage
4 un groupe commensurable, par contre on ignore si elle est invariante par quasi-isométrie. On
a toutefois une large classe d’exemples :

THEOREME [Chapitre 2 , Prop. 2.4.1 et Coro. 2.4.5] (F.D, et A.Yaman)

Un groupe agissant sur son compactifié d’Alexandroff avec une présentation finie possédant
un symbole spécial, est de type fini.

Tout groupe poly-hyperbolique agit sur son compactifié d’Alexandroff avec une présentation
finie possédant un symbole spécial.

Cette classe de groupes comprend donc les groupes virtuellement nilpotents, ce qui est le
cas des groupes paraboliques dans la plupart de nos exemples préférés.

0.3.3 Combinaisons des bords de Bowditch

On I’a déja évoqué, le bord de Bowditch est naturellement associé & un groupe relativement
hyperbolique, et le groupe admet une action de convergence géométriquement finie sur ce
compact. En s’inspirant d’un théoréme analogue de Bowditch pour les groupes hyperboliques
[Bo4|, A.Yaman, dans sa thése [Y], obtient la réciproque :

THEOREME (Yaman, Bowditch dans le cas d’une action de convergence uniforme)

Si un groupe I agit sur un compact sans point isolé, métrisable M comme un groupe de
convergence géométriquement fini, alors ' est hyperbolique relativement & la famille de ses
sous-groupes paraboliques mazimauz, et M est homéomorphe de maniére équivariante aw bord
de Bowditch de T'.

Nous nous servons de cette caracterisation pour démontrer un théoréme de combinaison
pour les groupes relativement hyperboliques. Etant donné un graphe de groupes relativement
hyperboliques, on souhaite construire un compact muni d’une action du groupe fondamental
du graphe de groupe.

Le compact que I'on considére est fabriqué avec le bord de I’arbre de Bass-Serre du graphe
de groupe (qui n’est pas compact en général), et avec un exemplaire du bord de Bowditch
du stabilisateur de chaque sommet de l'arbre. Par ailleurs, on identifie, pour deux sommets
adjacents, les deux ensembles limites du stabilisateur de I’aréte les joignant.

Pour cela, on fait une hypothése de quasi-convexité sur chaque groupe d’aréte dans chaque
groupe de sommet adjacent. Précisément, si I' et H sont deux groupes relativement hyperbo-
liques, et si H est un sous-groupe de I', on dit que H est quasi-convexe dans I' si son bord
de Bowditch 0H est homéomorphe de maniére équivariante & son ensemble limite dans OT'.
On dit qu’il est pleinement quasi-convexe si, de plus, les translatés de cet ensemble limite qui
contiennent un point donné quelconque sont en nombre fini.

On exige aussi que le graphe de groupe soit acylindrique, c’est & dire que le stabilisateur
de tout segment suffisamment grand de ’arbre de Bass-Serre soit toujours fini. On peut alors
montrer :

THEOREME [Chapitre 8, Thm 3.0.7]

1. Soit X un graphe fini de groupes relativement hyperboliques, acylindrigue, et soit T
un arbre mazimal dans le graphe. Supposons que les groupes d’arétes sont pleinement quasi-
convezxes dans les groupes de sommets adjacents.



Alors T = m(X, 1) est hyperbolique relativement a la famille des conjugués des images des
sous-groupes paraboliques des groupes de sommets.

2. Soit (G,G) un groupe relativement hyperbolique, et P € G un de ses sous groupes
paraboligues mazimauz. Soit A un groupe de type fini qui contient un sous-groupe isomorphe
a P. Supposons que I' = A xp G.

Alors T est hyperbolique relativement a la famille (HUA), ot H est l’ensemble des conjugués
des images des éléments de G qui ne sont pas conjugués & P dans G, et ot A est I’ensemble
des conjugués de A dans T.

Nous avons a esprit I’étude des groupes limites de Z.Sela. Dans [Se2], Sela introduit la
classe des groupes limites pour expliquer la structure de ’espace des solutions d’une équation
dans un groupe libre. Il démontre un résultat important d’accessibilité : & tout groupe limite
est associée une hauteur, et un groupe limite de hauteur n est le groupe fondamental d’un
graphe fini de groupes, acylindrique, dont les groupes d’arétes sont cycliques ou triviaux, et
dont les groupes de sommets sont des groupes limites de hauteur (n — 1). Il reste & préciser
que les groupes limites de hauteur 0 sont les groupes abéliens sans torsion, de type fini.

On répond ici & un probléme de Z.Sela (Question 1.1 de la liste [Se-pb]).

THEOREME [Chapitre 3, Thm 3.0.9 |
Tout groupe limite est hyperbolique relativement a la famille de ses sous-groupes abéliens
non-cycliques mazimauz.

Grace a cela et & la bonne description du bord qu’ameéne notre construction, on obtient
quelques corollaires.

COROLLAIRES [Chapitre 3, Coro. 3.0.4]

1. Tout sous-groupe de type fini d’un groupe limite est quasi-convere au sens des bords.

2. Tout groupe limite posséde la propriété de Howson : l'intersection de deux sous-groupes
de type fini est encore de type fini.

3. Tout groupe limite admet une Z-structure.

0.3.4 Représentants canoniques et paraboliques accidentels

Notre but, dans le dernier chapitre, est de montrer un résultat de finitude du nombre
d’image d’un groupe de présentation finie dans un groupe relativement hyperbolique. Il s’agit
d’une généralisation d’un résultat de Thurston sur les images d’un groupe de surface dans un
groupe fondamental d’une variété de dimension 3, hyperbolique, géométriquement finie.

Soit I' est un groupe relativement hyperbolique, et G un groupe. On dira qu’un morphisme
h : G — T posséde un parabolique accidentel si son image est parabolique dans T', ou sl se
factorise a travers un graphe de groupes dont 'image d’un stabilisateur d’aréte est fini ou
parabolique.

Cette définition est inspirée par I’étude des plongements de surfaces dans des variétés
hyperboliques de dimension 3. Si S est une surface fermée, et N une 3-variété hyperbolique
géométriquement finie, un morphisme de m1(S) dans 71 (IN) envoie une courbe simple de S
dans un cusp (parabolique) de N si, et seulement si, il posséde un parabolique accidentel.

Un théoréme de Thurston [Th| affirme qu’il existe un nombre fini d’images, & conjugaison
prés, du groupe de surface 71 (S) dans 71 (IV), par des morphismes sans parabolique accidentel.
Nous le généralisons au cas des groupes relativement hyperboliques.
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THEOREME : [Chapitre 4, Théoréme 4.0.2]

Soit G un groupe de présentation finie, et (I',G) un groupe relativement hyperbolique. L’en-
semble des classes de conjugaison d’images de G dans I' par un morphisme sans parabolique
accidentel est fini.

Pour montrer ce théoréme, nous construisons un analogue des représentants canoniques de
E.Rips et Z.Sela [R-S|. La encore, la principale difficulté vient du fait qu’on utilise un graphe
qui n’est pas localement fini. On utilise alors les angles et les cones déja introduits au chapitre
2.

L’idée de la définition des représentants canoniques (ou plutot des cylindres canoniques)
peut étre expliquée comme suit. Soit I' un groupe relativement hyperbolique agissant sur
un graphe hyperbolique et fin K dont p est un point base. Etant donné une famille finie F’
d’éléments de T', on veut trouver un ensemble fini (un cylindre) autour de chaque segment
[p,yp] C K avec v € F U F~L. On compléte en disant que le cylindre d'un translaté d’un
segment est le translaté du cylindre de ce segment. Cette construction doit étre telle que, pour
chaque «, 3,y dans F U F~! satisfaisant I’équation (By = 1), les trois cylindres autour de
[p, ap], [ap, aBp] = alp, Bp] et [p,y 1p] = [aByp, aBp], coincident deux & deux sur de grands
voisinages des sommets p, ap et afp.

On reprend ensuite une idée de T.Delzant dans [De] pour les groupes hyperboliques. Etant
donné un morphisme du groupe G dans le groupe I', on utilise les représentants canoniques
dans I' pour un systéme de triangles constitués par les images d'une présentation triangulaire
pour G, pour construire une lamination sur un polyédre de Van Kampen pour G. Cette
lamination permet de tracer un graphe sur ce polyédre, et scinde G en un graphe de groupes.
Cette construction est telle que les groupes d’arétes ont pour image des groupes paraboliques
ou finis. Le morphisme est donc sans parabolique accidentel seulement si le graphe de groupe
est trivial. I’image de G est alors conjuguée a I'image d’un groupe de sommet. Une étude des
sommets dits réguliers, et des sommets dits singuliers permet de conclure.

Avertissement : Les quatre chapitres de cette thése sont adaptés de quatre pré-publications
de l'auteur, en anglais (respectivement [D1], [DY], [D2] et [D3]). Pour éviter les répétitions,
on a préféré regrouper certaines parties. Ainsi, le paragraphe sur les angles et les cones du
chapitre 2 est nécessaire a la compréhension du chapitre 2 et du chapitre 4.



Chapitre 1

Classifying spaces and boundaries for
relatively hyperbolic groups

To appear in Proceedings of London Math.Soc 86 (2003).

Abstract : We prove the following : if a group I is torsion-free, and relatively hyperbolic (with the property
BCP), relative to a subgroup admitting a finite classifying space, then I" admits a finite classifying space. In
this case, if the subgroup admits a boundary in the sense of Z-structures, we prove that I' admits a
boundary. This extends classical results of Rips, and of Bestvina and Mess to the relative case.

Introduction

A theorem due to Rips states that any torsion-free hyperbolic group admits a finite
Eilenberg-McLane space K(I',1). Given a word metric on the group, the simplicial complex
whose simplices are the subsets of the group of diameter less than a constant d is in fact
aspherical if d is large enough (see, for instance, [C-D-P], chapter 5), and therefore is a model
for ET', the universal covering of the classifying space.

This construction cannot be directly extended to the case of relatively hyperbolic groups,
which are combinatorial analogues of geometrically finite Kleinian groups. A finitely generated
group I' is hyperbolic relative to a subgroup C (in the sense of Farb, cf [F]) if the graph
I, obtained from a Cayley graph Ca(T") by collapsing each left coset of C to a point, is
hyperbolic (cf. Definition 1.1.2). If C is not finite, the graph I' is not locally finite and the
Rips method leads to a complex that is not finite dimensional. The graph may nevertheless
satisfy a finiteness property, namely the property of Bounded Coset Penetration, (“BCP” for
short, cf. Definition 1.1.4), which allows us to replace (infinite) balls by finite objects.

The main theorem of this paper is as follows (¢f. Theorem 1.2.3 and Remark 6.3 in part

6) :
Theorem 1.0.1 Let I' be a group hyperbolic relative to a subgroup C, satisfying the property
BCP, and torsion-free. If C' admits a finite classifying space, then so does I.

This implies for instance that, in this case, I' has cohomology of finite dimension.

In [Be|, M.Bestvina introduces the notion of Z-structure for a group. If a torsion-free
group admits a finite classifying space, the point is to find an aspherical compactification of
its universal covering, ET', which is minimal in the sense of Z-sets (see Definition 1.4.1, and
also [Be]). It is natural to require the compactification to be equivariant. The boundary carries
important information about the group. For instance, it determines the proper homotopy type
of the space ET'. One can compute cohomologies by the equality H* (0T, Z) ~ H*(I', ZT"),

11
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which also implies that a group I' admitting a Z-structure is a Poincaré duality group of
dimension n if, and only if OI' has the cohomology of an (n — 1)-sphere (see [Be-Me|, and
[Be]). Ferry and Weinberger [F-W] proved the Novikov conjecture for the groups admitting a
Z-structure.

In [Be-Me|, M. Bestvina and G. Mess show that any torsion-free hyperbolic group admits
an equivariant Z-structure given by the Gromov boundary.

Theorem 1.0.1 allows us to extend this result (cf. Theorem 1.4.2).

Theorem 1.0.2 Let I' be a group hyperbolic relative to a subgroup C, satisfying the property
BCP, and torsion-free. If C admits a Z-structure, then I' admits a Z-structure.

Moreover, if C' admits a Z-structure where the action extends continuously on the boundary
in homeomorphisms, so does T'.

Our boundary is constructed in part 3. It consists of the Gromov boundary of the (hyper-
bolic) graph of cosets I, and all the translates of the boundary of C by elements of T’ /C. We
then build a suitable topology (see Theorem 1.3.7). Here again, difficulties arise from the fact
that I is not in general a proper hyperbolic space (closed balls are not compact), but we fix
them thanks to the property of Bounded Coset Penetration. Theorem 1.0.2 itself is proved in
part 4.

Several authors have already been interested in the boundary of a relatively hyperbolic
group and in its topological properties (e.g. : B. Bowditch [Bo6], [Bo5], A. Yaman [Y]). They
use Bowditch’s definition of the boundary, given in [Bo6]. We emphasize that this is not our
point of view here. Bowditch’s boundary is actually a quotient of the one we introduce in part
3, and does not give a Z-structure, in general.

1.1 Relatively hyperbolic groups and the property of Bounded
Coset Penetration.

The aim of this part is to gather definitions and references. In the following, I' is a finitely
generated group, and C' a finitely generated subgroup.

There exist two equivalent definitions of relative hyperbolicity. We are interested in the
one given by B.Farb, in [F].

Definition 1.1.1 (graph T')

Let Ca(T) be a Cayley graph of T', containing a Cayley graph of C. The coned-off graph I
is the quotient of Ca(T") by the equivalence relation on the vertices “to belong to the same left
coset of C”, and || - || is the graph metric.

Definition 1.1.2 (Relative hyperbolicity)

A group T' is hyperbolic relative to a subgroup C' if the graph I is hyperbolic in the sense
of Gromov (see [G], [C-D-PJ).

This is sometimes called “weak relative hyperbolicity”, to emphasize the absence of an
additional property defined below (Definition 1.1.4).

A path in Ca(T), ¢ : [a,b] — Ca(T') is said to travel in a coset yC for less than r > 0 if
for any subsegment of ¢ whose vertices are in vC', maximal for this property, the first vertex
is r-close to the last one. It is said to travel more than r in the coset vC' if there exists such a
non-empty maximal subsegment whose first and last vertex are r-far from each other.

Definition 1.1.3 (Relative geodesic)

12
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Let ¢ : [a,b] — Ca(T') a path parameterized by arc length, and é its image in T'. Re-
parameterize & (t) = ¢(4(t)) to remove all the loops of length 1 (that is, corresponding to
travels in cosets), and so that the new path is still parameterized by arc length. We say that c
is a relative geodesic if & is a geodesic. We say that c is a T-relative-quasi-geodesic if & is a
T'-quasi-geodesic, that is, for all t and t', ”}—tl‘ <& =Wy < Tt -]

Definition 1.1.4 (Bounded Coset Penetration)

The pair (T, C) satisfies the property of “Bounded Coset Penetration” (BCP) if for all T,
there exists a constant rpop(T) such that, for each pair (c1,c2) of T-relative-quasi-geodesics
(without loop) starting at the same point, and ending at the same point in Ca(T),

- if ¢1 travels more than rgop(T) in a coset, then cy enters the coset,

- if c1 and co enter the same coset, the two entering points are rgop(T')-close in the coset,
and so are the two exiting points.

Being hyperbolic relative to a subgroup and satisfying the property BCP are properties
that do not depend on the choice of the Cayley graph, and by reformulating the definition of
the graph I', one can extend these definitions to the case of several subgroups (see [F], and
part 6.2 below).

1.2 The relative Rips complex P, (T").

Given a group I', with a word-metric, the Rips complex Py(T') is the complex whose
simplices are subsets of I" of diameter less than d (see [C-D-P] chap. 5).

Let T' be a group hyperbolic relative to a finitely generated subgroup C, satisfying the
property BCP. We choose a finite set of generators of I' that contains a set of generators of
C. Ca(T) is the associated Cayley graph. Let d and r be two positive constants. We assume
that C admits a finite classifying space, its universal covering is EC, which can be chosen,
without loss of generality, to be a locally finite, finite dimensional, simplicial complex, with a
simplicial co-compact action of C.

Lemma 1.2.1 If a group C is torsion-free, and acts properly discontinuously, simplicially on
a locally finite, finite dimensional complex EC, which is aspherical, then it acts on such a
complex which, moreover, contains the Rips complex Py, (C) as a sub-complez.

As C is torsion-free, the action of C' on Py, (C) is free, and one can take the mapping
cylinder of a simplicial C-equivariant map Py,.(C) — EC. O
In the following we assume that EC contains Py, (C) as a sub-complex.

Definition 1.2.2 (Relative Rips complez)

Let T'/C be a system of representatives of I'/C. The relative Rips complex Py, (T") is the
polyhedron with the following properties

- its vertices are the translates by T'/C of the vertices of EC (hence containing the elements
of T');

- its edges are the edges of EC, all their translates, and the unordered pairs in T', (y1,72)
such that there exists ¢ : [0,I]] — Ca(T') a relative geodesic, with ¢(0) = 71, ¢(l) = 79, with
relative length length(é) < d, and such that ¢ travels less than 37 in the first and last coset,
and less than 27 in any other coset, (such a path is said associated to the edge) ;

- its m-simplices are those of EC, their translates, and the unordered (n + 1)-tuples of T,
not all in the same coset, such that each extracted n-tuple is an (n — 1)-simplez.
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The number of edges adjacent to a given element of I is less than the number of elements of
the ball Bgy (2r41)+6r in Ca(T') plus the number of edges adjacent to a vertex in EC'. Therefore,
for all d and r, Py, (T) is locally finite, admits a simplicial cocompact I-action, and therefore
is finite dimensional.

Theorem 1.2.3 Let I' be a relatively hyperbolic group relative to a subgroup C, satisfying the
property BOP. Let § be the hyperbolicity constant of T'. Suppose that C' admits a classifying
space which is a finite simplicial complex and whose universal cover EC contains Py, (C) as a
sub-complez.

Then, for d > 40 + 2 and v > rpcp(4d), the space Py, (") is aspherical.

Theorem 1.2.3 and Lemma 1.2.1 immediately give Theorem 1.0.1 of the introduction.
The next lemma is central in this paper. A part of the information it contains is not used
in the proof of Theorem 1.2.3, but is needed for the construction of a Z-structure, in part 4.

Lemma 1.2.4 (Homotopy of sub-complezes)

Let K be a finite sub-complex of Py, (I'), and v, a vertex in K, let F be the set of all the
relative geodesics from vy to a vertex of K, whose restrictions on the cosets are geodesics, let
&1 be the subset of vpEC of the vertices belonging to K or to a geodesic in F, and let G2 be
the set of all the vertices v € Py, (T') \ wEC such that there exists vy € I' with v € yEC, and
a geodesic in F that enters the coset yC. Then, in the sub-compler spanned by &1 UGq, K is
homotopic to a finite sub-complex contained in the sub-complex spanned by ;.

The proof of this lemma is detailed in part 5.

Proof of Theorem 1.2.3 : by Lemma 1.2.4, any finite sub-complex of P, (I") is homotopic
to a sub-complex in a translate of EC, thus it is homotopic to a point in Py, (T"), and therefore,
this polyhedron is aspherical. [

In the rest of the paper, we assume that d and r satisfy the theorem’s hypothesis.

1.3 The boundary OTI'.

From now on, we assume that the subgroup C has a boundary 9C, such that C' (with the
discrete topology) is dense in the metrizable compactum C UdC, and we fix such a boundary.
We will also assume that this topology satisfies a condition, which is a part of the definition
of Z-structure (cf. the fourth point of Definition 1.4.1).

Definition 1.3.1 (Finite sets fade at infinity)

If C is a discrete group, and C' U JC is a compactification, we say that “finite sets fade at
infinity” if for every finite subset F' of C, for every open cover U of C UQAC, all the translates
of F', except finitely many, are contained in an element of U.

Recall that in the hyperbolic space I', the Gromov product of @ and b from a base point *
is (a-b)x = (/@ — *|| +||b — *|| — ||la — b]|). A sequence (a,,) defines a point of the boundary
or if (an, - am )« goes to infinity when n and m go to infinity, and it defines the same point as
(bn) if (by, - ap )« goes to infinity.

Definition 1.3.2 (The boundary OT")
Let I% be a system of representatives of I'/C, as before. The boundary OT of T is

[ | ] #ocuer

yer/cC
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We will build a topology on I' U 9T". The next technical lemma explains the behaviour of
long travels in cosets in a triangle.

Lemma 1.3.3 Let, in Ca(T'), be a triangle with vertices 1, vo and 3, and with edges c1, ca,
and c3 relative geodesics from ~yo to s, from 3 to 1, and from vy to 1 . Suppose that c1 has
maximal relative length among the three. Let x be the first vertex on co such that there exists
z on cs satisfying

. s Lo . s .
12 = 2llp < 22 = Fullp + 171 — 2]

and let y be the last point z satisfying the previous inequality. Then,

- & # 93 and § # 72,

- if ¢ 1s a relative geodesic segment from x to y, the path v3 Br5y3 v3 is a 4-relative
quasi-geodesic.

Moreover, if c¢1 travels more than r in the coset of v; (i = 2 or 3) then either co or c3
travels in it.

If & is 3, let h = ||V1 — ¢|ls, then by triangular inequality, we have length(cz) — h <
%5 — 9l < illength(cé:) + h]. Hence, h > 2length(é). But, by the triangular inequality,
V2 — Valle < |45 — 9llp + length(cs) — h < length(és) + %[length(cy) + h] — h. Substituting
h, one find ||v2 — 73|z < length(cz) — é.length(c“g) < length(és), but this is a contradiction
because c¢; is maximal. In the same way, one find that § # s.

To show that the path p = v3 3 £ 5 y 3 3 is a 4-relative-quasi-geodesic, it suffices to
show that, for every v and 4/ on the path, the relative distance between them is more than
i.length(ph%ﬂ), where length(pl(,,,) is the length of p between v and +'. This is clear if
both v and ' belongs to either ¢y or ¢ or c3. If y is on ¢p and +' is on ¢3 or on ¢, it is exactly
the definition of z. If y is on ¢ and 7 is on c3, this is the definition of y.

Now, if ¢; travels in the coset of ; (¢ = 2 or 3) more than r, then the property BCP
implies that the previously constructed 4-relative quasi-geodesic travels in this coset. But the
segment ¢ from & to § does not travel in this coset, because one would have either £ = 3, or
7 = 2 (depending of the value of 7), and this case is excluded by the first part of the lemma.
Therefore, either ¢y or c3 enters the coset ;.00

Once one has chosen a point * in I (in other words, a coset of C in T'), one can define the
Gromov product (- ), for every pair of elements in I' U 9T (see [C-D-P], [Br-H] for instance).
The next lemma is standard for proper hyperbolic spaces, but this is not our case.

Lemma 1.3.4 (Visual boundary)
If the property BCP is satisfied, for any point & in OU' there exists a geodesic ray in I’
linking * to &.

Let (z,,) be a sequence defining £ : when n and m go to infinity, (z, - Z,,)« goes to infinity.
For each n let ¢, be a relative geodesic segment in Ca(I") from the coset * to the coset x.
Then for each coset yC' there exists a subset & C yC whose diameter is r (hence « is finite)
such that all the ¢, entering vC', except finitely many, exit this coset in «. This is because if
cn, and ¢, exit yC' at least r-far from each other, Lemma 1.3.3 points out that any relative
geodesic linking the cosets z, and x, enters yC, and therefore, (2 - Zm)« < || ¥ —yCllp. A
diagonal extraction gives a subsequence z,(,) such that c¢,(,) coincides with the beginning of
Co(m) @s soon as m > n.l

We define now a topology on I' U OT".

Let us recall the (metrizable) topology on I' U 8T (see [Br-H]) : for each z € 1" we have
a basis of open neighborhoods of z, V;,(z) with two sequences (R(n)), and (r(n)), going to
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infinity, such that {(Z - 2)« > R(n)} C Vi(2) C {(Z - 2)« > r(n)}. Since I'U 8T is metrizable
and separable, we can choose the family {V;,(z), n € N,z € 0T'} to be countable.

Lemma 1.3.5 (Topology on dI)

For all n and z € T, let R(n,2'), for each 2 € Vy(2z) N AT, be such that {&| (2 - 2'). >
R(n,2')} C Vn(z). Then the (countable) family of subsets Vi(z) = U, ey, ({2 (& - 2')x >
R(n,2')} generates a topology equivalent to the one generated by the subsets V,(z), moreover,
for each & € V!(2), there exists R > 0 and 2’ € A0 such that & € {y|(y - 2')x > R} C V().

This follows because, for any n, and any 21, 2o € 9L, Vo (1) NV, (22) is a union of subsets
V!(z). The second statement is obvious (but was not a priori satisfied by the neighborhoods
V(€). O

Since C'is a dense countable subset of C'UdC, the latter is separable, but also metrizable.
Hence, it is second countable.

A path in Ca(T") is said to be reduced in a coset if its entering point is also its exiting one).
It is said to be right reduced (respectively left reduced), if it is reduced in the coset of the last
vertex (respectively the first vertex).

Definition 1.3.6 (Generating the topology)
- For & € 0T, let Uy, (&) be the subset of (T UQIT) :

Un(§) ={y €T |4 €Vy(&)} U {7z € OT |4 € V,1(€), 2 € OC} U (AT NV,1(¢))

where, as usual, ¥ stands for the image of v in I

- For £ = 4z, z € OC and ¥ € T/C, let (U}(2))n be a fundamental system of open
neighborhoods of z in CUQC among a countable basis. Denote by RQGy the set of left reduced
4d-relative-quasi-geodesics, which are relative geodesics outside a compact.

Un(§) ={z € (Tual)| (3t € [0, +0]),

(3p € RQGo, p:[0,t) = Ca(T)), p(0) € (YUn(2)), p(t) = x}

Note that the family of distinct subsets {Upn(§),n € N, £ € (I'/C)0C} is countable, and
therefore, so is {Up(§),n € N, £ € OT'}.

Theorem 1.3.7 (Topology on T'UJT')

Let T be a relatively hyperbolic group relative to a subgroup C, satisfying the property BCP.
Assume that C'U OC is a metrizable compactum where C is a dense subset, and where “finite
sets fade at infinity” (Definition 1.3.1).

The family of subsets of ' UOL consisting of the singletons of ', and the U, (§), n €N, £ €
dT', generates a metrizable topology on T UQOT'. For this topology, T'UOT is compact. Moreover,
a sequence v, tends to & € OU if, and only if, VmIngVn > ng, yn € Un(§).

We need a few lemmas before proving the theorem.
Lemma 1.3.8 The topology above is Hausdorff.

Two different points in or are separated in f‘UBf‘, and therefore in TUQT. Let &1 and & be
two points in (I'/C)0C. If they are in different cosets, let ¢ be a relative geodesic right and left
reduced, from the coset of &; to the one of &. Choose ny (respectively ng) so that the distance
from ¢ to U;,, (&1) (respectively Uy, (€2)) is greater than rpop(4d). If  is in Uy, (&1) N Uy, (&2),
we apply Lemma 1.3.3 to a (relatively geodesic) triangle whose vertices are z and the ends of
c to get a contradiction (see figure 1). Hence Uy, (&1) N Uy, (&2) = 0. If & and & are in the
same coset, use the separation of C'U dC, and the fact that “finite sets fade at infinity” in
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F1a. 1.1 — Relative geodesics in Ca(T")

CUOC to get a neighborhood Uy, (&) of each in C'UJC sufficiently far away from each other.
Then, by the property BCP, the sets Up,(&;) do not intersect.

Finally, let & be in (I'/C)8C, and & € L. Let ¢ be a relative geodesic linking, in T,
our Gromov product’s base point #, to the coset 4 of £&. Choose U}, (&1) r-far from c. Choose
Vi, (€2) contained in {Z /(& - &2)s > (¥ - &2)«}. We claim that U, (§1) NUp,(§2) = 0. If z is in
Un, (&1), Lemma 1.3.3 implies that any relative geodesic from the coset * to z enters the coset
7, and also those from & to &. Hence, the image Z of  in ' U 8L, satisfies (2 - £2)x = (- £2)x,
which means that z ¢ Up,(&2). O

We now prove a filtration lemma.

Lemma 1.3.9 For all £ € OT', n, and &' € U,(€), there exists m such that Uy, (') C Up(€).

If both ¢ and ¢’ are in 0@ it is obvious, by construction of the subsets V/(z).

If ¢ is in A0 and ¢ is in (0/C)AC, then the whole coset of &, written 4, is in Uy (€).
By construction of the V/(z) (Lemma 1.3.5), there exists & € OI' N Uy (€) such that ¥ €
{Z|(Z - &)« > R(n,&)} C UL(E). Let ¢ be a relative geodesic from the coset * to ¥, right
reduced, and let ¢ be a relative geodesic from 4 to &, left reduced. Choose UJ,(¢') r-far
from both ¢ and ¢’. We claim that for each z € U, (¢'), if Z is the coset containing z, then
(Z - &)« > R(n,&2). This is because, according to Lemma 1.3.3, any relative geodesic from
z € Up(€') to the coset x enters the coset 4, as well as any relative geodesic from z to &.

If ¢ is in (T'/C)AC and ¢ is in O, there exists a 4d—relative quasi-geodesic ¢(t), starting
at v € U} (§), left reduced, that is also a relative geodesic after an instant 7', which can been
chosen greater than 1004. Choose then V,, (¢) C {&/(Z - &), > 10T}. If z is such that its
image in T'U AT, , is in V! (&), choose é; a geodesic of I' from 4 to Z. By hyperbolicity,
¢z(5T) is 200-close to a point ¢(T"). We have a suitable path 4 % §(T") — ¢é;(5T) 3 #, hence
z is in Up(§).

Now, if both ¢ and ¢ are in (I'/C)0C, the only non-obvious case is when they do not
belong to the same coset. Let ¢ be a relative geodesic starting at a point v € U},(£), ending
in the coset of &', that travels less than r in the first coset. Choose m so that U}, (¢') is at
least 3r-far from the entering point of ¢ in the coset of &'. Let 2 € Uy, (¢'). Lemma 1.3.3 for a
triangle with vertices z and the ends of ¢ gives that z € U, (§). O

Lemma 1.3.10 I' U OI" is regular, that is, admits a fundamental system of closed neighbo-
rhoods.

If€isin Bf, the closure of Uy, (€) is contained in the subset of the elements whose i/rfljage in
I are in {(Z - £). > r(n)}. Therefore it is contained in an open set Uy, (€). If £ is in (I'/C)8C,

the closure of Uy, (&) is contained in the union of U/ (£) with the subset of elements reached
by a 4d-relative-quasi-geodesic starting in U},(¢), reduced in this coset. It is then contained in

any open Up, (&) such that U}, (&) contains a rpcp(4d)-neighborhood of U}, (£).00
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Proof of Theorem 1.3.7. Lemma 1.3.9 shows that the intersection of Uy, (1) and Uy, (&2),
is a subset each of whose boundary points has a sufficiently small neighborhood contained in
both Uy, (&). The intersection can therefore be written as an union of such subsets and of
singletons of I'. This proves the convergence criterion in Theorem 1.3.7, since an open subset
containing ¢ also contains a set Uy, (¢') 3 &, hence also a set Uy, (€). Now, I' U 9T is HausdorfT,
regular and second countable, therefore it is metrizable. Moreover, it is sequentially compact,
therefore compact.[]

We will need the following result to build the Z-structure.

Lemma 1.3.11 If 8C has finite topological dimension, then OT has finite topological dimen-
sion.

We know that (I'/C)JC is a countable union of bounded dimensional compact subsets,
and therefore has finite dimension (see [H-W] for such results in dimension theory). Set a point
v € Ca(T"), and consider the subset of or of points reached by relative geodesic rays starting
at v, and traveling more than 27 in no coset. This is the visual boundary of an uniformly
locally finite graph, and hence of finite dimension (cf [G-H]). Each of its I'-translates has same
dimension, and is closed. Therefore, their (countable) union, written U, is finite dimensional.
By induction, build in ' a maximal tree T by choosing, for each point at distance n from ¥,
an edge of I' that links it to a point at distance n — 1 from 4. Consider then the subtree 7" of
T made by images of relative geodesics starting at 4 and traveling more than 2r in infinitely
many cosets. The inclusion map T < I' induces a continuous onto map of the boundaries
oT — 6f‘, by construction of 7. Hence, we also have a continuous surjective map of the
boundaries 8T" — 1"\ U. It is one-to-one, because if a ray [9,¢) travels more than 2r in
infinitely many cosets, by the property BCP any other ray pointing to & should go through
each of them. As a tree, T cannot contain such two different rays. Now, we claim that the
map 0T' — 60 \ U is an homeomorphism. If §, € or \ U goes to € € or \ U, then, associated
rays p, in T’ remain close, in f‘, to the ray p associated to &, for a length L, — oco. By the
property BCP, they must share the vertices corresponding to the firsts cosets where p travels
more than 2r. As there are infinitely many such vertices, one sees that p,, coincide with p on a
segment of length L,, this proves the claim. Finally, Bf‘\ U is 0-dimensional, and 8T is finite
dimensional, as an union of two finite dimensional subsets. [J

The topology on Py, (I') U T is the one whose open subsets are the I/ intersecting I' U oT
into an open set, and Py,(I') into an open set containing the sub-complex spanned by a
neighborhood of &Y N JT" in OI' UT'. This is a metrizable compact set.

1.4 Z-structure for I'.

If Q is a metric ANR space, a closed subset Z is a Z-set in (Q if for every open set U C €,
the inclusion map (U \ Z) < U is an homotopy equivalence. This is equivalent to the each of
the following statements (see [H]) :

1. for any closed subset F' C Z, there exists an homotopy #; such that Hg = Idq, and
V>0, H(Q)NZ=F.

2. for all € > 0, there exists a map fc : © — Q\ Z that is e-close to identity.
Bestvina’s definition for Z-structures of groups, is the following (cf [Be]).
Definition 1.4.1 A pair of spaces (X, Z) is a Z-structure for a torsion-free group T' if

1. X is an euclidian retract (ER) (i.e. compact, metrizable, finite dimensional, contractible,
and locally contractible).
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2. 7 C X isa Z-set of X.
3. X\ Z is a simplicial complez, with a simplicial cocompact proper T-action.

4. For any compact K of X \ Z, and any open cover Uof X, all the translates of K, except
finitely many, are contained in an element of U.

Theorem 1.4.2 Let I' be a group hyperbolic relative to a subgroup C, satisfying the property
BCP, and torsion-free. Let (EC U90C,0C) be a Z-structure on C. Then (Py,(T') U 0L, dT) is
a Z-structure for I.

Moreover, if the C-action extends continuously on 0C in homeomorphisms, so does the
I-action on OT.

First note that it makes sense to talk about the topology of Py, (I')UJT since the hypothesis
of Theorem 1.3.7 are fulfilled in our case. Especially, the fact that “finite sets fade at infinity”
in C comes from the fourth condition in the definition of Z-structure for C.

We now prove the theorem assuming Lemma 1.2.4.

We start by showing that Py, (I') UOI' is an euclidian retract, containing OI' as a Z-set.
One has the useful result :

Proposition 1.4.3 (Bestvina and Mess).

Let (X, Z) be a pair of metrizable, finite dimensional compacta, with Z nowhere dense in
X, such that X \ Z is contractible globally and locally.

If for any z € Z, any U neighborhood of z in X, there exists another neighborhood of z,
V C U in X such that the inclusion map V \ Z < U \ Z is null-homotopic, then X is an ER,
in which Z is a Z-set.

This statement is the proposition 2.1 in [Be-Me|, where it is proved.

From part 3, we know that P;,(I") UJT is a finite dimensional metrizable compact set, and
0T is a closed nowhere dense subset. We know from Theorem 1.2.3 that Py, (T") is contractible,
and, as a polyhedron, it is locally contractible. In order to apply proposition 1.4.3, we need to
show that for any ¢ € OI', any neighborhood U of ¢ in P, (I")UOT', there exists a neighborhood
V C U of € such that any finite sub-complex of V'\ 9I' is homotopic to a point in U \ 9.

According to Theorem 1.3.7, such a U contains an open set Up ().

If £ is in (T'/C)OC, let us choose my so that Uy, (§) is small enough in Uy (§), then my
so that Uy, (&) is at least 10r-far from the complement of Uy, (£) in the coset of £&. Choose
V =Up,(&). Let K be a finite sub-complex in V'\ 9I', and assume, without loss of generality,
that it has a vertex in Uy, (§). By Lemma 1.2.4, K is homotopic, in Uy, (€) \ 0T, to a finite
sub-complex of U}, (§) \ OI'. By choice of my, it is therefore homotopic, in U, (£) \ OT, to a
point.

If¢e oI, the proof of Bestvina and Mess works without any serious change. There exists
R > 0 such that U contains the whole cosets & satisfying (% - €)« > R and their boundaries.
Let V' be a neighborhood of ¢ contained in {(£ - €¢). > 2R + 36}. The claim is that, for
each pair of cosets (v, v2) intersecting V', for each relative geodesic from one to the other,
and for each coset 7 in which the path enters, one has § C U. From hyperbolicity, one has
('UAI : 'UAQ)* > mln(('UAl : 5)*, (§ : 'UA2)*) -6 > 2R+ 25, and ('UAI : g)* + (?3 : 'UAZ)* = ('UAI : 'UA2)* +
| * =gllz > 2R + 26. Hence, for a suitable i, one has (§ - ¥;)« > R+ 6. Hyperbolicity gives
(€-9)« > min((G; - &), (U5 - §)x) —d > R, and this proves the claim. Now Lemma 1.2.4 can be
applied.

It remains to prove the fourth point of Definition 1.4.1. Let I be an open cover of Py, (I') U
OT. 1t is, in particular, an open cover of 81' C OT'. Hence, if K is a compact subset of Py, (I),
7K is contained in an open of U provided that the coset yC is far enough from # in |.

|7
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(depending only on K and U). Moreover, U is also an open cover of each translate of 9C. If
a relative geodesic from 1 to =y travels in a coset more than a constant depending only on K,
U, and on the coset, then K is contained in an open of U, by Z-structure assumption on C.

Only finitely many elements of I are not in one of the situations above. This is because,
finitely many are in C, finitely many cosets whose relative distance to C is 1 contain such
elements, in finite number, and in the same way, finitely many cosets whose relative distance
to C is n contain such elements, in finite number, which is even equal to 0 if n is large enough.
O

1.5 Proof of Lemma 1.2.4.

Let K be a finite sub-complex of Py, (I"), and 7, a vertex in K (b stands for base point).
We want to homotope K to a sub-complex of v,. EC, in a sub-complex of P, ,(I'), described
in terms of vertices belonging to a relative geodesic from -y, to another vertex of K. Namely,
this sub-complex is described as follow. If F is the set of all the relative geodesics from ~,
to another vertex of K, which are geodesics in the coset of 75, let &; be the set of vertices
of 7 EC belonging to either K or an element of F, and Gy be the set of vertices of all the
translates YEC # v, EC where an element of F enters. The sub-complex is the union of all
the simplices whose vertices are among &1 U Gs.

We may see the elements of T' as vertices of Py, (I"). Let 7 be a vertex in K maximizing
the relative distance to -y,. Suppose that vy ¢ 7 C, otherwise there is nothing to prove. We
want to find an homotopy of K, in the sub-complex spanned by &; U G2 (with notations of
Lemma 1.2.4), that pulls 7y closer to 7,. But the simplices of K containing vy may cause
problems, mainly due to long travels in cosets.

We will perform two reductions on the edges of K exiting yC (i.e. the edges whose one and
only one end is in this coset), respectively Lemma 1.5.3 and Lemma 1.5.6. The first one is a
deflating of K in the coset yoC', while the second one is a deflating of K in the neighborhood of
this coset. Then we will actually construct the suitable simplicial homotopy (Lemma 1.5.10).

We say that an edge is reduced in a coset, if there exists a path to which it is associated
(see Definition 1.2.2), that is reduced in the coset (i.e : its entering point is also its exiting
point).

Lemma 1.5.1 (Edges eziting voC are close from each other)

Let 7(()1) and 7(()2) in K, be vertices in voC of edges of K exiting voC, reduced in this coset,
th 1) _ @, <
enllvg’ = lle <.
Let '){1) and 79 be the ends of the two edges. For i € {1,2}, let () be a relative geodesic

from yg) to vp. It does not enter yC, because if it did, the images of these vertices in I would

satisfy ||’?§i) = %llp > 1% — Asllp, and this is impossible since we chose 4y to be maximal. Let

also e(!) and e(?), be paths associated to the edges, reduced in 4C. Let h be a path that links
7(()1) to 7(()2) in v9Ca(C) (see figure 2).

Both paths e(®.¢(® do not enter 4oC, but may contain a relative loop. If so, we modify
them by short-cutting those loops by paths in the cosets. The paths e .M and h.e® .32
are therefore 2d-relative quasi-geodesics (without loop), hence, the property BCP ensures that

the length of h can be chosen to be less than . O

Corollary 1.5.2 Let o, be the subset of voC' consisting of the ends of edges in K exiting vC,
reduced in this coset, and exiting points of paths associated to edges of K exiting yoC (may be
non reduced). Then, o, spans a simplex in Py,

20



Classifying spaces and boundaries

F1a. 1.2 — Edges exiting voC

The Rips polyhedron Py,.(C), hence P.(C), is a sub-complex of EC. Moreover, Lemma
1.5.1 implies that o, has a diameter less than r in yC.OO
The first reduction is the following lemma.

Lemma 1.5.3 (Deflating K N~ C)
In the sub-complez of Py, (') spanned by (61USz2), K is homotopic to a finite sub-complex
K', whose vertices are in K, and such that K' NyC C o,.

To prove this we need the two next results.

Lemma 1.5.4 (Star of an edge exiting voC outside o, )

Let v € 4C \ o, such that there exists v' ¢ yC, and e, an edge of K with vertices
and +'. Let v, € vC, the exiting point from voC of a path associated to e. If a simplezx of
K contains e, it is itself contained in a simplex of Py, (T') containing the 2-simplex (7,7, vr).
In other words, let K1 = Sty (e) be the (open) star of e in K. If K| is the union of all the
simplices with vertices in K containing (y,7',v), then K1 C K.

Note first, that (y,7',7,) is indeed a 2-simplex of Py, (I"), since its vertices are two by two
linked by edges.

We now show that for all ¥ € Stx(e), (v",7,7',¥) is a simplex in Py, (I"), and in order
to do that, we distinguish two cases.

If v ¢ v C, since 7y ¢ o, the given edge (v,7") is associated to a path, and let ~,, be its
exiting point from yyC'. Lemma 1.5.1 implies that v,, € o, hence it is r-close to 7,. Therefore,
the natural path v, — 7., — 7" defines an edge. Hence (v",v,7,7,) is a simplex of Py, (T').

If now 7" € yC", the edge (y",7') is associated to a path that exits yC at a point 7, of
or. We have [|7" —vllc < |7 — ¥rallc + e, —wllc < 3r+7. Since EC contains Py (C),
we have an edge between +" and 7, in Py,(I'), and therefore (v”,7v,7',v) is a simplex of
Py, (1.0

Corollary 1.5.5 In the above situation, let K' = K\Stk/(e) (open star). Then K C (K'UK}).
Moreover, K' N K| — K/ is an homotopy equivalence.

In order to do that, we show that both K| and K’ N K] are actually contractible.

K/ is an union of simplices, each of them containing the same 2-simplex (v,7',7:). An
induction on the number of simplices gives the result.

K'N K] is an union of simplices each of them containing either the edge (-y,~,) or the edge
(7', 7). We argue by induction on n, the dimension of the largest maximal simplex.

If n = 1, K' N K] is the union of two edges sharing a vertex. It is contractible. For n > 1,
let o be a maximal simplex of K’ N K| of greatest dimension.

K' N K] = o U other simplices containing (vy,y:) or (v',7,)
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Let K5 be the right member of the union. The subcomplex ¢ N K> is contained in the boundary
of o, and therefore is at most (n — 1)-dimensional. As it is still an union of simplices containing
(v,7) or (v',7), it must be contractible. One can homotope o on ¢ N Ky in K' N K], and in
finitely many such operations, reduces the problem to a smaller dimensional case.

Proof of Lemma 1.5.3 : First we use the homotopy equivalence of Corollary 1.5.5 for each
edge starting in yC' \ o, to show that K is homotopic to a sub-complex whose vertices are in
K, and whose edges exiting voC are all from o,. The new sub-complex we get in this way, is
contained in (yoFEC U K') where K’ is a sub-complex such that (K’ N~yC) C o, which is a
retract of FC. Hence, it is homotopic to K’ in (vnEC U K'). O

We now perform another reduction on the edges that start from a vertex in ¢,. The point
is to erase the edges in K starting in o,., associated to a path traveling more than r in a coset.

Lemma 1.5.6 (Deflating the neighborhood of K N~,C)

In the sub-complex of Py, (I") spanned by &1 UGy, K is homotopic to finite a sub-complex
K" such that (K" NyC) C o, and such that no edge starting at o, is associated to a path
traveling more than r in a coset.

To prove this we will need the following results.

Let v € o, and let e = (¥/,7) be an edge associated to a path traveling more than r in
a coset. Let 7sC be the closest coset from vyC in I’ in which some path ¢, associated to this
edge, travels more than r, and let 7, the exiting point of ¢, from 7,C. The idea is to subdivide
(by homotopy) the edge e in two edges (v, 7s), (7s,7)-

Lemma 1.5.7 The coset v;C lies on a relative geodesic from vy, to vy or to ~'.
Moreover, vsC # v C.

In other words, with Lemma 1.2.4’s notations, the lemma claims that v, € &1 U Gs.

Let ¢ (respectively ¢') be a relative geodesic linking «y, to v (respectively v'). We use the
property BCP for the paths ¢ and '.c.. Both link «y, to <y, and, because the relative length of
e is less than d, both are d-relative quasi-geodesics, unless ¢, the image of ¢ in f, is the trivial
path (in such a case the result is obvious).

It may happen that the second path contains a relative loop, but it is then unique and
contains 4'. By choosing a better ¢/, we may assume that it coincides, in this loop, with the
beginning of the path c.

Hence, if 7 is inside the loop, then ¢’ enters ,C, and if it is not inside the loop, the
property BCP implies that ¢ enters y,C. This proves the lemma. [J

Lemma 1.5.8 (Star of an edge exiting v,C)

With the notations above, let e = (v',). If a simplex of K contains e, it is itself contained
in a simplex with vertices in &1 U &g, containing the 2-simplex (7y,7',7s). In other words, let
K, = Stk(e) be the star of e in K (open star), and K/ be the union of the simplices whose
vertices are in &1 U Sg and containing (y,v',7s). Then one has K1 C KJ.

First note that (v,7',7;) is a 2-simplex of Py, (I"), since an edge connects any vertex to
any other.

We show that, if K contains edges (v”,) and (v",7'), then Py,(T') contains an edge
between " and ~ys. This is sufficient, because if v/ € K3, then it satisfies those assumptions,
and hence, it is in KJ.

Let ¢1 (respectively ¢|) be a relative geodesic associated to the edge (v",7) (respectively
(7",7")). Consider the path c. (associated to the edge (7/,7v)) and the concatenation ¢}.c;.
The latter may contain a relative loop, if so, it is unique and contains v”. By property BCP,
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either ¢} enters v;C or ¢; exits vsC, at a point r-close to «ys. In both cases, this define an edge
(7", 7s).0

Corollary 1.5.9 In the above situation, let K' = K \ Stk (e) (open star). There ezists a sub-
complex K| with vertices in &1 U Gy such that K' N K| — K is an homotopy equivalence,
and such that K C (K'U K7).

This is the same than Corollary 1.5.5 for Lemma 1.5.4, and it has the same proof. OJ

Proof of Lemma 1.5.6 : For each edge exiting o,, associated to a path that travels more
than r in a coset, use Corollary 1.5.9 to homotope its star on the complement of K. OJ

Now that both reductions are done, Lemma 1.5.10’s hypothesis are satisfied, and we are
able to follow the Rips idea for hyperbolic groups.

Choose a geodesic segment in I from b, t0 Y C, and let v,C' be its point whose I-distance
from voC is min{[4], ||y, — 7 C||s}- Lift the segment [v)C,v0C] in Cay(T) in a right and left
reduced segment. Let e, be the left end of this segment. Notice that, because of the property
BCP, its right end is r-close to each point of o,.

Let ) be the exiting point of the last coset (the closest to y9C) in which this segment
travels more than 7 (it is yeg if there is none). We have [|7C — 45 C|l¢ < [[7C — 70 C|

-
Lemma 1.5.10 (Pulling vy toward ~yp)

If K s such that any exiting edge from v C starts at a point in o, and is associated to
paths never traveling more than r in cosets, then, there exists a simplicial homotopy of K in
the sub-complex spanned by &1 U Gy, fixing all the vertices except those in vC, and sending
them to ~j .

To prove this we need the following.

Lemma 1.5.11 Under the same assumptions, for every 7, € o, for every edge (v,,) in K,
there exists an edge in Py, (') linking v to ~yj.

First, if 7 lies in yqC, from the first reduction we conclude that « and <, are r-close in
this coset. Hence, we deduce the expected edge.

Now, if v ¢ 7 C, let ¢ be a relative geodesic between -y and . We have to check that its
relative length is less than d, and that it can be chosen so that it travels less than 3r in the
first and last coset, and less than 2r in any other coset.

An usual argument of hyperbolicity implies (see chap. 5 in [C-D-P]) that there exists a
relative geodesic, say ¢/, from -y to ez Whose relative length is less than d. To see this, use an
hyperbolic inequality for the points ¥4, Y0, ¥, Yezt in the graph I:

17 = Yeatll + llvo = wll < Maz{lly = wll + llvo = Yewtll 5 1ext =l + 7o = vlI} + 20

with the fact that ||y — v < |70 — || by maximality of v and |79 — || < d by definition
of edges.

The path ¢y is our relative geodesic segment from -y, to .. Consider the concatenation
of ¢ with ¢g, and a path associated to the edge (7,7, ), written c. The first one may contain a
relative loop, but it is therefore unique, and contains ... If 7§ is contained in the loop, then,
up to modification of ¢’ in the loop, the point 7{ is on the path ¢/, and therefore, the relative
distance between v and -y is less than d. If { is outside the loop, since ¢ stays in 7jC more
than 7, c. enters this coset (by the property BCP), and the result follows.

To prove the second point, we write ¢j for the piece of ¢y that links 7 to .. Let ¢ be a
relative geodesic path from ~¥ to ~ (Figure 3 shows the situation in I).
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'Yo”

F1G. 1.3 — Paths in I’

Consider the paths ¢j and c.c,. The latter may contain a loop, but it is unique and contains
v. Let ,C be the coset that begins and ends the loop in the path, and replace the loop by a
path in ;,C to get an path ¢.

If ¢; travels more than 27 in a coset, the property BCP shows that cj also enters this coset.
This one does not lies after ,C on ¢, because after v,C' the paths ¢ and ¢, coincide. But
then, we may also replace the beginning (until this coset) of ¢ by the beginning of ¢j. We get
a new path ¢;. Since ¢ stays in this coset no more than r (by definition) and exits it at a
point that is r-close to the point where ¢ exits, we see that ¢; stays in this coset at most for
2r. Hence, the path ¢; does not travels more than 2r in a coset.

Now, suppose that the path ¢ travels more than 2r in a coset. Without loss of generality,
one can assume that this coset is C : it cannot lie before, on ¢, because of what we just
proved, and by replacing, in the loop, a piece of ¢ by a piece of ¢, !, we are in the case where
it does not lie after. But one has the paths in b

- exit of ¢ <r
enter of ¢ — exit of ¢ = enter of ¢,

where the two extremal points are entering and exiting points of c.

If ¢f does not enter y,C, the property BCP shows that the first piece has length z < r,
and therefore ¢ does not travel more than 2r in the coset . If ¢ enters b, by definition it
travels less than r in this coset. We claim that its exiting point is r-close to the entering point
of c.. Suppose the contrary, by replacing the final part of ¢, with a piece of ¢fj, one would
get a relative geodesic traveling more than 7 in the coset ;C, but this cannot happen after
we performed our second reduction. Hence, if one replaces the beginning of the path ¢ by the
beginning of ¢jj, one get a path ¢ that travels in ;C less than 2r.

In this way, we got an expected path, and therefore there exists an edge between -y and -y
in Py, (). O

Proof of Lemma 1.5.10 : the map ¢ defined on the vertices of K as the one fixing all of
them outside oy, and sending o, on 7{, can be uniquely extended in a simplicial map from
K in Py, (T"). This map is simplicially homotopic to the identity of K in Py, (I'), since any
simplex o of K, together with ¢(o) is contained in a single simplex of Py, (I"). O

In a finite number of such procedures, the relative diameter of K has decreased, unless
it was already zero. Hence, in a finite number of procedures, we obtain a sub-complex whose
vertices are all in y,C. This proves Lemma 1.2.4.0J
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1.6 Remarks and complements.

1.6.1 Case of several subgroups.

The constructions of this chapter can be generalized to the case of torsion-free relatively
hyperbohc groups relative to a finite collection of subgroups, with the property BCP. The
graph I and the condition of BC'P in this case are defined in [F]. To get a coned-off graph r
of a group T, given finitely many finitely generated subgroups (Cj...Cy), take a Cayley graph
of I', add a vertex for each left coset of each Cj, and add edges of length between each
element of the coset, and the associated new vertex. If there is only one subgroup, this graph
is quasi isometric to the one we used before.

An important point allows the generalization : for every «,7' € T, for every 4, and j, the
intersection yCijy~™' N /C;y'~! is trivial (finite if there is torsion), except of course if i = j
and v v € C;.

For simplicity of notations, we chose to give proofs only in the case of one subgroup.

1.6.2 Remark on the asphericity of P, ().

B. Bowditch pointed out to me that the same proof than the one of Theorem 1.2.3 gives a
finiteness result for relatively hyperbolic groups (with property BCP) without assumption on
C. In fact, let Pd,r(f‘) the polyhedron whose simplices are the subsets of I'° (vertices of f‘) of
diameter less than d, and such that between any two elements (which are cosets), there exists
a relative geodesics traveling no more than 2r in each coset. Then, the part 5 of this paper
gives a proof that Py, (') is an answer to the following.

Theorem 1.6.1 Let I' be a relatively hyperbolic group relative to a subgroup C, satisfying the
property BCP. Then, I' acts on a polyhedron which is aspherical, finite dimensional, locally
finite everywhere except at the vertices, with vertexr stabilizers being the conjugates of C.
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Chapitre 2

Symbolic dynamics and relatively
hyperbolic groups

Travail en collaboration avec AsliYaman.

Abstract : We study the action of a relatively hyperbolic group on its boundary, by methods of symbolic
dynamics. Under a condition on the parabolic subgroups, we show that this dynamical system is finitely
presented. We give examples where this condition is satisfied, including geometrically finite kleinian groups.

Introduction

Associated to any word-hyperbolic group I', there is a dynamical system arising from
the action of I' on its Gromov boundary OT. Already in [G], M.Gromov uses methods of
symbolic dynamics for the study of this action, and in [CP] (see also [CP2]), M.Coornaert,
and A.Papadopoulos explain a way to factorize such a dynamical system through a subshift
of finite type. They describe a finite alphabet A, and a subshift ® C A", and they construct a
continuous equivariant, surjective map ® — 9I', which encodes the action of I" on its boundary
by a subshift of finite type.

The action of a group I' on a compact metric space, K is expansive if there exists ¢ > 0
such that any pair of distinct points in K can be taken at distance at least ¢ from each other
by an element of T'. It is well known that the action of a hyperbolic group I' on OT is expansive.
This property, together with the existence of the coding given in [CP], makes the action of a
hyperbolic group, I', on its boundary, 0T, finitely presented (see [G], [CP]). In [G], M.Gromov
describes consequences of such a presentation, like the rationality of some counting functions.

The aim of this paper is to state and prove similar properties for relatively hyperbolic
groups, where parabolic subgroups are allowed. In general, in presence of parabolics, the
study of dynamical properties becomes significantly more complicated.

After an idea of Gromov in [G], B.Farb [F] and B.Bowditch [Bo6] developed the theory of
relatively hyperbolic groups, as a generalization of geometrically finite Kleinian groups. We
will use for this work the definition of relatively hyperbolic groups given by Bowditch in [Bo6)].
A group I is hyperbolic relative to a family, G, of finitely generated subgroups of I if it acts
on an hyperbolic fine graph, with finite stabilizers of edges, finitely many orbits of edges, and
such that the stabilizers of infinite valence vertices are exactly the elements of G (see Definition
2.2.3). In [F], this definition is known as “relatively hyperbolic with the property BCP”.

If one replaces “fine” by “locally finite” in above definition, then G is empty and the group
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is hyperbolic. In [F], Farb proves that the fundamental group of a finite volume manifold of
pinched negative curvature, with finitely many cusps is hyperbolic relative to the conjugates
of the fundamental groups of the cusps, which are virtually nilpotent. Sela’s limit groups, or,
finitely generated w-residually-free groups are hyperbolic relative to their maximal abelian
non-cyclic subgroups, as shown in [D2].

Bowditch describes a boundary for a relatively hyperbolic group in [Bo6]. The group acts
on this compactum as a convergence group, and the elements of the family G are parabolic
subgroups for this action. Despite of those parabolic subgroups, the action is expansive (Pro-
position 2.3.17). Although the construction of the subshift of finite type given by Coornaert
and Papadopoulos will not work properly here (either one would need an infinite alphabet, or
the map ® — OI' would not be well defined) we found an intrinsic property of the maximal
parabolic subgroups that allows successful modifications.

An infinite group has its one-point compactification GU{oo} finitely presented with special
symbol if there exists an alphabet A, a subshift of finite type ® C A%, a continuous surjective
G-invariant map IT : & — (G U {o0}), and a special symbol § € A, such that, for o € @,
II(c) = g € G if and only if o(g) = $.

Theorem 2.0.2 Let (I',G) be a relatively hyperbolic group, and OT be its boundary (in the
sense of Bowditch [Bo6]).

If each G € G has its one-point compactification finitely presented with special symbol, then
the action of I' on its boundary OT is finitely presented.

Theorem 2.0.3 If a group has its one point compactification finitely presented with special
symbol, then it is finitely generated.

A group T is said to be poly-hyperbolic if there is a sequence of subgroups {1} = Ny <1 Ny <
.. A Ng—1 < N, =T, with all the quotients N;11/N; hyperbolic.

Theorem 2.0.4 Poly-hyperbolic groups have their one-point compactifications finitely presen-
ted with special symbol. In particular, this includes poly-cyclic groups.

Corollary 2.0.5 The action of a geometrically finite kleinian group on its limit set is finitely
presented.

The action of a geometrically finite in the sense of Bowditch, fundamental group of a
manifold with pinched negative curvature on its limit set is finitely presented.

There is the natural question :
Problem. Which groups have their one-point compactifications finitely presented with special
symbol ?

We give in section 1 definitions related to symbolic dynamics. In section 2 we define
relatively hyperbolic groups, their boundaries and introduce some tools such as "angles" and
"cones". We prove the Theorem 0.1 in Section 3. The subshift we construct will produce
objects which are local Busemann functions on the fine hyperbolic graph associated to the
relatively hyperbolic group. To associate a point in the boundary to an element of the subshift,
we consider its gradient lines. We prove that they converge to points at infinity, and we make
sure that, for a given element of the subshift, all the gradient lines converge to the same point.
For this we use the property of special symbol for each stabilizer of infinite valence vertex. In
Section 4 we study this property of special symbol, and in particular, prove Theorem 0.2.

We want to thank B.Bowditch, and T.Delzant, for their many comments, and M.Coornaert
for his useful explanations. We also thank the referee, for his useful comments.
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Symbolic dynamics

2.1 Definitions, symbolic dynamics

We borrow the following definitions (1.1 to 1.4) from Gromov |G| 8.4, and Coornaert and
Papadopoulos [CP], chapter 2. See also Fried [Fr].

Definition 2.1.1 (Shift, subshift, subshift of finite type) ([G], 8.4, [CP], Chap. 2)

If A is a finite discrete alphabet and T is a group, AU, with the product topology, is the
total shift of I' on A. It admits a natural left T-action given by (yo)(g) = o(y~1g) for all
geT, oe Al.

A closed T-invariant subset of Al is called a subshift.

A cylinder C is a subset of the total shift such that there exists a finite set F C T, and a
family of maps M C AF with

C={ocec A |olp € M}.

® is a subshift of finite type if there exists a cylinder C such that ® = n'yel“ y~1C.
The subshifts of finite type are subshifts, but the cylinders are not I'-invariant.

Definition 2.1.2 (Dynamical systems of finite type) [G], [CP]

Let T act on a compact set K. The dynamical system is of finite type if there exists a
finite alphabet A, a subshift of finite type ® C A" and a continuous, surjective, I'-equivariant
map w: P — K.

Ezample : Set I' = Z, and A = {a,b,$}. The cylinder C is the set of the maps that
agree on F' = {0,1} with one of the maps in M = {m;, i = 1...4} where m; : 0,1 — aq,aq,
me:0,1 —a,$ m3:0,1—8b, ms:0,1—b,b.

Let ® be the subshift of finite type defined by the cylinder C, i.e ® = (1,5 n + C, where
n + C is the translate of the cylinder C of the total shift A%, by the element n of Z . One can
check that the elements of ® are the constant word on a, the constant word on b and all the
words (...aaa$bbb...) beginning by a, until there is a $ on the n'* letter (n € Z) and then b.
Although for this example ® is countable, in general subshifts of finite type are not countable.

Now consider the compact set K = Z U {oo} with the usual topology. There is a natural
left action of Z on K, fixing the infinity point. Consider the map 7 : & — K that sends
(...aaaa...) and (...bbbb...) on oo, and (...aaa$bbb...) on n € Z where n is the index of the letter
$. The map 7 is surjective, continuous and equivariant, and therefore the action of Z on K is
of finite type.

We now continue with definitions. One can refine the property of being a dynamical system
of finite type with the following.

Definition 2.1.3 (Ezpansivity)
The action of a group T’ on a compactum K is expansive if there exists U a neighbourhood
of the diagonal A C K x K such that A =, YU.

Note that, if the compactum is metric, this is equivalent to the definition of expansivity
given in introduction (see |[CP|, Proposition 2.3).

Definition 2.1.4 (Finitely presented dynamical systems)[G], [CP]
Let T' act on a compact K. The dynamical system is finitely presented if it is both of finite
type and expansive.

If one has a subshift of finite type ® C A' and a surjective continuous equivariant map
7w :® — K, the expansivity of the action of I' on K turns out to be equivalent to the fact that
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the subshift ¥ C (A x A)! defined by [(o1 x 02) € U] & [n(01) = 7(02)], is of finite type (cf
[CP] chapter 2).

If T is a infinite discrete group, it acts on its one-point compactification I' U {cc} by
multiplication of the left, hence fixing the point at infinity. If ' is finite, its Alexandrov
compactification is itself.

Definition 2.1.5 (Finite presentation with special symbol)

The Alexandrov compactification of a discrete group I' is said finitely presented with special
symbol if the T-action on T U {oo} is finitely presented by a subshift ® C Al and if the
presentation map w: ® — I' U {oo} satisfies

BecA (nlo)=vy€l) < (aly) =9)

Note that in this case, the property of expansivity of I', on K = I'U{oc} is always satisfied
(consider Y = (I' x ') U ({oo} x (K \ {1r})) U (K \ {1r}) x {oo}). The example of dynamical
system of finite type described previously is a finite presentation with special symbol of Z.
Note also that finite groups admit a trivial finite presentation with special symbol.

We give in section 2.4 several examples of groups with an Alexandrov compactification
which is finitely presented with special symbol.

2.2 About Relatively Hyperbolic Groups

2.2.1 Definitions

A graph is a set of vertices with a set of edges, where an edge is an unordered pair of vertices.
One can equip the geometrical realization of a graph with a metric where edges have length
1. Thus this geometrical realization allows to consider simplicial, geodesic, quasi-geodesic and
locally geodesic paths in a graph.

Definition 2.2.1 (Circuits)
A circuit in a graph is a simple simplicial loop, i.e without self intersection.

In [Bo6], B. Bowditch introduces the notion of fineness of a graph.

Definition 2.2.2 (Fineness)[Bo6]

A graph K is fine if for every L > 0, and for every edge e, the set of the circuits of length
less than L, containing e is finite. It is uniformly fine if this set has cardinality bounded above
by a constant depending only on L.

Definition 2.2.3 (Relatively Hyperbolic Groups)[Bo6/

A group T is hyperbolic relative to a family of subgroups G, if it acts on a Gromouv-
hyperbolic, fine graph K, such that stabilizers of edges are finite, such that there are finitely
many orbits of edges, and such that the stabilizers of the vertices of infinite valence are exactly
the elements of G.

With an abuse of language, we will say that the pair (T, G) is a relatively hyperbolic group,
and that K is a graph associated to it.

We note that as there are finitely many orbits of edges, a graph associated to a relatively
hyperbolic group is uniformly fine. Note also that the graph K associated to (I',G), can be
chosen to be without global cut point, and with positive hyperbolicity constant .
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2.2.2 Angles
For any graph, one can define a notion of angle as follow.

Definition 2.2.4 (Angles)

Let K be a graph, and let e = (v,v1) and e = (v,v2) be edges with one common vertex
v. The angle Ang,(e1,ez), is the length of the shortest path from vy to vy, in K\ {v} (+o0 if
there is none).

The angle Ang,(p,p’) between two simple simplicial (oriented) paths p and p/, starting
from a common vertex v, is the angle between their first edges after this vertex.

If p is a simple simplicial path, and v one of its vertices, Ang,(p) is the angle between the
consecutive edges of p at v, and its maximal angle MaxAng(p) is the maximal angle between
consecutive edges of p.

In the notation Ang,(p,p’), we will sometimes omit the subscript if there is no ambiguity.

Proposition 2.2.5 (Some useful remarks)
1. Ang,(e1,e3) < Ang,(e1,e2) + Ang,(e2, e3) when e; are edges incident on a vertezr v.
2. If vy is an isometry of K, Ang,(e1,e2) = Ang,,(v.€1,7.€2).
3. Any circuit of length L > 2 has a mazimal angle less than L — 2.

The first remark is the triangular inequality for the length distance of K\ {v}. The second
statement is obvious. Finally, if e; = (v1,v) and e = (v, v2) are two consecutive edges in the
circuit, the circuit itself gives a path of length L — 2 from v; and vo avoiding v. O

Here is an important property of angles.

Lemma 2.2.6 (Large angles in triangles)

Let [z,y] and [z, z] be geodesic segments in a §-hyperbolic graph, and assume that Ang,([z,y], [z, 2]) =
0 > 500. Then the concatenation of the two segments is still a geodesic. Moreover any geodesic
segment [y, z] will contain  and Ang,([y, z]) > 6 — 500.

Let [y, z] be a geodesic, defining a triangle (z,y, z), which is d-thin, that is : any segment
[y, 2] is in the d-neighbourhood of the set [z,y] U [z, z]. We consider the vertices ¢’ and 2’ on
[z,y] and [z, z] located at distance 104 from z. They are not 3d-close to each other. Indeed, if
they were, there would be a loop of length less than 236 containing z and the firsts edges of
[z,y] and [z, 2], and not returning to z, which contradicts the fact that the angle of these path
at z is more than 500. Therefore, they are d-close to the segment [y, 2], and we set y" and 2"
the corresponding points on [y, z]. This gives a loop of length less than (2 x 106 +2§) x 2 < 504,
containing z, consisting of [z,v'], [v/, "], [v",2"], [¢",7'], and [2/,z]. As the small segments
[v',y"] and [2", 2] are 10§ far away from z, they do not contain z. Thus the third property
of Proposition 2.2.5 proves that = € [y”,2"], and Ang,([y",2"]) > 6 — 508, and therefore
Ang,([y,2]) >0 — 506 . O

2.2.3 Cones

Definition 2.2.7 (Cones)
Let K be a graph, let d and 6 be positive numbers. The cone centred at an edge e = (v,v'),
of radius d and angle @ is the set of vertices w at distance at most d from v and such that

there erzists a geodesic segment [v, w] the mazimal angle and the angle with e of which are less
than 0, i.e. :

Conegg(e,v) = {w € K|dist(w,v) <d, MaxAng[v,w] <6, Ang, (e, [v, w]) <6}
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Proposition 2.2.8 (Bounded angles imply local finiteness)
Let K be a fine graph. Given an edge e and @ > 0, there exists only finitely many edges €'
such that e and €' have a common vertez, and Ang(e,e’) < 6.

Only finitely many circuits shorter than 8 contain e. O

Corollary 2.2.9 (Cones are finite)
In a fine graph, the cones are finite sets of vertices. If the graph is uniformly fine, the
cardinality of Conegg(e,v) can be bounded above by a function of d and 6.

Consider a cone Conegg(e,v). We argue by induction on d. If d = 1, the result is given by
the previous proposition. If d > 1, we remark that Conegg(e,v) is contained in the union of
cones of angle § and radius 1, centered at edges whose vertices are both in Cone(d_l)’g(e, v).
If the latter is finite, the union is also finite. [

Here is a visibility property for hyperbolic fine graphs. It is an usual result for proper
hyperbolic graphs.

Proposition 2.2.10 (Visibility property in fine hyperbolic graphs)

Let K a hyperbolic fine graph, and 0K its Gromov boundary. Then for all ¢ € OK, and for
all vertez v in K, there exists a geodesic ray p = [v,§) in K.

For all ¢ and &' in OK, there ezists a bi-geodesic ray p' = (£,€') in K.

Let us prove the first assertion. Let (v,) be a sequence of vertices converging to £ in
the sense of the Gromov topology. Consider two segments [v,vy], and [v, vy, ]. If their angle
at the vertex v is greater than 50§, we can apply Lemma 2.2.6 to deduce that the gromov
product (v, - vm)y is equal to zero. Therefore, there exists mo such that for all n > ny,
Angy ([v,vn], [V, Un] < 508. Therefore, the first edges of these segments are all in a cone, and
as the graph is fine, it is a finite set. After extraction of a subsequence, we can assume that
these edges are all equal. The diagonal extraction process gives a subsequence (vy())n such
that [v,v,(,)] coincide with [v,v,(,)] for all m > n, on a subsegment s, of length n. As s, is
a subsegment of s,, for all m > n, their union is a geodesic ray [v, £).

For the second assertion, we choose two rays [v,€) and [v,£). Let (v,), be a sequence
of vertices that converges to &, on [v,&) and (v],), another sequence that converges to ¢’ on
[v,€"). Let d = (£-¢'), + 1006, and let 7 and 7’ the subsegments of the rays [v,£) and [v,&'), of
length d. For all n and m sufficiently large, the geodesic segments [vy,v,,] intersect the cone
of radius d and of angle MaxAng(r) + MaxAng(r') + Ang,(r,r') + 1006 centered at the first
edge of r.

Therefore, as the cone is finite, one can find a subsequence of v, and v}, and a point p in
the cone, such that every segment [v,,v],] contains p. Now the diagonal process of the proof
of the first assertion gives a sequence of segment converging to a bi-geodesic. [

We will use the following theorem, which is a reformulation of a result in [D1].

Theorem 2.2.11 Let ' be a relatively hyperbolic group and K be an associated graph, which
is 6-hyperbolic. There exists an aspherical (in particular simply connected) simplicial complex
such that its vertex set is the one of K, and such that each simplex has all its vertices in a
same cone of K, of radius 10§ + 10, and angle 1000 + 30.

In [D1], the first author defines the relative Rips complex Py, (K) for a relatively hyperbolic
group. It is the maximal complex on the set of vertices of K such that an edge is between
two vertices if, in X, a geodesic of length less than d and maximal angle less than r links
them. Although in [D1], the notion of angle is replaced by “length of traveling in cosets”, the
proof of Theorem 6.2 remains the same, and gives the asphericity of Py, (K) for large d and
r. Theorem 2.2.11 follows. UJ
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2.2.4 Boundary of a relatively hyperbolic group

Let (T',G) be a relatively hyperbolic group, and let K be an associated graph. In [Bo6],
Bowditch defines the (dynamical) boundary 0T of T by 0T' = 0K UV, where 0K is the Gromov
boundary of the hyperbolic graph &, and V. is the set of vertices of infinite valence in K. This
boundary admits a natural topology of metrisable compactum (see [Bo6|, [Bo5], [Y]). Let us
recall a convergence criterion for this topology. Let (vy), be a sequence of vertices of infinite
valence. If there is a point £ in K such that the sequence of Gromov products (v, - €),, tends
to infinity, then (vy), converges to ¢ for the topology of OT'. If there is a vertex v' in K such
that every geodesic segments [vg, v,,] contains v’ and contains an edge e, = (v',v},) such that
all the vertices v],, n € N are distinct, then the sequence (vy,), converges to v in the topology
of 9I'. For a sequence (&), of points in K, the conditions are similar : one needs only to
change the segments [vg,vy,] into geodesic rays [vg, &,].

2.3 Finite presentation of the boundaries of a relatively hyper-
bolic group.

We will prove the following theorem.

Theorem 2.3.1 Let (I',G) be a relatively hyperbolic group. If, for each G € G, the action
of G on its Alezandrov one-point compactification G U {oo} is finitely presented with special
symbol, then the action of I' on its boundary O is finitely presented.

Let (G;)i=1..m be a finite family of representatives of conjugacy classes of parabolic sub-
groups in I', each stabilizing an infinite valence vertex p; in some hyperbolic fine graph K. We
also choose, for each ¢ < m, an arbitrary edge e; in X, adjacent to p;. We assume that each
G; acts on G; U {oo} as a finitely presented system with a special symbol. That means that
we have an alphabet A;, a finite subset F; C G; and a set M; of maps from F; to A; which
define a cylinder, hence a subshift of finite type ®;. We will denote by $ the special symbol in
A;, without distinguishing the indices 1.

Without loss of generality, we can choose that the graph K is such that for all 4, and for all
v € F;, Ang(e;,ve;) < 1. We choose also K to be without cut point (all the angles are finite).

2.3.1 Busemann and radial cocycles

Definition 2.3.2 (Busemann function)(see [G] 7.5.C, and [CP] chap. 3, section 3)
Let p : [0,00) = K be a geodesic ray starting at vo. The Busemann function h, : V — Z of
p is defined by the limit (which always exists and is finite) h,(v) = lim,_, (dist(v, p(n)) —n).

Definition 2.3.3 (Busemann cocycles)([G] 7.5.E, [CP] chap. 3)

Let h, be a Busemann function. The cocycle associated to h, is @, : V X V — 7 defined
by pp(w,v) = h,(v) — hy(w). A gradient line of ¢, is a sequence of vertices (vy)n such that
©p(vig1,v;) =1 for all i.

The proof of the next lemma can be found in [CP| (Proposition 4.2).

Lemma 2.3.4 If ¢ is a Busemann cocycle associated to p, then a gradient line is a sequence
of vertices of a geodesic ray asymptotic to p. Moreover there is a gradient line starting from
each vertez.
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Definition 2.3.5 (Radial cocycles)

Let p be a vertex of infinite valence in K. The radial cocycle associated top is @, : VXV — Z
defined by op(w,v) = dist(v, p) — dist(w, p). A gradient line of ¢, is a finite family of vertices
(vn)o<n<m such that p(vig1,v;) =1 for all i, and vy, = p.

The next lemma is direct by definition.

Lemma 2.3.6 If ¢ is a radial cocycle associated to p, then its different gradient lines are
exactly the sequences of vertices of geodesic segments ending at p.

Let § be a positive hyperbolicity constant of K. We set # > 20004, such that for every
vertex of finite valence in K, for every pair of edges adjacent to this vertex, their angle is at
most 6.

Proposition 2.3.7 (Properties of Busemann and radial cocycles)
Let ¢ be a Busemann or a radial cocycle. Then :

1. (Integral values) For x,y adjacent vertices, p(z,y) is 0, 1 or —1.

2. (Cocycle) For all z,y,z @(z,y) + ¢(y,2) + ¢(z,z) = 0.

3. (Geodesic extension) Let & be a point of OT' (i.e. a point of OT' or a vertex af infinite
valence of K), and let | = [v,&) be a gradient line and [z,v] a geodesic segment of length

and mazimal angle less than 0, such that Ang, ([z,v]U [v,§)) > 0, then [z,v] U [v,§) is
a gradient line.

4. (Ezits) If v is a vertex of finite valence, then there exists w adjacent to v with o(w,v) = 1.

Properties 1 and 2 are obvious. Property 4 is consequence of the Lemmas 2.3.4 and 2.3.6.
Property 3 deserves a proof here. By Lemma 2.3.4 (if £ € 0K) and Lemma 2.3.6 (if £ is a
vertex of infinite valence), any gradient line from z is a ray [z,{) and produces a triangle
(z,v,£), which, by assumption, has a large angle at v. Hence, by Lemma 2.2.6, any ray [z, &)
contains v. [J

2.3.2 Shift and subshift

We set Fj = {y € G;| Ang,, (e;,ve;) < 6/2}. This set contains F;.

We fix a vertex vy and an edge ey = (vg,v). We choose R and © sufficiently large, such
that for all i = 1...m, Coneigg,i00(€i,pi) C Conere(eo,vo). Note that § > 20004, hence R
and © are greater than (1000 + 30), the constant given by Theorem 2.2.11.

Let A’ denote the set of all possible restrictions of Busemann and radial cocycles on
Conero(eg,vg) x Conegre(ep,vy). We set A" = Ay x ... x Ay. We choose our alphabet to
be A =A" x A"

Lemma 2.3.8 A= A" x A" is finite.

Cones are finite, and cocycles have integral values bounded by the diameter. [
An element 1 of Al is a map from T to A = A’ x A”. Thus it has coordinates 4y : T' — A’
and 9; : I' = A; for all <. Hence, 9y(7) is a map from Conepr e(eg,vo) x Conegr (e, vy) to
Z, whereas 1;(vy) is in A; for ¢ > 1.
Let F be the set of elements in I" such that the vertices of +y.ep are both in Coneg g (eo, vo)-
As stabilizers of edges are finite, F' is a finite set.
Let C be the cylinder (in the sense of Definition 2.1.1) defined on F so that 9 € C if the
three next conditions, which concern only finitely many elements of T, are fulfilled :
— [$o(1)](v1,v2) = [to(1r)](y w1, tvz) whenever vy, va,y vy, vy are all in Coneg,e(eo, vo).
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- ¢Z|F1 is in Mz
— for v € Fj, for v such that y.e; = (p;,v), and for w such that [w, p;] is a geodesic segment
of length, and maximal angle, less than 6, containing v, one has [o(y)](y " tw,p;) >
(1 — dist(w, p;)) only if there exists ' € F] such that ¥;(yy') = $.
Let @ be the subshift of finite type ® = ﬂ'yEF ~C. The next lemmas explain the role of the
properties stated above.

Lemma 2.3.9 (About the ¢;, i > 1)
Let i € ®, and v €T, for all i, 9;|,.q; is an element of ®;.

By definition of C, for all v, and all g; € G, ¥;|g,F, is in M;. O
Lemma 2.3.10 (About 1)
Lety € ®. Ifv and v’ are vertices in yConeg,o(eo, vo), we set py(v,v") = o(v) (v v,y 10').

Then the map @y, is well defined, and satisfies each property of Proposition 2.5.7 when it makes
sense.

1

We want to emphasize that the cocycle property (second property of Proposition 2.3.7) a
priori makes sense only when all three vertices are in the same translate of Coneg (e, vo).
In fact, in the next lemma, it will appear that it makes sense everywhere. Let us now prove
the lemma.

Because of the first property of the definition of C, the formula given for ¢y (v,v") does
not depend on the choice of possible «, and therefore, the map is well defined. Properties 1
and 4 of Proposition 2.3.7 are satisfied because each element of our alphabet satisfy them in a
cone. Property 2 (cocycle property) a priori only makes sense when the three vertices are in
a common cone, and in this case, it is satisfied by each element in our alphabet. For property
3, we notice that for 7y arbitrary, $§ can appear at most once in the set of values ;(yoy) as 7y
ranges over G;. If [v, ) is a gradient line, with v = ~gp;, for some 7 and some 7y, then, for y such
that ¥;(y0y) = $, there exists 7' in F) such that (yoy7y').e; is the first edge of [v,€). If [v, z] is
a segment such that Ang,([v, z], [v,€)) > 0, then, for all 4" € F}, the edge (y0y7").e; is not on
[v, z]. Therefore, by the third property of the definition of the cylinder, ¢y (2, v) < —dist(z, p;).
And this, together with |@y(z,v)| < dist(z,v), gives @y (z,v) = —dist(z,p;) . In other words,
[z,v] U[v,&) is a gradient line. O

2.3.3 The presentation Il : & — oI

Given an element of ®, we want to associate canonically an element of OI'.

Definition 2.3.11 (Gradient lines)

Let 1 be an element of ®. A gradient line ly, of 1 is a finite or infinite sequence (vn)n>0
of vertices in K such that ¢y (vni1,vn) =1 for all n. Moreover, it is finite only if for the last
index m, every neighbour v of vy, satisfies oy (v, vm) < 0.

Lemma 2.3.12 The gradient lines of the elements of ® are geodesics in K.

The map ¢, is defined on pairs of vertices lying in a same translate of Coner e(eg,vo).
Thus it can be seen as a 1-cochain defined on the relative Rips polyhedron given by Theorem
2.2.11, which is simply connected. As it is a cocycle, it is a coboundary, and there is a map
¢ defined on the set of vertices of K such that ¢y (w,v) = @¢(w) — ¢(v) for all v,w lying in a
translate of Coner e (eg, vo). This formula allows to extend the cocycle ¢y, to all pair of vertices
(not only those in a same cone of radius R and angle ©). This gives a cocycle with integral
values such that |y (w,v)| < dist(w, v), for all v and w. Now on a gradient line, we have by
definition ¢y (vn+1,vn) = 1 for every consecutive vertices v, and vp11 on ly. Therefore, as ¢y
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is a global cocycle, ¢y (vm,v,) = m —n. The triangular inequality gives the other inequality :
|0y (w,v)| > dist(w,v), and this proves the claim. O

The proof of this lemma involves the globalization of the cocycles (by asphericity of the
relative Rips polyhedron). One can see that the cocycle property proved only for vertices in a
same cone in Lemma 2.3.10, holds for arbitrary triple of vertices.

We now state and prove the main property of the elements of ®.

Proposition 2.3.13 (Coherence of gradient lines)
Let ¢ € ®. All its gradient lines are asymptotic to each other. In other words they all
converge to the same element of OK U V.

We argue by contradiction, and assume that there are two gradient lines of ¥ with different
end points which are in the boundary or in the set of vertices of infinite valence. Such gradient
lines are called divergent. We need the next lemma, before continuing the proof of Proposition
2.3.13.

Lemma 2.3.14 Under this assumption, there are two divergent gradient lines starting at the
same vertex, or at two adjacent vertices.

Let I and [l be two divergent gradient lines, and v; and vy vertices on them. On a geodesic
segment [v1,vs], consider v the first vertex from which there is a gradient line [ divergent from
l;. Either v = v; (and we are in the first case of the lemma), or there is a vertex, v', of [v1,v]
adjacent to v. By definition of v, all gradient lines starting at v’ are asymptotic to 1, and we
are in the second case of the lemma. [

Now we can assume that [; and lo are two divergent gradient lines starting at the same
vertex, or at two adjacent vertices. Thus, by Proposition 2.2.10, there is a geodesic (possibly
bi-infinite) I3, such that (I1,l2,[3) is a geodesic triangle with vertices x1, z2,z3 (see Figure 1),
with z1 and z9 possibly at infinity.

At distance (z1 - 2)z, — 1009 from z3, we connect /1 and lo by a segment of length less
than 104, and we connect [; to l3, and I3 to Iy at distance (z; - z2)z, + 1006 from z3 by two
others segments of length less than 104. Thus we have a loop of length less than 10006 around
the center of the triangle, and by Proposition 2.2.5, no circuit of this length contains an angle
more than 10000 < 6. Hence, if v is a vertex of I; such that (z; - z2)z, — 506 < dist(z3,v) <
(1 - x2)z + 500 and if Ang,(l1) is more than 56 then either [y or I3 pass through v as the
segments connecting l1, lo and I3 are 10§ short and 506 far from v. The next lemma proves
that in fact lo passes through v.

Lemma 2.3.15 The lines l; and lz pass through v and Ang,(l1,l2) < 6.

It is enough to show that v is on ls, as we know by Lemma 2.3.10 that two gradient lines
starting at the same point make an angle at this point smaller than 6. As v is either on I3 or
on [y, we assume that v is on [3. In this case, we have a simple path from z3 to 2 consisting of
the concatenation of the piece of [ between x3 and v and the piece of I3 between v and z5. The
hyperbolicity of the space ensures that this path remains at distance less than 60§ from [5. We
consider two adjacent vertices on lo, w and w' such that dist(v, w) < dist(v,w') < 605+1 (two
such vertices necessarily exist since [y is a geodesic going to infinity). On a geodesic segment
[w',v] containing w, we mark the consecutive vertices where there is an angle greater than
0. If Ang, ([v,w'], [v,z1]) < 8, then by triangular inequality for angles, Ang, ([v,w'], [v, z3]) >
(50 — 6), and therefore Lemma 2.2.6 for the triangle (z3,v,w’) implies that v € l3. On the
other hand, if Ang,([v,w'], [v,z1]) > 6, let us subdivide [v,w'] into maximal subsegments with
maximal angle at most #. Two consecutive such subsegments make an angle greater than 6
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together. Lemma 2.3.10 (concerning the third point of Proposition 2.3.7) applied successively
to each of these subsegments, proves that [w’,v] is a gradient line. This is a contradiction,
since the edge (w,w’) would be a gradient line in both directions. This proves Lemma 2.3.15.
O

Let us end the proof of Proposition 2.3.13. From the previous lemma, and the definition
of the Gromov product, we see that a vertex in [y satisfying the assumption of the previous
lemma is in fact located at distance less than (z1 - z2)g, from z3. Let v be the last vertex
satisfying the previous lemma (or, if there is none, the vertex on /1 at distance (z1 - z2)z, — 500
from x3). Therefore, the two rays do not have an angle larger than 56 after v, until they arrive
at distance 500 from the small segments connecting l1, I3, and ls, I3, because by the previous
lemma, they would both pass by this vertex. Thus, there is a cone centred on the first edge
of I; after v, of angle and radius 106, in which I; and I have a subsegment of length at least
200.

In this cone, let us parameterize the two lines I; : [0,7;] — Coneigg,i00(v,€), for i =
1,2. We know that dist(l1(0),l2(0)) < §, because the triangle (l1,l2,l3) is -thin. Moreover
dist(l1(T1),12(T>)) > 106 (see Figure 1), or possibly a segment I; reach z;, which, in this case,
belong to the cone. By definition of our alphabet A, there must be a Busemann or a radial
cocycle whose restriction on this cone gives rise to the same segments of gradient lines. This
rules out the second case, and in the first case, by hyperbolicity, two geodesic rays with such
subsegments would diverge at infinity, and we know that this cannot happen for gradient lines
of Busemann or radial cocycles. This is a contradiction, and it proves the proposition. O

’

7
Cone, (v, €)

F1G. 2.1 — Gradient lines and cone at the center of the triangle

We can now define the map II: & — JI'. For an element 1 in ®, we associate II(¢) € JT,
the point to which any gradient line of ¢, converge.

2.3.4 End of the proof of Theorem 2.3.1

In order to complete the proof we need to show that Il : ® — JI satisfies the Definition
2.1.2 (Lemma 2.3.16), and secondly that the action of I' on 9K is expansive (Proposition
2.3.17).

Lemma 2.3.16 The map I1 : & — 0T is surjective continuous and equivariant.

Given a point € in 90T, one can find a Busemann or a radial cocycle associated to £. By
Proposition 2.3.7, this defines an element of ® which has a (hence all) gradient line converging
to €. By definition of our alphabet, this gives rise to an element of our subshift with exactly
the same gradient lines. Thus, the map is surjective. If a sequence 1, converges to 1, then
the gradient lines of 1, will coincide with the gradient lines of ¢ on large finite subset of
K. Therefore, the points at infinity &,, defined by the gradient lines of ,, converges to &,
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the point at infinity for ). This ensures the continuity of II. Finally, the translate of a ray
converges to the corresponding translate of the point at infinity, hence the map is equivariant.
O

Proposition 2.3.17 (Ezpansivity)
The action of a relatively hyperbolic group on its boundary is erpansive.

If A is the diagonal of (OT') x (9I'), then we have to find a neighborhood U of A such that
A=yerU.

Let {e1,...,em} be a set of orbit representatives of the edges in K. Let X be the set of
pairs of points (£1,&) € (0K)? such that there is a bi-infinite geodesic between &; and &
passing through one of the e;. Let now {p1,...,p;} be a set of orbit representatives of the
infinite valence points. Because they are bounded parabolic points, the stabilizer G; of p; acts
on OI'\ {p;} with compact quotient. Let then Y be the set of pairs of points (p;, () where ( is
in a chosen compact fundamental domain for the action of Gj;.

We now choose U = (0" x 9I') \ (X UY). First we show that A = (), yU. The direct
inclusion is trivial.

Let (£1,&2) € U and assume it is not in A. We will show that it is not in every translate
of U. We consider two cases, either &1, &y are both in 9K, or one them, say &1, is a vertex of K
of infinite valence. In the first case, there is a bi-infinite geodesic from one point to another,
and it can be translated so that its image passes by one of the e;. Therefore, there is 7 such
that y(&1,&2) is in X, hence not in U. In the second case, there is 7y € I" such that &; is one
of the p;. Now there is 7/ € G; such that y'y(&1,&2) is in Y, hence not in U. This proves that
the intersection of the translates of U is equal to the diagonal set.

Now we have to show that U is a neighborhood of A. That is to say that a sequence of
elements in X UY cannot converge to a point of A.

Let (z, = (£7,£%))n be a converging sequence of elements of X. After passing to a sub-
sequence, one can assume that, for all n, there is a bi-infinite geodesic between (' and &7
passing through a same edge e;. If £ — (1 and &7 — (2, we see that (; and (o are linked by
a geodesic passing through e;, hence non-trivial. Therefore {1 # (s.

Let now (yn, = (£7,€%))n be a converging sequence of elements of Y. After extraction, and
without loss of generality, one can assume that (' = p;, for all n, and for some ¢. Then, &2 is
in a compact fundamental domain for G; in 0T \ {p;}, and therefore does not converge to p;.
This finally proves that U is a neighborhood of A, and ends the proof of Proposition 2.3.17.
O

2.4 Groups admitting a finitely presented compactification with
special symbol

In this section we give examples of groups admitting a compactification finitely presented
with special symbol, and we introduce a condition for it.
Let us begin with a necessary condition.

Proposition 2.4.1 IfT" has a compactification finitely presented with special symbol, then T’
1s finitely generated.

Let m: ® — ' U {oo} be a finite presentation with special symbol. Let A be the alphabet.
Let C be a cylinder defining @, and itself defined by a non-empty finite subset F of I' and a set,
M, of maps from F to A. The set of translates of F' is a covering of . Let P be the nerve of
the covering. As F' is finite, P is a finite dimensional, locally finite polyhedron on which T" acts
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properly discontinuously cocompactly. The set of vertices of P is naturally identified with T'.
The claim is that P is connected. If it was not, there would be distinct connected components,
C;. Let y; be a vertex of C;, and consider o; € ® such that 7(0;) = 7;. Let o € A" such that
olc; = 0i|c;. Now, o has several special symbols (one in each C;). On the other hand all the
cylinder conditions defining ® are satisfied, as by definition they are read on the connected
components of P. This is a contradiction, and it proves the claim. Therefore, I" is generated
by F which is a finite set. O

The next proposition is in fact is a slight variation of a theorem of Gromov, a detailed
proof of which can be found in [CP| (Corollary 8.2).

Proposition 2.4.2 IfT' is a hyperbolic group, then its one-point compactification is finitely
presented with special symbol.

We do again the proof of the main theorem, seeing I" relatively hyperbolic relative to the
trivial subgroup {1}. A Cayley graph plays the role of K, and we consider the same cocycles.
They can define either a point at infinity, or a vertex of the graph. Thus, we obtain our
presentation choosing the special symbol to be the restriction of a radial cocycle. O

Although it could be seen as a consequence of the proposition above, the example 2 in part
1 already gave the basic examples of Z and of finite groups. Most of our remaining examples
come from the following remarks.

Proposition 2.4.3 If a group ' splits in a short exact sequence {1} - N - T — H — {1},
and if both N and H have their Alexandrov compactification finitely presented with special
symbol, then the Alexandrov compactification of T' is finitely presented with special symbol.

Proposition 2.4.4 Let G be a subgroup of finite index of a group I'. The group G has its
one-point compactification finitely presented with special symbol if, and only if, the one-point
compactification of T' is finitely presented with special symbol.

Before giving the proofs, we give a consequence. A group T is said to be poly-hyperbolic if
there is a sequence of subgroups {1} = Ny << N1 <... < N1 < N, =T, with all the quotients
N;+1/N; hyperbolic.

Corollary 2.4.5 Ewvery poly-hyperbolic group has its one-point compactification finitely pre-
sented with special symbol. In particular, this includes virtually polycyclic (hence, also virtually
nilpotent) groups.

If T is poly-hyperbolic, there is a sequence of subgroups {1} = Ny < N1 < ... < N1 <
N = T, with all the quotients N;11/N; hyperbolic. Using the Proposition 2.4.3, and the
fact that hyperbolic groups have their one-point compactifications finitely presented with
special symbol, an induction on i tells that each N; has its one-point compactification finitely
presented with special symbol, and especially Ny which is I'. O

Proof of Prop. 2.4.3.

Let us denote by An, Ag, $n, 8, Cn, Cx, ®n, @y, the alphabets, special symbols,
cylinders, and subshifts of finite type for the presentations of N U{oco} and HU{oo}. Let Fy,
Fr, My and My be the finite subsets of N and H, and the sets of maps defining the two
given cylinders. From Proposition 2.4.1, N is finitely generated, then up to enlarging Fi, we
can assume that Fy generates N (in fact, in the proof of Proposition 2.4.1, it is proved that
necessarily, Fy generates N). Let A = Ay x Ay. Let us choose H a set of representative
of H in T, and for an element h in H, we write h for the element of H that maps on h by
the quotient map. Let F be the finite subset of I defined by F = {h.n, h € Fg,n € Fy}.
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Let M be the following set of maps : M = {(m : F — A),3Img € Mg,Vn € Fy,m(-n); =
mpy ; Yh € Fg,m(h.-)a € My}, where the subscripts 1 and 2 denote the coordinates in the
product A = Ay x Ay. Consider the cylinder defined by F' and M, and the associated subshift

of finite type, ®. We need the following lemma.
Lemma 2.4.6 For any o € ®, there is at most one element y € I" such that o(y) = ($z,$n).

We first prove that for any o € ®, there is at most one left coset of N, AN, such that
Vn € N, o(h.n); = $x. By definition of M, if n € Fy, ng € N, then o(h.ng.n)1, the first
coordinate of U(iz.no.n) only depends on h and ng. But Fy was chosen generating N, hence
o(h.ng.n)1 only depends on o(h). But, by definition of M, the map h € H — o(h); is in ®g,
and therefore, by the special symbol property, there is at most one value of h where it takes
the value $5, this proves the first step of the lemma. Now, as the map from N to Ax defined
by (n — o(h.n)2) is in @y, if h is such that o(h.n); = $5, there is at most one n € N such
that J(ﬁ.n)g = $x. This proves the lemma. O

Now, we define the map 7 so that it sends a element ¢ € ® on the point at infinity, if o
does not contain the symbol ($z,8x), and on v € T if o(y) = ($7,8n5). The map 7 is well
defined, and gives a finite presentation with special symbol of T' U {oc}. O

Proof of Prop. 2.4.4.

Assume that I' has its one point compactification finitely presented with special symbol,
and let Ar, $r, Cr, ®r the alphabet, special symbol, cylinder, and subshift of finite type
associated. The cylinder is defined, as before, by two sets : Fir C I' and My C Aff. We
consider 71,...,9, a set of orbit representatives of left coset of G in I', and we choose F =
(U, v 'Fr) NG, a finite subset of G. We set A = (Ar)” and M C A is the set of the
maps m from F to (Ar)” such that there exists mpr € Mr whose translates -y, Lmp coincide
with the i-th coordinate of m. Those three choices define a subshift of finite type ® C A“. By
definition of M, one sees that there is a natural map ® — ®r which consists of defining o ()
by (o(v; 14); if 7y is in the coset v;G. This map is a bijection, its inverse being the map that
associates to ¢ € @r the element o € ® whose i-th coordinate coincide with ~y; L. Therefore,
one has maps & — I'U{oo} — GU{o0}, the second map being identity on G and sending each
~; to 1. At this point we do not have a special symbol, but, by property of ®r, an element of
® can take a value in A which has $r among its coordinates, only once. Hence, by renaming
each of those symbol by a single one $, we get the expected presentation with special symbol.

Conversely, it suffices to see that the intersection of all the conjugates of G is of finite
index in T" (hence it has its one point compactification finitely presented with special symbol).
It is normal and of finite index in I', and we can apply Proposition 2.4.3. O
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Combination of Convergence Groups

Abstract. We state and prove a combination theorem for geometrically finite convergence groups (or
equivalently for relatively hyperbolic groups). We apply our result to Sela’s theory on limit groups and prove
their relative hyperbolicity.

Introduction

The aim of this chapter is to explain how to amalgamate geometrically finite convergence
groups, or in another formulation, relatively hyperbolic groups, and to deduce the relative
hyperbolicity of Sela’s limit groups.

A group acts as a convergence group on a compact set M if it acts properly discontinuously
on the space of distinct triples of M (see the works of F.Gehring, G.Martin, A.Beardon,
B.Maskit, B.Bowditch, and P.Tukia [G-M] [Be-Ma| [Bo3| [Tu]). The convergence action is
uniform if M consists only of conical limit points; the action is geometrically finite (see
[Be-Ma)|, [Bo2]) if M consists only of conical limit points and of bounded parabolic points.
The definition of conical limit points is a dynamical formulation of the so called points of
approximation, in the language of Kleinian groups. A point of M is "bounded parabolic" is
its stabilizer acts properly discontinuously and cocompactly on its complement in M, as it is
the case for parabolic points of geometrically finite Kleinian groups acting on their limit sets
(see [Be-Ma| [Bo2]). See Definitions 1.1-1.3 below.

Let T" be a group acting properly discontinuously by isometries on a proper Gromov-
hyperbolic space ¥. Then I' naturally acts by homeomorphisms on the boundary 9%. If it is
a uniform convergence action, I' is hyperbolic, and if the action is geometrically finite, we say
that T is hyperbolic relative to the family G of the maximal parabolic subgroups. In such a
case, the pair (I',G) constitutes a relatively hyperbolic group. Moreover, in [Bo6], Bowditch
explains that the compact set 9% is canonically associated to (I',G) : it does not depend on
the choice of the space X. For this reason, we call it the Bowditch boundary of the relatively
hyperbolic group.

We note that the definitions of relative hyperbolicity in [Bo6] are equivalent to Farb’s
relative hyperbolicity with the property BCP, defined in [F| (see [Bo6]|, and the Appendix of
this thesis).

Another theorem of Bowditch [Bo4| states that the uniform convergence groups on perfect
compact sets are exactly the hyperbolic groups acting on their Gromov boundaries. A.Yaman
[Y] proved the relative version of this theorem : geometrically finite convergence groups on
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perfect compact sets are exactly the relatively hyperbolic groups acting on their Bowditch
boundaries (stated below as Theorem 3.1.5).

We are going to formulate a definition of quasi-convexity (Definition 3.1.6), generalizing
an idea of Bowditch described in [Bo3|. A subgroup H of a geometrically finite convergence
group on a compact set M is fully quasi-convez if it is geometrically finite on its limit set
AH C M, and if only finitely many translates of AH can intersect non trivially together. We
also use the notion of acylindrical amalgamation, formulated by Sela [Sel], which means that
there is a number k£ such that the stabilizer of any segment of length k in the Serre tree, is
finite.

Theorem 3.0.7 (Combination theorem)

1. Let I" be the fundamental group of an acylindrical finite graph of relatively hyperbolic
groups, whose edge groups are fully quasi-conver subgroups of the adjacent vertices groups. Let
G be the family of the images of the mazimal parabolic subgroups of the vertices groups, and
their conjugates in T'. Then, (I',G) is a relatively hyperbolic group.

2. Let G be a group which is hyperbolic relative to a family of subgroups G, and let P be
a group in G. Let A be a finitely generated group in which P embeds as a subgroup. Then,
' = A*p G is hyperbolic relative to the family (HU.A), where H is the set of the conjugates of
the images of elements of G not conjugated to P in G, and where A is the set of the conjugates
of A inT.

Acylindrical amalgamations of hyperbolic groups over quasi-convex subgroups satisfy the
first case of the theorem (see Proposition 3.1.11). Another important example is the amalga-
mation of relatively hyperbolic groups over a parabolic subgroup : let I' = G *p G2, where P
is mazimal parabolic in Gy and parabolic in Ga. If P is the maximal parabolic subgroup of
G5 containing P, one has T' = (G *p ]3) * 5 G5. One can apply successively the second and
the first case of the theorem to get the relative hyperbolicity of I'.

Instead of choosing the point of view of Bestvina and Feighn [Be-F|, and constructing a
hyperbolic space on which the group acts in an adequate way (see also the works of R.Gitik,
O.Kharlampovich, A.Myasnikov, and I.Kapovich, [Gi], [Kh-My1], [K2]), we adopt a dynamical
point of view : from the actions of the vertex groups on their Bowditch’s boundaries, we
construct a metrizable compact set on which I' acts naturally, and we check (in section 3) that
this action is of convergence and geometrically finite. At the end of the third part, we prove
the Theorem 0.1 using Bowditch-Yaman’s Theorem 3.1.5.

In other words, we construct directly the boundary of the group I'. This is done by gluing
together the boundaries of the stabilizers of vertices in the Bass-Serre tree, along the limit
sets of the stabilizers of the edges. This does not give a compact set, but the boundary of
the Bass-Serre tree itself naturally compactifies it. This construction is explained in detail in
section 2.

Thus, we have a good description of the boundary of the amalgamation. In particular :

Theorem 3.0.8 (Dimension of the boundary)

Under the hypothesis of Theorem 0.1, let OT' be the boundary of the relatively hyperbolic
group T'. If the topological dimensions of the boundaries of the vertex groups (resp. of the edge
groups) are smaller than r (resp. than s), then dim(0T') < Max{r,s + 1}.

The application we have in mind is the study of Sela’s limit groups, or equivalently w-
residually free groups [Se2|, [Kh-My2|. In part 4, we answer the first question of Sela’s list of
problems [Se-pb].

Theorem 3.0.9 Limit groups are hyperbolic relative to their mazimal abelian non-cyclic sub-
groups.
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This allows us to get some corollaries.

Corollary 3.0.10 Ewvery limit group satisfies the Howson property : the intersection of two
finitely generated subgroups of a limit group is finitely generated.

Corollary 3.0.11 Every limit group admits a Z-structure in the sense of Bestvina ([Be],
[D1], and Chapter 1).

The first assertion was previously proved by I.Kapovich in [K3], for hyperbolic limit groups
(see also [K4]).

3.1 Geometrically finite convergence groups, and relative hy-
perbolicity.

3.1.1 Definitions.
We recall the definitions of [Be-Mal], [Bo3] and [Tu].

Definition 3.1.1 (Convergence groups)
A group T' acting on a metrizable compact set M is a convergence group on M if it acts
properly discontinuously on the space of distinct triples of M.

If the compact set M has more than two points, this is equivalent to say that the action
is of convergence if, for any sequence (v )nen of elements of T, there exists two points & and
¢ in M, and a subsequence (Yg(n))nen, such that for any compact subset K C M \ {{}, the
sequence (Yg(n)K)nen, uniformly converges to ¢.

Definition 3.1.2 (Conical limit point, bounded parabolic point)

Let T be a convergence group on a metrizable compact set M. A point £ € M is a conical
limit point if there exists a sequence in T', (Yn)nen, and two points ¢ # n, in M, such that
Y€ = ¢ and v&" — n for all & # &.

A subgroup G of T is parabolic if it is infinite, fizes a point £, and contains no lorodromic
element. Such a point & € M 1is bounded parabolic if Stab(§) acts properly discontinuously
co-compactly on M \ {£}.

Note that the stabilizer of a parabolic point is a maximal parabolic subgroup of T'.

Definition 3.1.3 (Geometrically finite groups)
A convergence group on a compact set M is geometrically finite if M consists only of
conical limit points and bounded parabolic points.

Here is a geometrical counterpart (see [G], [Bo6]).

Definition 3.1.4 (Relatively hyperbolic groups)

We say that a group ' is hyperbolic relative to a family of finitely generated subgroups
G, if it acts properly discontinuously by isometries, on a proper hyperbolic space X, such that
the induced action on 0% is of convergence, geometrically finite, and such that the mazimal
parabolic subgroups are exactly the elements of G.

In this situation we also say that the pair (T',G) is a relatively hyperbolic group.

The boundary of ¥ is canonical in this case (see [Bo6]); we call it the boundary of the
relatively hyperbolic group (T, G), or the Bowditch boundary, and we write it oI
As recalled in the introduction, one has :
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Theorem 3.1.5 (Yaman [Y], Bowditch [Bo4] for groups without parabolic subgroups)

Let T be a geometrically finite convergence group on a perfect metrizable compact set M,
and let G be the family of its mazimal parabolic subgroups. Assume that each element of G is
finitely generated. Assume that there are only finitely many orbits of bounded parabolic points.
Then (T',G) is relatively hyperbolic, and M is equivariantly homeomorphic to OT.

In fact, by result of Tukia ([Tu2], Theorem 1B), the assumption of finiteness of the set of
orbits of parabolic points can be omitted. With this dictionary between geometrically finite
convergence groups, and relatively hyperbolic groups, we will sometimes say that a group I'
is relatively hyperbolic with Bowditch boundary OT', when we mean that the pair (T, G) is
relatively hyperbolic, where G is the family of maximal parabolic subgroups in the action on
or.

3.1.2 Fully quasi-convex subgroups.

Let T' be a convergence group on M. According to [Bo3], the limit set AH of an infinite
non virtually cyclic subgroup H, is the unique minimal non-empty closed H-invariant subset
of M. The limit set of a virtually cyclic subgroup of I" is the set of its fixed points in M, and
the limit set of a finite group is empty. We will use this for relatively hyperbolic groups acting
on their Bowditch boundaries.

Definition 3.1.6 (Quasi-convex and fully quasi-convex subgroups)

Let T be a relatively hyperbolic group, with Bowditch boundary 0T, and let H be another
relatively hyperbolic group with Bowditch boundary OH. We assume that H embeds in I' as
a subgroup. We say that H is quasi-convex in I' if its limit set AH C OI' is equivariantly
homeomorphic to its Bowditch boundary OH .

It 4s fully quasi-convex if it is quasi-convex and if, for any infinite sequence (Vn)nen all in
distinct left cosets of H, the intersection (), (ynAH) is empty.

Remark (i) : if H is a subgroup of I', and if I" acts as a convergence group on a compact
set M, every conical limit point for H acting on AH C M, is a conical limit point for H acting
in M, and therefore, even for I acting on M. Therefore it is not a parabolic point (see the
result of Tukia, described in [Bo3| Prop.3.2, see also [Tu2]), and each parabolic point for H in
AH is a parabolic point for I' in M, and its maximal parabolic subgroup in H is exactly the
intersection of its maximal parabolic subgroup in I with H.

Remark (ii) : if H is a quasiconvex subgroup of a relatively hyperbolic group T, it is
hyperbolic relative to its maximal parabolic subgroups (by Theorem 3.1.5). Moreover, if its
maximal parabolic subgroups are finitely generated, H is finitely generated. In particular, it
is always the case when the parabolic subgroups of I' are finitely generated abelian groups.

Remark (4ii) : if H < G <T are three relatively hyperbolic groups, such that G is fully
quasi-convex in I', and H is fully quasi-convex in G, then H is fully quasi-convex in I'. Indeed,
the limit set of H in I' is the image of the limit set of H in G by the equivariant inclusion
map 9(G) — O(T).

Lemma 3.1.7 (’full’ intersection with parabolic subgroups)
Let T be a relatively hyperbolic group with boundary OU', and H be a fully quasi-convez

subgroup. Let P be a parabolic subgroup of I'. Then PN H is either finite, or of finite index in
P.

Let p € OI" the parabolic point fixed by P. Assume P N H is not finite, so that p € AH.
Then p is in every translate of AH by an element of P. The second point of Definition 3.1.6
shows that there are finitely many such translates : P N H is of finite index in P. O
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Proposition 3.1.8 Let (I, G) be a relatively hyperbolic group, and 0T its Bowditch boundary.
Let H be a quasi-convex subgroup of T', and AH be its limit set in OT. Let (v, )nen be a sequence
of elements of T' all in distinct left cosets of H. Then there is a subsequence (Yy(n)) such that
Yo(n)AH uniformly converges to a point.

Unfortunately I do not know any purely dynamical proof of this proposition, that would
only involve the geometrically finite action on the boundary.

There is a proper hyperbolic geodesic space X, with boundary 8T", on which T" acts properly
discontinuously by isometries. We assume that AH contains two points & and &y, otherwise
the result is a consequence of the compactness of OI'. Let B(AH) be the union of all the
bi-infinite geodesic between points of AH in X, and p be a point in it. Note that B(AH) is
quasi-convex in X, and that H acts on it properly discontinuously by isometries. We prove
that the boundary 0(B(AH)) of B(AH) is precisely AH. Indeed, if p, is a sequence of points
in B(AH) going to infinity, there are bi-infinite geodesics (&,,(,) containing each p;, with &,
and (, in AH. Let us extract a subsequence such that (&), converges to a point £ € 9(T),
and ¢, — ¢ € 9(T"). As AH is closed, £ and ( are in it, and the sequence (p,), must converge
to one of these two points (or both if they are equal).

By our definition of quasi-convexity, H acts on 0(BAH) = AH as a geometrically finite
convergence group.

To prove the proposition, it is enough to prove that a subsequence of dist(vy, 'p, B(AH))
tends to infinity. Indeed, by quasi-convexity of B(AH) in X, for all £ and ¢ in AH, the Gromov
products (y,€+vn(), are greater than dist(y, !p, B(AH)) — K, where K depends only on § and
on the quasi-convexity constant of B(AH). Thus, we now want to prove that a subsequence
of dist(y;, !p, B(AH)) tends to infinity.

For all n, let h, € H be such that dist(h,p,7, 'p) is minimal among the distances
dist(hp, y,, 1p), h € H. We prove the lemma :

Lemma 3.1.9 The sequence (dist(h,p,~y, 'p))n tends to infinity.

Indeed, if a subsequence was bounded by a number N, then for infinitely many indexes,
the point h, 19, 1p is in the ball of X of center p and of radius N. Therefore, there exists n
and m # n such that h, 'y, 1 = h_1lv. 1 which contradicts our hypothesis that all the vy, are
in distinct left cosets of H. [J

Let us resume the proof of Proposition 3.1.8. For all n, let now g, be a point in B(AH)
such that dist(y, 'p, B(AH)) = dist(y, 'p, ¢s). By the triangular inequality, dist(gn,, ‘p) >
dist(hnp, v, 1p) — dist(hyp, g,). If (dist(hnp, ¢,))n does not tend to infinity, then a subsequence
of (dist(qn,7, 'p))n tends to infinity and we are done. Assume now that (dist(h,p, ¢,))n tends
to infinity. After translation by h, !, the sequence (dist(p, h,, *g5)), tends to infinity. Recall an
usual result (Proposition 6.7 in [Bo6]) : given a I'-invariant system of horofunctions (p¢)¢em,
for the set II of bounded parabolic points in JI', for all ¢, there exists only finitely many
horofunctions pg, ... pg, such that pg (p) > t. As there are finitely many orbits of bounded
parabolic points in AH, it is possible to choose t such that for every & € II N AH, there
exists h € H such that p¢(hp) >t + 1. The group H, as a geometrically finite group, acts co-
compactly in the complement of a system of horoballs in B(AH) (Proposition 6.13 in [Bo6]).
By definition of the elements h,,, for all h € H, one has dist(hp, h,'q,) > dist(p, h,'q,), and
the latter tends to infinity. Therefore the sequence h,, g, leaves the complement of any system
of horoballs. In other words, for all M > 0, there exists ng such that for all n > ng, there is
i €{1,...,k} such that pg,(h; q,) > M.

Therefore, one can extract a subsequence such that for some horofunction p associated to
a bounded parabolic point in AH, p(h,, 'q,) tends to infinity. If dist(h,, 'gn, b, 1, ‘p) remains
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bounded, then p(h v, 1p) tends to infinity, which is in contradiction with Lemma 6.6 of [Bo6],
because h;, 17, 1p is in the T-orbit of p. Therefore a subsequence of dist(h;, gy, b, 17y, 'p) tends
to infinity, and after translation by h.,, this gives the result : a subsequence of dist(B(AH),,, 'p)

tends to infinity. OJ

The following statement appears in [G2] and also in [Sh], for hyperbolic groups. Note that
this is no longer true for (non fully) quasi-convex subgroups.

Proposition 3.1.10 (Intersection of fully quasi-conver subgroups)
Let T be a relatively hyperbolic group with boundary OU. If Hy and Ho are fully quasi-convex
subgroups of T, then Hy N Ho is fully quasi-convex, moreover A(Hy N Hy) = AHy N AH>.

As, for i = 1 and 2, H; is a convergence group on AH;, and as any sequence of distinct
translates of AH; has empty intersection, the same is true for H; N Hy on AH1 N AHo.

Let p € (AH; N AH3) a parabolic point for I'; and P < T its stabilizer. For 4 = 1 and 2,
the group H; N P is maximal parabolic in H;, hence infinite. By Lemma 3.1.7, they are both of
finite index in P, and therefore so is their intersection. Hence p is a bounded parabolic point
for Hy N Hy in (AH1 N AHQ)

Let ¢ € (AHy N AH3) be a conical limit point for I'. Then, by the first remark after the
definition of quasi-convexity, it is a conical limit point for each of the H;.

According to the definition of conical limit points, let (v, )nen be a sequence of elements in
I such that there exists ¢ and 5 two distinct points in 9T, with v,& — ¢, and y,£" — 7 for all
other ¢’. There exists a subsequence of (v, )nen staying in a same left coset of Hy : if not, the
fact that two sequences (Vpé)nen and (Y€ )nen, for & € AH; \ {£} converge to two different
points contradicts the Proposition 3.1.8. By the same argument, there exists a subsequence
of the previous subsequence that remains in a same left coset of Hy, and in a same left coset
of Hs. Therefore it stays in a same left coset of H; N Hy; we can assume that we chose the
sequence (v, )nen such that there exists v € I and (hy,)nen a sequence of elements of Hy N Hy,
such that Vn, vy, = vhy,.

Therefore h,& — v !¢, and h,&' — 17 for all other ¢'. This means that ¢ € A(Hy N Hy)
is a conical limit point for the action of (H; N Hs). This ends the proof of Proposition 3.1.10.
O

We emphasize the case of hyperbolic groups, studied by Bowditch in [Bo3|.

Proposition 3.1.11 (Case of hyperbolic groups)
In a hyperbolic group, a proper subgroup is quasi-convez in the sense of quasi-conver subsets
of a Cayley graph, if and only if it is fully quasi-conver.

B.Bowditch proved in [Bo3] that a subgroup H of a hyperbolic group I' is quasi-convex if
and only if it is hyperbolic with limit set equivariantly homeomorphic to dH. It remains only
to see that, if H is quasi-convex in the classical sense, then the intersection of infinitely many
distinct translates (),cn(720H) is empty, and we prove it by contradiction. Let us choose £ in
Mnen(¥nOH). Then, there is L > 0 depending only on the quasi-convexity constant of H in T,
and there is, in each coset 7y, H, an L-quasi-geodesic ray r,(t) tending to £. As they converge
to the same point in the boundary of a hyperbolic space, there is a constant D such that for
all 4 and j we have : 3¢; ; Vt > t; 5, 3¢/, dist(r;(¢),7;(¢')) < D. Let N be a number larger than
the number of vertices in the a of radius D in the Cayley graph of I', and consider a point
r(T) with T bigger than any ¢, ;, for 4,5 < N. Then each ray r;, i < N, has to pass through
the ball of radius D centered in r1(T"). By a pigeon hole argument, we see that two of them
pass through the same vertex, but they were supposed to be in disjoint cosets. [
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Our point of view in Definition 3.1.6 is a generalization of the definitions in [Bo3], given
for hyperbolic groups.

3.2 Boundary of an acylindrical graph of groups.

Let I' be as in Theorem 0.1. We will say that we are in Case 1 (resp. in Case 2) if T
satisfies the first (resp. the second) assumption of Theorem 0.1. However, we will need this
distinction only for the proof of Proposition 3.2.2.

Let T be the Bass-Serre tree of the splitting, and 7, a subtree of with 7" which is a
fundamental domain. We assume that the action of I' on 7" is k-acylindrical for some k£ € N
(from Sela [Sel]) : the stabilizer of any segment of length k is finite.

We fix some notation : if v is a vertex of T, I, is its stabilizer in I'. Similarly, for an edge e,
we write I'e for its stabilizer. For a vertex v, I';, is relatively hyperbolic. This is by assumption
in Case 1, and in Case 2, if T, is conjugated to A, we consider that it is hyperbolic relative
to itself; in this case the space X of Definition 3.1.4 is just an horoball, and its Bowditch
boundary is a single point.

3.2.1 Definition of M as a set.

Contribution of the vertices of T.

Let V(7) be the set of vertices of 7. For a vertex v € V(7), the group I, is by assumption
a relatively hyperbolic group and we denote by 9(I'y) a compact set homeomorphic to its
Bowditch boundary. Thus, I, is a geometrically finite convergence group on 9(T').

We set 2 to be ' x (I—l'uEV(T) B(Fv)) divided by the natural relation

(71,71) = (Y2, 22) if Fv € V(7), 75 € O(Tw), 7, ‘1 € Ty, vy ' 1121 = 20

In particular, for each v € 7, the compact set d', naturally embeds in {2 as the image of
{1} x OI',. We identify it with its image. The group I' naturally acts on the left on . The
compact set y0(I'y) is called the boundary of the vertex stabilizer I',.

Contribution of the edges of T'.

Fach edge will allow us to glue together boundaries of vertex stabilizers along the limit
sets of the stabilizer of the edge. We explain precisely how.

For an edge e = (v1,v2) in 7, the group I'e embeds as a quasi-convex subgroup in both
['y;, 2 = 1,2. Thus, by definition of quasi-convexity, these embedings define equivariant maps
Afep;y 2 O(Le) = 9(Ty;), where 9(T;) is the Bowditch boundary of the relatively hyperbolic
group I'.. Similar maps are defined by translation, for edges in T\ 7.

The equivalence relation ~ on € is the transitive closure of the following : for v and v’
are vertices of T, the points £ € 9(T',) and & € 9(T'y) are equivalent in Q if there is an
edge e between v and v', and a point z € 9(T') satisfying simultaneously & = A(,,)(z) and

gl = A(e,v’)(x)'
Lemma 3.2.1 Let w be the projection corresponding to the quotient : m: Q — Q/~. For all
vertez v, the restriction of m on O(L'y) is injective.

Let ¢ and &' be two points of 2, both of them being in the boundary of a vertex stabilizer
d(T'y). If they are equivalent for the relation above, then there is a sequence of consecutive
edges e; = (v,v1),e9 = (v1,v2)...€, = (vp_1,v), the first one starting at vy = v and the
last one ending at v, = v, and a sequence of points & € A(I'y,), for i < n — 1, such that, for
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all 4, there exists z; € 9(T',), satisfying & = A, »;_)(7:) and 41 = A, ) (7). As T is a
tree, it contains no simple loop, and there exists an index 7 such that v;—1 = v;41. As, for all
j, the maps A, . are injective, the points ;1 and &1 are the same in O(T'(w;—1)), and
inductively, we see that ¢ and &' are the same point. This proves the claim. O

Note that the group I' acts on the left on Q/.. Let dT be the (visual) boundary of the
tree T : it is the space of the rays in T starting at a given base point; let us recall that for
its topology, a sequence of rays (p,) converges to a given ray p, if p, and p share arbitrarily
large prefixes, for n large enough. We define M as a set :

M =9T U (Q).).

As before, let m be the projection corresponding to the quotient : 7 : @ — Q/.. For a
given edge e with vertices v1 and vz, the two maps oA ,,) : 9(Te) = 2/~ (i = 1,2), are two
equal homeomorphisms on their common image. We identify this image with the Bowditch
boundary of T'¢, 9(T'¢), and we call this compact set, the boundary of the edge stabilizer T'.

3.2.2 Domains.

Let V(T') be the set of vertices of T'. We still denote by 7 the projection : 7 : Q@ — Q/..
Let & € Q/.. We define the domain of £, to be D(§) = {v € V(T) | ¢ € m(0(T,))}. As we
want uniform notations for all points in M, we say that the domain of a point £ € 0T is {&}
itself.

Proposition 3.2.2 (Domains are bounded)

For all¢ € /., D(£) is convez in T, its diameter is bounded by the acylindricity constant,
and the intersection of two distinct domains is finite. The quotient of D(&) by the stabilizer of
& is finite.

Remark : In Case 1, we will even prove that domains are finite, but this is false in Case

The equivalence ~ in €2 is the transitive closure of a relation involving points in boundaries
of adjacent vertices, hence domains are convex.

End of the proof in Case 2 : As P is a maximal parabolic subgroup of G, its limit set is
a single point : (P) is one point belonging to the boundary of only one stabilizer of an edge
adjacent to the vertex vg stabilized by G. Hence, the domain of { = 9(T'y,) is {va}ULink(va),
that is v4 with all its neighbours, whereas the domain of a point ¢ which is not a translate of
0(T'y,), is only one single vertex.

Domains have therefore diameter bounded by 2, and any two of them intersect only on
one point. For the last assertion, note that A stabilizes the point d(I'y, ), and acts transitively
on the edges adjacent to va. This proves the lemma in Case 2.

In Case 1, we need a Lemma :

Lemma 3.2.3 In Case 1, let £ € /... The stabilizer of any finite subtree of D(£) is infinite.

If a subtree, whose vertices are {vy,...,v,}, is in D(E), then there exists a group H em-
bedded in each of the vertex stabilizers I'y, as a fully quasi-convex subgroup, with £ in its limit
set.

The first assertion is clearly a consequence of the second one, we will prove the latter by
induction.
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If n =1, H is the vertex stabilizer. For larger n, re-index the vertices so that v, is a final
leaf of the subtree {v1,...,v,}, with unique neighbor v,_1. Let e be the edge {vp_1,v5}. The
induction gives Hy,_1, a subgroup of the stabilizers of each v;, ¢ < n —1, and with £ € 0H,,_1.
As& € 0(Ty,), it isin 9(T'e), and we have ¢ € 0H,_1NI(I¢). By Proposition 3.1.10, H, ;NI
is a fully quasi-convex subgroup of I';,, ,, and therefore, it is a a fully quasi-convex subgroup
of T'e, and of H,_1. Therefore, (see Remark (iii)), it is a fully quasi-convex subgroup of 'y, ,
and of each of the I';, for i < (n — 1), with £ in its limit set. It is then adequate for H ; this
proves the claim, and Lemma 3.2.3. OJ

End of the proof of Prop. 3.2.2 in Case 1. By Lemma 3.2.3, each segment in D(£) has
an infinite stabilizer, hence by k-acylindricity, Diam(D(£)) < k. Domains are bounded, and
they are locally finite because of the second requirement of Definition 3.1.6, therefore they are
finite. The other assertions are now obvious. O

3.2.3 Definition of neighborhoods in M.

We will describe (Wp(€))nengen, a family of subsets of M, and prove that it generates
an topology (Theorem 3.2.10) which is suitable for our purpose.

For a vertex v, and an open subset U of 9(I',), let T, iy be the subtree whose vertices w
are such that [v,w] starts by an edge e with 9(T'.) NU # 0.

For each vertex v in T, let us choose U(v), a countable basis of open neighborhoods of
d(Ty), seen as the Bowditch boundary of T',. Without loss of generality, we can assume that
for all v, the collection of open subsets U(v) contains 9(T';) itself.

Let & be in /., and D(§) = {v1,...,Vp,.--} = (vi)ier. Here, the set I is a subset of N.
For each ¢ € I, let U; C O(T'y;) be an element of U (v;), containing &, such that for all but
finitely many indices i € I, U; = 9(T'y,).

The set W(y,),c,(§) is the disjoint union of three subsets Wy,

iiel
e A= niEI a(Tvi,Ui)a
o B={¢ € (2/~)\ (Uicr 9(T';)) | D(C) C NMier Tvi,uit
o U= {C € Uje[ 8(FU]‘) | C € ﬂmEI\CEB(I‘um) Um}

Remark : The set of elements of €2/. is not countable, nevertheless, the set of different
possible domains is countable. Indeed a domain is a finite subset of vertices of T' or the star
of a vertex of T, and this makes only countably many possibilities. The set Wy, (£) is
completely defined by the data of the domain of &, the data of a finite subset J of I, and the
data of an element of U (v;) for each index j € J. Therefore, there are only countably many
different sets W y,),., (€), for £ € Q/, and U; € U(v;), v; € D(€). For each £ we choose an
arbitrary order and denote them W,,(£).

Let us choose vy a base point in T'. For £ € 9T, we define the subtree T,,(£) : it consists
of the vertices w such that [vg,w] N [vo, &) has length bigger than m. We set Wi, (§) = {¢ €
M | D({) C Trn(&)}- Up to a shift in the indexes, this does not depend on vy, for m large
enough.

()=AUBUC :

Lemma 3.2.4 (Avoiding an edge)
Let & be a point in M, and e an edge in T with at least one vertex not in D(&). Then,
there exists an integer n such that Wy (€) N 9(Te) = 0.

If ¢ is in OT the claim is obvious. If £ € /.., as T is a tree, there is a unique segment from
the convex D(€) to e. Let v be the vertex of D(§) where this path starts, and ey be its first
edge. It is enough to find a neighborhood of ¢ in 9(T',) that misses d(T'¢,). As one vertex of

49



Chapitre 3

ep is not in D(&), £ is not in J(T, ), which is compact. Hence such a separating neighborhood
exists. [J

3.2.4 Topology of M.

In the following, we consider the smallest topology 7 on M such that the family of sets
{Wa(€); n €N, £ € M}, with the notations above, are open subsets of M.

Lemma 3.2.5 The topology T is Hausdorff.

Let ¢ and ¢ two points in M. If the subtrees D(£) and D(({) are disjoint, there is an edge
e that separates them in 7', and Lemma 3.2.4 gives two neighborhoods of the points that do
not intersect. Even if D(£) N D(() is non-empty, it is nonetheless finite (Proposition 3.2.2). In
each of its vertex v;, we can choose disjoint neighborhoods U; and V; for the two points. This
gives rise to sets W, (¢) and Wy, (¢) which are separated. O]

Lemma 3.2.6 (Filtration)
For every £ € M, every integer n, and every ( € Wy (§), there exists m such that W,,,() C
W (§)-

If D(¢) and D(€) are disjoint, again, Lemma 3.2.4 gives a neighborhood of ¢, W,,,(¢) that
do not meet 9(T'¢), whereas 9(Te) C W, (£), because ( € Wy,(§). By definition of our family
of neighborhoods, W, (¢) C Wy, (§).

If the domains of ¢ and ¢ have a non-trivial intersection, either the two points are equal
(and there is nothing to prove), or the intersection is finite (Prop. 3.2.2). Let (v;);er = D(€),
let (U;)ier be such that Wy, (§) = W(y,),(€), and let J C I be such that D(§) N D(() = (vj)jes-
In this case, we can choose, for all j € J, a neighbourhood of ¢ in 9(T;), UJ’- C U, such that
Uj'- do not meet the boundary of the stabilizer of an edge (v;,v;) for any i € I C J; this gives
Win(¢) C Wr(€). O

Corollary 3.2.7 The family {Wy (&) }nengem is a fundamental system of open neighborhoods
of M for the topology T .

It is enough to show that the intersection of two such sets is equal to the union of some other
ones. Let Wy, (&1) and W,,,(€2) be in the family. Let ¢ be in their intersection. Lemma 3.2.6
gives Wy, (C) C Wi, (§1) and Wy, (C) C Wh,(€2)- As Wir,), (Q)NW(v;), (€) = W, nv;); (),
we get an integer m¢ such that Wy, (¢) is included in both Wy, (¢;). Therefore, Wy, (&1) N

Wi (€2) = Ucew, (61)nway (62) Wrmc (€)- O

Corollary 3.2.8 Recall that 7 be the projection corresponding to the quotient : m: Q — Q/ ..
For all vertex v, the restriction of w on 0(L'y) is continuous.

Let & be in 9(T';), and let (&,), be a sequence of elements of 9(T',) converging to & for
the topology of 9(T',). Let (U™),, be a system of neighbourhoods of ¢ in 9(T',), such that
for all n, for all n' > n, & € U™ Let D(w(€)) = {v,va,...} in T, and consider W,, =
W(w,(my) (7(£)), such that Ui(m) C U™. By definition, Wy, (m)) (7 (£)) N 7(O(Ty)) is the image
by 7 of an open subset of U;(m) containing &. Therefore, by property of fundamrental systems
of neighbourhoods, 7 (&,) converges to m(€). Therefore 7 is continuous. O

From now, we identify ¢ and m(£) in such situation.

Lemma 3.2.9 The topology T is reqular, that is, for all &, for all m, there exists n such that
Un(§) C Un(8).
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In the case of £ € 9T, the closure of Wy, (£) is contained in W}, (¢) = {¢ € M|D({)NT, (&) #
0} (compare with the definition of W, (£)). As, by Proposition 3.2.2, domains have uniformly
bounded diameters, we see that for arbitrary m, if n is large enough, W, (¢) C Wp,(£).

In the case of £ € Q/~, W), (§) \ W(r,),(§) contains only points in the boundaries of
vertices of D(£), and those are in the closure of the U; (which is non-empty only for finitely
many 7), and in the boundary (not in U;) of edges meeting U;\{{}. Therefore, given V; C 9(T'y,),
with strict inclusion only for finitely many indices, if we choose the U; small enough to miss

the boundary of every edge non contained in V;, except the ones meeting £ itself, we have

W, (§) € Wiy, (€)- O

Theorem 3.2.10 Let I' be as in Theorem 0.1. With the notations above, {W,(£); n €N, € €
M} is a base of a topology that makes M a perfect metrizable compact set, with the following
convergence criterion : (&, — &) <= (VnImoVm > mg, &m € Wi (€)).

The topology is, by construction, second countable, separable. As it is also Hausdorff
(Lemma 3.2.5) and regular (Lemma 3.2.9), it is metrizable. The convergence criterion is an
immediate consequence of Corollary 3.2.7. Let us prove that it is sequentially compact. Let
(€n)nen be a sequence in M, we want to extract a converging subsequence. Let us choose v
a vertex in 7', and for every n, v, € D(§,) minimizing the distance to v (if &, € T, then
vp, = &,). There are two possibilities (up to extracting a subsequence) : either the Gromov
products (vy - vp,), remain bounded, or they go to infinity. In the second case, the sequence
(vpn)n converges to a point in 7', and by our convergence criterion, we see that (&), converges
to this point (seen in 9T C M). In the first case, after extraction of a subsequence, one can
assume that the Gromov products (v, - vy, ), are constant equal to a number N. Let g, be a
geodesic segment or a geodesic ray between v and wvy,. there is a segment g = [v,v'] of length
N, which is contained in every g,, and for all distinct n and m, g, and g,, do not have a prefix
longer than g.

Either there is a subsequence so that g,, = g for all n, and as OI'y is compact, this gives
the result, or there is a subsequence such that every g,, is strictly longer than g. Let ey,
be the edge of gy, following v'. All the e,, are distinct, therefore, by Proposition 3.1.8, one
can extract another subsequence such that the sequence of the boundaries of their stabilizers
converge to a single point of 0I',. The convergence criterion indicates that the subsequence
of (&n, )n converges to this point.

Therefore, M is sequentially compact and metrisable, hence it is compact. It is perfect
since T has no isolated point, and accumulates everywhere. [J

Theorem 3.2.11 (Topological dimension of M )[Theorem 0.2]
dim(M) < max, ({dim(9(T,)),dim(d(T.)) + 1}.

It is enough to show that every point has arbitrarily small neighborhoods whose boundaries
have topological dimension at most (n — 1) (see the book [H-W], where this property is set as
a definition).

If £ € T, the closure of W, (&) is contained in W/ (&) = {¢ € M|D({) N T, (&) # 0}
(compare with the definition of Wy, (£)). The boundary of Wp,(£) is therefore a compact subset
of the boundary of the stabilizer of the unique edge that has one and only one vertex in T}, (£) ;
the boundary of W,,(¢) has dimension at most max.{dim(9(T))}.

If € € Q/v, W, (§) \ W, (§) contains only points in the boundaries of vertices of D(£),
and those are in the closure of the U; (which is non-empty only for finitely many ), and in
the boundaries (not in U;) of stabilizers of edges that meet U; \ {{}. Hence, the boundary of
a neighborhood W, (¢) is the union of boundaries of neighborhoods of ¢ in 9(I'y,) and of a
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compact subset of the boundary of countably many stabilizers of edges. As the dimension of a
countable union of compact sets of dimension at most n is of dimension at most n (Theorem
II1.2 in [H-W]), its dimension is therefore at most max, ({dim(9(I'y)) — 1,dim(9(I'¢))}. This
proves the claim. [

3.3 Dynamic of I on M.

We assume the same hypothesis as for Theorem 3.2.10. We first prove two lemmas, and
then we prove the different assertions of Theorem 3.3.7.

Lemma 3.3.1 (Large translations)

Let (vn)nen be a sequence in T'. Assume that, for some (hence any) vertex vy € T,
dist(vo, Ynvo) — oc. Then, there is a subsequence (Yy(n))nen, there is a point { € M, and
a point (' € OT, such that for all compact subset K C (M \ {C'}), one has yo(m)K — ¢
uniformly.

Let & be in 9(Ty,). Using the sequential compactness of M, we choose a subsequence
(Yo(n))nen such that (v,(n)o)n converges to a point ¢ in M ; we still have dist(vo, Yy(n)vo) —
0c.

Let v1 be another vertex in 7. The lengths of the segments [y,v0,y,v1] are all equal to
the length of [vg, v1], therefore, for all m, there is n,, such that for all n > n,,, the segments
[00, Yo(n)vo] and [vo, Yo (n)v1] have a common prefix of length more than m.

Let ¢1,C2 in OT. The center of the triangle (v, (1, (2) is a vertex v in T'. Therefore, for all
m > 0, the segments [vg, Yy(n)v0] and [vo, Yo(n)v] coincide on a subsegment of length more than
m, for sufficiently large integers n. This means that for at least one of the (;, the ray [vo, Yo (n)Ci)
has a common prefix with [vo, Yo(n)v0] of length at least m. By convergence criterion, (Yy(n)Gi)
converges to (. Therefore there exits ¢’ in OT', such that any other point ¢” € (3T \ {¢'}),
satisfies Y, (n)¢” — C.

Let K be a compact subset of (M \ {¢’}). There exists a vertex vy, a point & € 9T, and
a neighborhood W, (€) (see the definition in the section above, where vy is the base point) of
¢ containing K, not containing ¢’. Let v be on the ray [vg,£), at distance m from vy. Then
for all points &' in Wy, (€) the ray [vo,&') has the prefix [vg, v]. As the sequence (Yy(n)0Ty)nen
uniformly converges to ¢, the sequence (Vq(n)Wm(€))nen uniformly converges to this point.
Therefore, the convergence is uniform on K. [J

Lemma 3.3.2 (Small translations)

Let (Y )nen be a sequence of distinct elements of T, and assume that for some (hence any)
vertez vy, the sequence (Ynvo)n is bounded in T. Then there exists a subsequence (Yo(n))nen,
a vertez v, a point ( € O(Ty), and another point ' € Q/., such that, for all compact subset
K of M\ {¢'}, one has vy(n) K — ¢ uniformly.

We distinguish two cases. First, we assume that for some vertex v, and for some element
v € T, there exists a subsequence such that v, = hy7y, with h, € ', for all n. In such a
case, we can extract again a subsequence (but, without loss of generality, we still denote it
by (yn)n) such that there exists a point ¢’ € 9(T'y-1,) and a point { € 9(Ty), such that for
every compact subset K,-1, C 9(T',-1,) \ {¢'}, our subsequence of v,K,-1, converges to ¢
uniformly.

Assume that ¢’ is not a parabolic point for ', in 9(T',). For any vertex w in D(y(’),
let e be the first edge of the segment [v, w]. The boundary of its stabilizer contains ¢’. The
elements h,, are all, except finitely many, in the same left coset of Stab(e), otherwise, as hyv(’
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and hp& go to different points, for all £ # ¢’ in 9(T¢) \ {¢’'} (which is non empty since ¢’
is not parabolic), we get a contradiction with Proposition 3.1.8. Therefore, we can extract a
subsequence (but, without loss of generality, we still denote it by (7y,)n) such that, for each
vertex vy~ lw € D({’), for each compact subset K,-1,, of d(I'y-1,), not containing ¢’, the
sequence 7y, K.,-1,, converges to ¢ uniformly. Assume now that ¢’ is a parabolic point for I, in
9(T'y). Then hy,(v¢") do converge to ¢, otherwise, ¢’ would be a conical limit point. Therefore,
for all vertex y~'w € D(¢') \ {7~ 'v}, the sequence 7,8(T',-1,,) converges to ¢ uniformly.

Therefore, if v’ is a vertex not in the domain of ¢/, the path from y~!v to v/ contains an
edge such that the boundary of its stabilizer is a compact set K1, satisfying : v, K, -1,, — ('
uniformly. Let K be a compact subset of M \ {¢}. For each v; € D(("), there exists a compact
K, c o(Ty;,) \ {¢'}, Kna(T,,) C K; such that for all other point £ of K, the unique ray in
T from D((") that converges to ¢ contains an edge such that the boundary of its stabilizer is
contained in some Kj;. Therefore, v, K — ¢’ uniformly.

We turn now to the second case, where such a subsequence does not exists. Nevertheless,
after extraction, we can assume that the distance dist(vg,y,vo) is constant. Let v be the
vertex such that there exists a subsequence (’Ya(n))neN with the property that some segments
[V0, Yo (n)vo] have a common prefix [vg,v], and the edges eq(n) C [v0, Vo(n)vo] located just after
v, are all distinct. By Proposition 3.1.8, one can extract a subsequence (eaf(n))n such that
the boundaries of the stabilizers of these edges converge to some point ¢ € 9(T'y). By our
convergence criterion, v, (,)0(I'y,) uniformly converges to ¢.

Let £ be a point in 0T We claim that v is not in the ray [v,/(n)v0, Vo (n)§), for n sufficiently

large. If it was, there would be a subsequence satisfying : ’y;,%n)v is constant on a vertex w of

the ray [vg, &), that is, 'y;,%n) = hn, where hy, € I'y,. Therefore, 7,/(yw equals v for all n. In
other words, for all n there exists hy, in T'y such that v,/(,) = hn7v,r(0)- This contradicts our
assumption that we are not in the first case, and this proves the claim.

If d = dist(7,/(n)vo,v) (which is constant by assumption), we choose the neighborhood
of ¢ defined by Wy 1(€) (here vg is the base point). Then, for each point in 7y () War1(),
the unique path in T' from v to this point contains e,. Therefore, v,/ (n)Way1(€), uniformly
converges to (.

Let & be now a point in the boundary of the stabilizer of a vertex v'. Again, for the same
reason, the vertex v is not in [y,(n)vo,7,, (n)v’ ] for n large enough. Therefore the unique path
from v to 'yaz(n)v' contains the edge e, (n). If Ygr(5)€ is not in O(Te,, (n)), for all n sufficiently
large, then there exists a neighborhood N of ¢ such that the convergence v,/ )N — ( is
uniform. If v, (,)€ is in O(Te,, (n)), then there exists another vertex v/ in D(£) such that
Yor(n) (vn) = v. If D(&) is finite, after extracting another subsequence, we see that we are in
the first case, but we supposed we were not. If D(£) is infinite, we are in case 2 of the main
theorem, and D(&) is exactly the star of a vertex v”. If v is in the orbit of the vertex stabilized
by the group A, again, necessarily v,/(,)(v”) = v. If v is not in this orbit, 'y;,}n)v ranges over
infinitely many neighbours of v”, therefore 7;,%”)8(1‘,,) converges to the unique point of 3(T',»)
which we call ¢’. Therefore, the convergence is locally uniform away from ¢’, what we wanted
to prove. [

As an immediate corollary of the two previous lemmas, we have :

Corollary 3.3.3 With the previous notations, the group T is a convergence group on M (cf
Definition 3.1.1).

Lemma 3.3.4 FEvery point in 0T C M 1is a conical limit point for T in M.
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Let n € 0T Let vy a vertex in T with a sequence (y,)nen of elements of I such that ~,vg
lies on the ray [vg,7), converging to 7.

By Lemma 3.3.1, after possible extraction of subsequence, there is a point £+ € M, and
for all £ € M, except possibly one in 9T, we have v, ¢ — £*. Note that, in particular, we
have v, 10(Ty,) — £. By multiplying each -, on the right by elements of T';,, we can assume
that ¢ is not in 9(Ty, ), and we still have y,vg lying on the ray [vg,7), converging to 7.

Now it is enough to show that -y, '.n does not converge to ¢*. But vy is always in the ray
[ Lo, v, 1n). Therefore, if 4, 1n — £, this implies that ¢* is in 9(T,), which is contrary to
our choice of (yp)nen. O

Lemma 3.3.5 Every point in /. which is image by © of a conical limit point in a vertex
stabilizer’s boundary, is a conical limit point for T'.

Such a point is in d(T',) for some vertex v, and it is a conical limit point in d(T',) for T'y.
Therefore it is a conical limit point in M for I';, (see the remark (i) in section 1), hence for T'.
a

Lemma 3.3.6 Every point in /. which is image by © of a bounded parabolic point in a
vertex stabilizer’s boundary, is a bounded parabolic point for I'. The mazimal parabolic subgroup
associated is the image in I' of a parabolic subgroup of a vertex group.

Let & be the image by 7 of a bounded parabolic point in a vertex stabilizer’s boundary,
let D(€) be its domain, and vy, ..., v, the (finite, by Proposition 3.2.2) list of vertices in D(¢)
modulo the action of Stab(D(&)), with stabilizers I',,. Let P be the stabilizer of £. It stabilizes
also D(¢), which is a bounded subtree of T'. By the Serre fixed-point theorem, it fixes a point
in D(&), which can be chosen to be a vertex, since the action is without inversion. Therefore, P
is a maximal parabolic subgroup of a vertex stabilizer, and the second assertion of the lemma
is true. For each 7 < n the corresponding maximal parabolic subgroup P; of I, is a subgroup
of P, because it fixes £. But for each i < n, P; is bounded parabolic in I',,, and acts properly
discontinuously co-compactly on 9(I'y,) \ {¢}.

For each index i < n, we choose K; C 9(I'y;) \ {¢}, a compact fundamental domain of this
action. We consider also &; the set of edges starting at v; whose boundary intersects K; and
does not contain . Let e be an edge with only one vertex in D(), and v; be this vertex. As
K; is a fundamental domain for the action of P; on 9(T'y,) \ {¢}, there exists p € P; such that
0(Te) N pK; # 0. Therefore, the set of edges |J,,, PE; contains every edge with one and only
one vertex in D(). -

For each 7 < m, let V; be the set of vertices w of the tree T such that the first edge of
[v;,w] is in &;, and let V; be its closure in T'U T. Let K be the subset of M consisting of
the points whose domain is included in V;. As a sequence of points in the boundaries of the
stabilizers of distinct edges in &; has only accumulation points in Kj, the set K}’ = K; U K] is
compact. Hence |J;.,, K} is a compact set not containing &, and because |J;.,, PE; contains
every edge with one and only one vertex in D(£), the union of the translates of J,., K|' by
P is M\ £. Therefore, P acts properly discontinuously co-compactly on M \ £. O

We can summarize the results of this section :

i<n

Theorem 3.3.7 (Dynamic of T on M)

Under the conditions of Theorem 0.1, and with the previous notations, the group T' is a
geometrically finite convergence group on M.

The bounded parabolic points are the images by m of bounded parabolic points, and their
stabilizers are the images, and their conjugates, of mazimal parabolic groups in verter groups.
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We are now able to prove our main theorem.
Proof of Theorem 0.1 : it is a direct consequence of Theorem 3.3.7 and of Theorem 3.1.5.
The maximal parabolic subgroups are given by Lemma 3.3.6. O

3.4 Relatively Hyperbolic Groups and Limit Groups.

In our combination theorem, the construction of the boundary helps us to get more infor-
mation. For instance, we get an independent proof, and an extension to the relative case, of a
theorem of I. Kapovich [K2] for hyperbolic groups.

Corollary 3.4.1 IfT" is in Case 1 of Theorem 0.1, the verter groups embed as fully quasi-
convex subgroups in T.

The limit set of the stabilizer of a vertex v is indeed 9(T'y). As domains are finite (Pro-
position 3.2.2 and its remark), a point in M belongs to finitely many translates of 9(Ty).
O

Finally, we study limit groups, introduced by Sela in [Se2], in his solution of the Tarski
problem, as a way to understand the structure of the solutions of an equation in a free group.
We give the definition of limit groups; it involves a Gromov-Hausdorff limit. Here, we do not
discuss the existence of such a limit, but we advise the reader to refer to Sela’s original paper.

Definition 3.4.2 (Limit groups, [Se2])

Let G be a finitely generated group, with a finite generating family S, and v = (y1 ... V)
a prescribed set of k elements in G. Let F' be a free group of rank k with a fized basis a =
(@1...ax), and let X be its associated Cayley graph (it is a tree). Let H(G, F;~y,a) be the
set of all the homomorphisms of G in F sending ; on a;. Each element of H(G,F;~,a)
naturally defines an action of G on X . Let (hp)nen be a sequence of homomorphisms in distinct
conjugacy classes, and let us rescale X by a constant p, = mingec p maxges(dx (id, fhn(g)f™1))
to get the pointed tree (Xy,xy,), whose base point x,, is the image of a base point in X. There
1s a subsequence such that (Xa(n),xa(n)) converges in the sense of Gromov-Hausdorff, and let
(Xoo,y) be the real tree that is the Gromov-Hausdor(f limit, on which the group G acts. Let
K be the kernel of this action (the elements of G fizing every point in X ). We say that the
quotient Loo = G/ Ko is a limit group.

An important property of limit groups is an accessibility theorem, proven by Sela. Every
limit group has a height : limit groups of height 0 are the finitely generated torsion-free
abelian groups, and every limit groups of height n > 0 can be constructed by finitely many
free products, acylindrical HNN extensions or amalgamation of limit groups of height at most
(n — 1), over cyclic groups. Moreover, the amalgamation A %z B involved are of two types.
Either the group Z is cyclic with cyclic centralizer in the amalgamation, or A contains a
maximal non-cyclic torsion-free finitely generated abelian subgroup A, containing the cyclic
group Z, and Z is maximal cyclic in B, not intersecting any non-cyclic abelian subgroup of B
(this is Theorem 4.1 and Lemma 2.3 in [Se2]).

From this study, Sela deduces that limit groups are exactly the finitely generated w-
residually free groups : these are the groups such that, for every finite family of non-trivial
elements, there exists a morphism in a free group that is non trivial on each of these elements.

Theorem 3.4.3 [Theorem 0.3]
Every limit group is hyperbolic relative to the family of its mazimal non-cyclic abelian
subgroups.
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We argue by induction on the height. It is obvious for groups of height 0. Consider an
HNN extension Az or an amalgamation A xz B, with A and B of height at most (n — 1),
Z cyclic. If Z is trivial or has cyclic centralizer in the amalgamation, it is fully quasi-convex
in A and B, because it has finite intersection with non-cyclic abelian subgroup. Hence, our
combination theorem gives the result.

If A contains a maximal non-cyclic abelian subgroup A containing Z, then A %5 B =
Ax; (A %z B). We first study A xz B. Let {P;} be the set of maximal parabolic subgroups
of B; each F; is a non-cyclic abelian group. The group Z is a maximal cyclic subgroup of
B not intersecting the P;. Hence it is fully quasi-convex in B, and, if we note Z; the set of
conjugates of Z, we have that B is hyperbolic relative to { P;} U{Z;}. Its boundary is obtained
by identifying, for each %, the limit set of Z; (consisting in two points) to a point.We are in
the case 2 of Theorem 3.0.7, therefore Az B is hyperbolic relative to its maximal non-cyclic
abelian subgroups.As A is a maximal parabolic subgroup in A, and in (A xz B), it is fully
quasi-convex. The first case of Theorem 3.0.7 gives now that A*z B = A *; (A x5 B) is
hyperbolic relative to its maximal non-cyclic abelian subgroups, and this ends the proof. [J

The next proposition was suggested by G.Swarup (see also [Sw]). It was already known
that every finitely generated subgroup of a limit group is itself a limit group (it is obvious if
one thinks of w-residually free groups).

Proposition 3.4.4 (Local quasi-convezity)

Every finitely generated subgroup of a limit group is quasi-convez (in the sense of Definition
3.1.6).

Again, we argue by induction on the height of limit groups.

The result is classical for free groups, surface groups, and abelian groups. Assume now that
the property is true for A and B, and consider I' = A%z B, and H a finitely generated subgroup
of I'. H acts on the Serre tree T of the amalgamation. In particular it acts on its minimal
invariant subtree. As a consequence of the fact that H is finitely generated, the quotient of
this tree is finite. Moreover, as the edge groups are all cyclic or trivial, H intersects each
stabilizer of vertex along a finitely generated subgroup. Therefore, one gets a spliting of H as
a finite graph of groups, the vertex groups of which are finitely generated subgroups of the
conjugates of A and B, and with cyclic or trivial edge groups. As they are finitely generated,
and by the induction assumption, the vertex groups are quasi-convex in the conjugates of A
and B, and their boundaries equivariantly embed in the translates of 0A and 0B. We can
apply our combination theorem on this acylindrical graph of groups, and as the Serre tree of
the splitting of H embeds in the Serre tree of the splitting of T, its boundary equivariantly
embeds in dT. Thus, H is a geometrically finite group on its limit set in the boundary of T,
hence it is quasi-convex in I'. [

The Theorem 3.4.5 (Howson property for limit groups) was motivated by a discussion
with G.Swarup. To prove it, we first prove the Proposition 3.4.6, inspired by some results in
[Su-Sw]| : we study the intersection of (not necessarly fully) quasi-convex subgroups.

This study completes the work of I.Kapovich, who proved the Howson property for limit
groups without any non-cyclic abelian subgroup (see [K3| and [K4]).

Theorem 3.4.5 Limit groups have the Howson property : the intersection of two finitely ge-
nerated subgroups is finitely generated.

We postpone the proof, because we need the following :

Proposition 3.4.6 (Intersection of quasi-convez subgroups)
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Let T be a relatively hyperbolic group, with only abelian parabolic subgroups. Let Q1 and
Q2 be two quasi-conver subgroups. Then Q1 NQ2 is quasi-convex. Moreover, A(Q1NQ2) differs
from A(Q1) N A(Q2) only by isolated points.

Let @1 and Q2 be two quasi-convex subgroups of I' and @ = Q1N Q2. The limit sets satisfy
AQ) € A(Q1) N A(Q2), and the action of @ on A(Q) is of convergence. As in Proposition
3.1.10, the conical limit points in A(Q) are exactly the conical limit points in A(Q1) and in
A(Q2). We want to prove that each remaining point in A(Q) is a bounded parabolic point.
Those points are among the parabolic points in both A(Q1) and A(Q2), but it may happen
that a parabolic point for 1 and Q2 is not in A(Q).

However, it is enough to prove that, for all p, parabolic point for ()1 and @9, then the
quotient Stabg(p)\(A(Q1) NA(Q2) \ {p}) is compact. Indeed, if we manage to do so, we would
have proven that A(Q) differs from A(Q1) N A(Q2) only by isolated points : the parabolic
points for ()1 and )2 whose stabilizer in @ is finite. Such a point p is isolated, because the
statement above implies that (A(Q1) N A(Q2) \ {p}) is compact. Therefore, Proposition 3.4.6
follows from the general lemma :

Lemma 3.4.7 Let G be a finitely generated abelian group, acting properly discontinuously on
a space E. Assume that G contains two subgroups, A and B, such that G = AB. If A acts on
X C E with compact quotient, and if B acts similarly on Y C E, then AN B acts properly
discontinuously on X NY , with compact quotient.

The only thing that needs to be checked is that the quotient is compact. Let K4 C X be
a compact fundamental domain for A in X, and Kp similarly for B in Y. For all a € A such
that aKANY # 0, there exists b € B such that aK4NbKp # (). As K4 and Kp are compact,
and since the action of (A + B) is properly discontinuous, there are finitely many possible
values in G for a~'b, with a and d satisfying aK4 NbKp # 0. Therefore, for all such a and
b, there exists a word w written with an alphabet of generators of G consisting of generators
of A and generators of B, of length bounded by a number N neither depending on a nor on
b, such that, in G, w = a~'b. Using abelianity of the group G, we can gather the letters in w
in order to get a new word of same length, concatenation of two smaller ones : w' = wawp
with wa € A and wg € B, and still, in G, w' = a 'b. Now we see that awa = b(wg) !, and
therefore aws € (ANB). If we set K = (U, ,|<n waKa) NY, which is compact, we have just
shown that (AN B)K covers X NY. That is that we have proven the lemma. OJ

Now we can prove the Howson property.

Proof of Theorem 3.4.5. Two finitely generated subgroups of a limit group are quasiconvex
by Proposition 3.4.4, therefore, by Proposition 3.4.6, the intersection is also quasiconvex. In
particular, by the remark (7i) in section 1, it is finitely generated. O

We finally give an application of the result of Chapter 1. Following Bestvina [Be]|, we say
that a Z-structure (if it exists) on a group is a minimal (in the sense of Z-sets) aspherical
equivariant, finite dimensional (for the topological dimension) compactification of a universal
cover of a finite classifying space for the group, ET' U @(ET), such that the convergence of a
sequence (ypp)n to a point of the boundary O(ET') does not depend on the choice of the point
pin ET (see |Be|, [D1], and Chapter 1).

Theorem 3.4.8 (Topological compactification)
Any limit group admits a Z-structure in the sense of [Be].

The maximal parabolic subgroups are isomorphic to some Z¢, and therefore admits a finite
classifying space with a Z-structure (the sphere that comes from the CAT(0) structure). As
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limit groups are torsion free, (Lemma 1.3 in [Se2]), the main theorem of Chapter 1 can be
applied to give the result. O

We emphasize that this topological boundary is not the one constructed above : if the
group contains Z¢%, the topological boundary contains a sphere of dimension d — 1.
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Accidental Parabolics and Relatively
Hyperbolic Groups

Abstract. By constructing, in the relative case, objects analoguous to Rips and Sela’s canonical
representatives, we prove that the set of conjugacy classes of images by morphisms without accidental
parabolic, of a finitely presented group in a relatively hyperbolic group, is finite.

Introduction

An important result of W.Thurston is :

Theorem 4.0.9 (/Th] 8.8.6)

Let S be any hyperbolic surface of finite area, and N any geometrically finite hyperbolic 3-
manifold. There are only finitely many conjugacy classes of subgroups G C w1 (N) isomorphic
to 1 (S) by an isomorphism which preserves parabolicity (in both directions).

It is attractive to try to formulate a group-theoretic analogue of this statement : the
problem is to find conditions such that the set of images of a group G in a group I is finite
up to conjugacy.

If T is word-hyperbolic and G finitely presented, this has been the object of works by
M.Gromov ([G] Theorem 5.3.C’) and by T.Delzant [De|, who proves the finiteness (up to
conjugacy) of the set of images by morphisms not factorizing through an amalgamation or an
HNN extension over a finite group.

As a matter of fact, if a group G splits as A x¢ B and maps to a group I' such that the
image of C in I" has a large centralizer, then in general, there are infinitely many conjugacy
classes of images of G in I'. Technically speaking, if h is the considered map, one can conjugate
h(A) by elements in the centralizer of h(C), without modifying h(B), hence producing new
conjugacy classes of images. A similar phenomenon happens with HNN extensions.

We are interested here in the images of a group in a relatively hyperbolic group (for
example, a geometrically finite Kleinian group). Our result, Theorem 0.2, gives a condition
similar to the one of Thurston, ruling out the bad situation depicted above, and ensuring the
expected finiteness.

Relatively hyperbolic groups were introduced by M.Gromov in [G], and studied by B.Farb
[F] and B.Bowditch [Bo6], who gave different, but equivalent, definitions (see Definition 4.1.1
below, taken from [Bo6]). In Farb’s terminology, we are interested in “relatively hyperbolic
groups with the property BCP”. The main example is the class of fundamental groups of
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geometrically finite manifolds (or orbifolds) with pinched negative curvature (see [Bo2], see
also [F] for the case of finite volume manifolds). Sela’s limit groups are hyperbolic relative to
their maximal abelian non-cyclic subgroups, as shown in Chapter 3.

Definition : We say that a morphism from a group in a relatively hyperbolic group
h : G — T has an accidental parabolic either if h(G) is parabolic in T, or if h can be

L T or HNN extension

N

factorized through a non-trivial amalgamated free product @

A o B
G—lsT where f is surjective, and the image of C is either finite or parabolic in
N
A*C

.
We prove the theorem :

Theorem 4.0.10 Let G be a finitely presented group, and I' a relatively hyperbolic group.
There are finitely many subgroups of T', up to conjugacy, that are images of G in T by a
morphism without accidental parabolic.

It would have been tempting to apply this to the mapping class group Mod(S) of a surface,
which is known to be "relatively hyperbolic", after the study of H.Masur and Y.Minsky of
the complex of curves [M-M]. If B is the base of a S-bundle, the study of homomorphisms
m1(B) — Mod(S) is important because it is directly related to the geometric Shafarevich
conjecture (see the survey of C.McMullen [McM]). Unfortunately, the relative hyperbolicity of
the mapping class group is to be understood in a weak sense : the property BCP, or equivalently
the fineness (see Definition 4.1.1) is not fulfilled.

Also note that Theorem 0.2 generalises Theorem 0.1 in the case of closed surfaces : if a
surface group 71(S) acts on a tree, an element associated to a simple curve in S fixes an
edge. Therefore, if a morphism from 71(S) to 71 (IN) (with notations of Theorem 0.1) has an
accidental parabolic, it sends a simple curve of the closed surface S in a parabolic subgroup
of 1 (N) .

In order to follow Delzant’s idea in [De|, we will generalize, in section 2, the construction
of canonical cylinders of Rips and Sela [R-S| (Theorems 4.2.8 and 4.2.21). The main difficulty
comes from the fact that the considered hyperbolic graph is no longer locally finite. Finally,
we prove Theorem (.2 in section 3.

4.1 Complements on cones

This is a complement to the section 2 of Chapter 2, where angles and cones were introduced.
We assume the reader familiar with fineness of graphs, relative hyperbolicity, angles and cones.
In this chapter, we will use the definition :

Definition 4.1.1 (Relatively Hyperbolic Groups)[Bo6/

A group T is hyperbolic relative to a family of subgroups G, if it acts on a hyperbolic and
fine graph K, such that stabilizers of edges are finite, the quotient I'\K is a finite graph, and
the stabilizers of the vertices of infinite valence are exactly the elements of G, and are finitely
generated.
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We will say that such a graph is associated to the relatively hyperbolic group I'. A subgroup
of an element of G is said to be parabolic.

We recall the following lemma, :

Lemma 4.1.2 (Large angles in triangles)

Let [z,y] and [z, 2] be geodesic segments in a §-hyperbolic graph, and assume that Ang,([z,y], [z, 2]) =
0 > 500. Then the concatenation of the two segments is still a geodesic. Moreover x belongs to
any geodesic segment [y, z] and Ang,([y, z]) > 6 — 500.

Let [y, z] be a geodesic, defining a triangle (z,y, z), which is é-thin. We consider the vertices
y' and 2’ on [z,y] and [z, 2] located at distance 10§ from z. If there is a path of length less
than 3§ between 3’ and 2/, it cannot contain z, and therefore, it would contradict that the
angle at z is greater than 508. Therefore 3y’ and 2’ are not 3d-close to each other, thus, they
are d-close to the segment [y, z], and we set y”, respectively 2", in [y, 2] at distance less than
d from 2/, respectively y'. Consider the loop [z,¥'][v, y"]|[y", 2"][2", ][, z]. Its length is less
than (2 x 100 4 26) x 2 < 504, and it contains . The small transitions are sufficiently far away,
so that they do not contain z. The third part of Proposition 2.2.5 proves that =z € [y",2"],
and Ang.([y",2"]) > 6 — 506. O

Lemma 4.1.3 (Cones and circuits)
Let e be an edge of a graph, and w a vertex that lies in a circuit containing e and of length
less than L. Then w € Coner, (e, v).

Let C be the considered circuit, and let g be a geodesic segment between v and w. The
concatenation of g and one of the two paths in C' from w to v is a loop. Hence, one has two
loops containing g, one of them containing e, one not, and both of length less than L. If g
has an angle greater than L, then the corresponding vertex would not be in a sub-circuit of
each of the two loops, and therefore, the circuit C' would pass through this point twice, which
contradicts the definition of circuit. For the same reason the angle between e and g is less than
L, and therefore, w € Coner, r(e,v). O

Definition 4.1.4 Let A be a number. A A-quasi-geodesic in a metric space X is a path q :
[a,b] = X such that for all x and vy, m/\;y' < dist(g(x),q(y)) < Alz —y|.

Proposition 4.1.5 (Conical stability of quasi-geodesics)

In a d-hyperbolic graph, let g : [a,b] — K be a geodesic segment, and let q : [a,b] = K be a
A-quasi-geodesic with |q(a) — g(a)| < 7 and |q(b) — g(b)| < r, for r < 104. Let w be a vertez in
q at distance at least 2r from the ends. Then there exists a constant Ny ; depending only on
A, and 6, and there erists an edge e in g, such that w € Conen, s n, s(e,).

It is a classical fact ([G], 7.2 A, [C-D-P], [G-H]) that ¢ remains at a distance less than
D(A,¢) from the segment, for a certain constant D (A, §). We consider the loop starting at w,
consisting of five part : a subsegment [w,w] of ¢, of length less than 10.D(A, ), and strictly
less if and only if w; = ¢(b), a segment [w1,ws] of length less than D(A, d) and where ws € ¢
(we call it a transition), a subsegment [wg, ws] of g of length less than 20.D(A, §) (strictly less
if and only if ws = g(a)), then again a transition from ws to g shorter than D(A, ), and then
a subsegment of ¢ to w. As, in any case w is sufficiently far from the transitions, with respect
to their length, it does not belong to them, and this loop contains a sub-circuit shorter than
25AD(A, d), containing w and an edge of g. Lemma 4.1.3 gives the result. O
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g e

FiG. 4.1 — Quasi-geodesics stay in cones centered on the geodesic, Proposition 4.1.5

4.2 Canonical cylinders for a family of triangles

In the following, K is a graph associated to a relatively hyperbolic group I', and is é-
hyperbolic. We choose a base point p in K.

The aim of this section is, given a finite family F of elements of ', to find a finite set (a
cylinder) around each segment [p,yp] with v € F U F~!. This construction will be such that
for all o, 3,7 in F U F~! that satisfy the equation (afy = 1), the three cylinders around
[p, ap], [ap,afp] = alp,Bp] and [p,y1p] = [aByp, aBp], coincide pairwise on large subsets
around the vertices p, ap and afp (see Theorem 4.2.8).

Our approach is similar to the original one in [R-S]. However, let us emphasize that Rips
and Sela use the fact that the balls in Cayley graphs are finite. In the graph we are working
on, it is not the case.

4.2.1 Coarse piecewise geodesics

We choose some constants : A = 10006, p = 100Ny 5 + A and e =N A6 as in Proposition
4.1.5.

Let us recall that a path p is a %—local—quasi—geodesic if any subpath of length at most
10006 % is a %—quasi—geodesic. In such case, the path p is a A-quasi-geodesic (see [G], 7.2B). A
path p is a p-local-geodesic if any subpath of p of length u, is a geodesic.

Definition 4.2.1 (Coarse piecewise geodesics)([R-S] 2.1)

Let | be a positive integer. A l-coarse-piecewise-geodesic in K is a %—local—quasi—geodesz’c
f :[a,b] = K together with a subdivision of the segment [a,b], a =c1 < dy < ca...<dp=0b
such that f([c;,d;]) is a p-local geodesic, and

Vi, 2 <i < (n—1), length(f([ci,d;])) >, Vi, length(f[di, ci+1]) < e.

In this case, we say that f|[ci,d¢} s a sub-local-geodesic, and f|[d¢,c¢+1] s a bridge.

Remark 1 : If f : [a,b] — K is a coarse-piecewise-geodesic, then for all a’ and b’ such that
a <a' <V < b, the path fi ) is a coarse-piecewise-geodesic.

Lemma 4.2.2 (Re-routing coarse piecewise geodesics)

Let | be a number, Il > u, and f be a l-coarse-piecewise-geodesic defined on [a,b]. Consider
a sub-local-geodesic f.q, and z on f([c,d]), with the additional requirement that the part of
fie,q) from f(c) to z has length more than I+ 2¢. Let g be a geodesic segment between f(a) and
f(b). Let 2" be a closest point to z on g. Let 2’ be a closest point to 2" on fi. 4. We choose p
a geodesic segment between z' and 2" : p = [Z',2"].

Then the path f = [f(a),#'|[2,2"][z", f(b)] obtained from f by re-routing f after 2’ by p
and then, by the remaining part of g = [f(a), f(b)] to f(b), is a l-coarse-piecewise-geodesic.
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As |z — 2"| < ¢, the segment p has length less than e. Therefore, |2 — 2| < 2¢, and, as we
assumed that the length of f from f(c) to z is greater than [ + 2¢ , the sub-local-geodesic fo f
between f(c) and 2’ is still longer than [ in this case, and p is convenient for a bridge. We need
to prove that f is a %—local—quasi—geodesic. In other words, we have to show that any subpath
of length less than 1000 % isa %—quasi—geodesic. Let p be such a subpath. If it is contained in
the subpath of f coinciding with f (~[a, b)), by assumption on f it is a %—local—quasi—geodesic.
If it is contained in the subpath of f coinciding with g it is a geodesic segment. If p does not
satisfy one of the condition above, then it contains p. We give some notations : let = and y be
the ends of the subpath p. As p > 10006 % + 2¢, the subsegment [z, z] of f is a geodesic, and
[x,2'] also. The segment [z”, f(b)] is included in g and therefore it is a geodesic segment, and
it contains y. If the length of p is less than % = 5000, there is nothing to prove.

It is now enough to prove that for all subpath p containing p, of length more than 5004, the
distance |z —y| between the ends z and y of p, is superior to § x (|z —2'|+ |2/ — 2"| +|2" —y]).

As the point 2’ is the closest point to z” in [z, 2], by hyperbolicity, we have |z — 2/| + |2’ —
2" < |z —2"| +56.

Consider a point u of the sub-local-geodesic f([c,d]) that is between f(c) and z, and at
distance /2 from z. Asl > p > 100053 > |z —2'|, it is possible to find such a point. Note that
the subpath [u, 2] of f is of length at most pu and therefore is a geodesic segment. Moreover,
by Proposition 4.1.5, there is a point v on g such that |u — v| < e. As the Gromov product
(v-y), is equal to zero, and as (v -u),» > p — 2¢ — 10§ > 1004, by hyperbolicity, one has
(y-u)» <6,

Similarily, (u - 2”), < 24, that is (u - x),» > |27 — x| — 5d. There is the dichotomy : either
|z” — z| < 204, hence |27 — y| > length(p) — 256 > |y — z| — 256, and (y - z),» < 454, or
|27 — x| > 206, and then (u-x),» > 200, which together with (y-u),» < 4§, yelds (y-x),» < 24.
In any case, one has (y - z),» < 456. Then |z —y| > |z — 2”| + |27 — y| — 455. We already had
|z — 2|+ |2 = 2"| < |z —2"|+ 5, which give : |z —y| > |z —2'| +|2' — 2"| + |2" — y| — 504, and
as |z — 2/| + |2/ — 2"| + |2" — y| was assumed to be greater than 5004, this gives the expected
|z —y| > 3 x (|z — 2| + |2’ — 2"| + |2 — y|). This proves the proposition. O

We will also need the following.

Lemma 4.2.3 (Re-routing to another point)

Let [z,y] be a geodesic segment of K, of length L > 2u. Let z be on [z,y] such that |z — x|
and |z —y| are both greater than &. Let now 2z’ € K be at distance at most 6 from z and y' € K
be at distance at most § from y. Let 2” be on [z,y] such that |2’ — 2”| is minimal. Then the
path [z,2"][z”,2"][Z', ] is a %—local quasi-geodesic.

As in the previous lemma, it is enough to prove that for all subpath p containing [2”, 7'],
of length more than 500§ = %, the distance |z — y| between the ends p; and p9 of p, is superior
to 5 X (Ipr — 2| + [z = 2" + [ — pa)).

Let us assume that [2” — po| > 25§. By hyperbolicity, po is 5d-close to a point w of
[',y], and [2' —w| > |2" — pa| — |p2 — w| — [ = 2”|. Now [p1 —w| = |p1 — | + |2' —w| >
|p1 — 2| + |2" — po| — |p2 — w| — |2' — 27|. As |p1 — p2| > |p1 — w| — |w — p2| we deduce that
[p1 — pa| > |p1 — 2|+ |2" —pa| = 2|p2 —w| — |2 — 27| > |pr — 2| + |2" — pa| + |2' — 2”| — 124,
which is greater than 55 X (|p1 — 2'|+ |2 — 2"| + |2 — pa|), since |p1 — 2'| + ]2/ — 2"| +|2" — po|
is assumed to be greater than 5000.

If [ — po| < 254, then |p1 —pa| > [p1 —2"|—[2" —pa| > |p1 — 2| +|2' —2"| +|2" — pa| =519,
and the same conclusion holds. O
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4.2.2 Cylinders

Definition 4.2.4 (I-Cylinders)[R-S]

Let ] € N. The l-cylinder of two points x and y in K, denoted by Cyli(x,y), is the set of the
vertices v lying on a l-coarse-piecewise-geodesic from x to y, with the additional requirement
that v is on a sub-local-geodesic f|. q with distances |f(c)—v| > U if f(c) # z and |f(d)—v| >
if f(d) #y-

Lemma 4.2.5 (Cylinders are finite)
The l-cylinder of two points x and y is contained in the union of the cones of radius and
angle € centered in the edges of an arbitrary geodesic segment [x,y].

This is a consequence of Proposition 4.1.5 for A =X, and r =0. O

Lemma 4.2.6 (Stability)
If a vertex v is in Cyly(z,vy), then for all vy in the group T, we have v~ 'v € Cylj(y 'z, v 1y)

1

Multiplication on the left by v~ is an isometry of X. O

4.2.3 Choosing a good constant [/ for /[-cylinders

Definition 4.2.7 (Channels)([R-S] 4.1)
Let g = [v1,v2] be a geodesic segment in K. A geodesic not shorter than |vy — v1| that stays
in the union of the cones of radius and angle € centered in the edges of g is a (|va —v1|)-channel

of g.

As cones are finite (Corollary 2.2.9), the number of different channels of a segment of
length L is bounded above by a constant depending only on ¢ and L. We note the capacity
of a segment of length L, Capa(L), such a bound. Note that it actually does not depends on
the segment : it can be bounded in terms of L and of the cardinality of a cone of radius and
angle € (recall that e depends only on §).

Recall that p1 = 100N, 5 + A%, with A = 10006. For an integer n, we set ¢(n) = 12(n +
1)Capa(p)(2¢ + 1)e. For 1 <7 < %2), let I; = 10u + 2ie. Each I; is inferior to ¢(n) + 10u.

We denote by B, (x) the ball of K of center x and radius 7.

Theorem 4.2.8 Let F be a finite family of elements of T'; we set n = (2Card(F))® where
Card(F) is the cardinality of F. Let p be a base point in K.

There exists | > 10u such that the l-cylinders satisfy : for all a, B,y in F U F~! with
afy =1, in the triangle (z,y,2) = (p,ap,y 'p) in K, one has

Cyli(z,y) N Br,,. (x) = Cyli(z,z) N Br,,. (x)

and analogues permuting x, y and z) where Ry, , = (y-2)z —4 X (11u+ @(n)), is the Gromov
ﬂyl
product in the triangle, minus a constant.

What is important in the theorem is not so much the value of [, but that the numbers
(y - 2)z — Ry y,, involved are bounded in terms of n and of K (namely, § and the cardinality
of a cone of radius and angle €). This bound does not depend on the family F'.

We will find a correct constant [ among the [; previously defined. We have 6(n+1)Capa(u)(2e+
1) different candidates. There are at most n different triangles satisfying the condition, hence,
we have a system of at most 3n equations. It is then enough to show the next lemma.
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“ap

. “Exoz-Cylz(p,ﬁ-p)

F1G. 4.2 — Cylinders for a triangle, Theorem 4.2.8

Lemma 4.2.9 Given an arbitrary equation Cyli(z,y) N Br,, .(z) = Cyl(z,z) N Bg,, .(z)
of unknown [, there are at most 2Capa(p)(2e + 1) different constants among the I; that fail to
satisfy it.

To prove this claim, we argue by contradiction, assuming that (2Capa(p)(2¢ + 1) + 1)
constants [; do not satisfy this equation. For each of them, there is a vertex v; in one cylinder
and not in the other : there exists §;, a l;-coarse-piecewise-geodesic from z to y (or to z)
containing v; but there is none from z to z (or to y) containing v;. Each of the f; is made of
sub-local-geodesics of length at least Iy > 10y, with transitions shorter than e. Then, each of
the f; has a sub-local-geodesic passing through a p-channel of a subsegment of [z, y| starting
at distance Ry, » + (¢(n) + 10x) from z or at distance Ry, + (¢(n) + 11u). There are less
than 2Capa(p) such channels, therefore, there is a channel, say Chan, in which, for 2¢ 4 2
different indexes 7, a sub-local geodesic 3, = Bi|[ci, d;], passes. Let us re-label these indexes :
1 <ty < ... <i2€+2.

For each 1 < j < 2¢ +2, let ; € [¢;;,d;;] be the instant where ﬁgj (tj) exits the channel
Chan. Let us denote by r(ﬂ{j) the length of the path ﬁgj (Itj,di;]), the part of ﬁgj after it leaves
the channel Chan. The discussion will hold on the respective possible values of the numbers
r(ﬁz{j), for 1 <j <2e+2.

Consider ;. We claim that 7(8;,) < l;, +2¢. Assume the contrary. Then, by Lemma 4.2.2,
Bi, can be rerouted either on the geodesic segment [z,y], or on the geodesic segment [z, 2],
depending on the end of g;,. The bridge we add is at distance at most [Ry 4 .+ (¢(n) +11u)]+
(p(n) +10p) + € < (y - 2)z — 2¢(n) — 22u from z. Therefore, at distance l;; < (¢(n) + 10u)
further, it can be rerouted to either [z, z] or [z, y], by Lemmma 4.2.3. This shows that v;, is in
both cylinders Cyl;, (z,y) and Cyl;, (z,z), which contradicts our assumption, and prove the
claim.

Consider now two indexes i; < 4. We now claim that (5} ) < r(ﬂz(j). If not, we could
change ;; just after Chan, by passing through ﬁgk (it remains a p-local geodesic), and the
next bridge and the next sub-local-geodesic of ;. Asl;; <1;; —2¢, it is possible to reroute the
coarse-piecewise-geodesic on [z,y] in the next sub-local geodesic, the new path remaining a
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l;;-coarse-piecewise-geodesic. Again, the bridge we add is at distance at most [Ryy, , + (¢ (n) +
11p)] + 2 X (p(n) + 10u) + € < (y - 2)g — ¢(n) — 11p from z, and therefore, at distance
li; < (¢(n) + 10p) further, it can be rerouted to either [z,y] or [z,2]. This would give the
same contradiction as before.

Moreover, for all iy < 2e+2, one has r(8],) — (8, ) < 2¢. If not, we could change ;, just
after Chan, by passing by f; , and reroute it on [z,y] before the end of f; (at distance 2e
from the end). This again gives the same contradiction.

Now, we see that the 2¢ + 2 numbers r(ﬂzfj), for j < 2e¢ + 2, are all different, and are all in

an interval on N of length 2¢ (hence containing 2e + 1 elements). This is a contradiction. O

4.2.4 Decomposition of cylinders into slices

From now, we choose a constant [ given by the previous theorem, and all considered
cylinders will implicitly be I-cylinders.

Let ® = 10000(D + € + d), where D is a constant such that a A-quasi-geodesic remains at
distance D from a geodesic in a §-hyperbolic graph (here A = 10006).

The decomposition into slices given by Rips and Sela in the hyperbolic case ([R-S]) will
not work properly here, because of large angles. Thus, we choose a slightly different procedure.

Definition 4.2.10 (Parabolic slices in a cylinder)

In a cylinder Cyl(a,b), a parabolic slice is a singleton {v} C Cyl(a,b) such that there exists
vertices w and w' in Cyl(a,b), adjacent to v in K and such that Ang,((v,w), (v,w")) > ©.
The angle of a parabolic slice is MaZy, uccy(Ang, ((v,w), (v, w')).

Lemma 4.2.11 (Parabolic slice implies angle on a geodesic segment)

Let Cyl(a,b) be a cylinder. If w and w' are vertices in Cyl(a,b), such that |w —w'| < 504,
and if there erists v on some geodesic [w,w'] such that Ang,([v,w], [v,w']) = A > ©, then any
geodesic segment [a,b] passes through v, and Ang,([a,b]) > A—20D > A —0©.

If {v} is a parabolic slice of a cylinder Cyl(a,b), of angle A, then, any geodesic segment
[a,b] passes through v, and Ang,([a,b]) > A—20D > A—0©.

The second statement is an immediate corollary of the first one.

Let w and w' be vertices in Cyl(a,b), such that |w — v| + |[v — w'| = |w — w'| < 506 in K,
and such that Ang,([v, w], [v,w']) = A, for some geodesic segments.

Let f : [0,7] — K be a l-coarse-piecewise-geodesic joining a to b and such that f(s) = w
for some s € [0,7], and such that the vertex w is on a sub-local geodesic fl.,, of f, |r — s|
(resp. |s — t|) being larger than 10y, except if r =0 (resp (¢t =T).

As f is a quasi-geodesic, at least one of the segments f|, 4, and f|}, ;) does not contain v.
Let us assume that f|[., does not contain v. We set s; = max{0, s — 3D}, and we choose =
in a geodesic segment [a,b] such that the distance |z — f(s1)| is minimal (it is less than D in
any case, and it is 0 if s = 0). Let [z, f(s1)] be a geodesic segment. In any case, it does not
contain v : if s; = 0 the segment is exactly one point, and it cannot be v since a is never a
parabolic slice, and if s; = s —3D, the segment [f(s1), w] is included in a p-local geodesic, and
of length 3D < p, hence it is a geodesic, and therefore |f(s1) — w| > |f(s1) — «/, this implies
the claim. Therefore there is a path p from w to x of length at most 4D not containing v.

We do the same construction for w' : there exists z’ on [a,b] and a path p' from w' to z’
of length at most 4D, not containing v. By triangular inequality, |z — 2’| < 8D + 505 < 9D.

We now consider the path obtained by concatenation of p, [z,z'], and p’ (with reverse
orientation). Its length is at most 17D < A. Therefore, the segment [z,z'] must contain v,
and the triangular inequality for angles shows that Ang,([z,z']) > A—17D. O
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Lemma 4.2.12 (Angles at the end of cylinders)
Let x # b be in Cyl(a,b). Then for all geodesic segments [a,b] and [z, b], Ang,([z, b], [a,b]) <
14D.

We distinguish two cases. First assume that |z — b| > 3D. We know that there is a vertex
w on the segment [a,b] such that |w — z| < D. Therefore, in a geodesic triangle (b, w,z), the
segment [b, z] and [b, w| remain J-close for a length at least D > 104. Therefore, their angle
at b is less than 214, and it is less than 14D.

Secondly, assume that |z — b| < 3D. There is a coarse-piecewise-geodesic f : [0,T] — K
between a and b, containing x on one of its sub-local geodesic. Let ¢ be such that f(t) = z.
Consider t; = maxz{0,t — 3D}, and we choose w € [a,b] such that the distance |w — f(¢1)]
is minimal (it is less than D in any case, and it is 0 if ¢; = 0). Now we consider the path
p obtained by the concatenation of a geodesic segment [w, f(¢1)] (of length at most D), of
flitr,g (of length at most 3D), of a geodesic segment [z, b] (of length at most 3D), and of a
subsegment [b,w] C [b,a] (of length at most 7D by triangular inequality). As f is a quasi-
geodesic, and f(T) = b, we deduce that b is not on the path fly, 5. It is not on the segment
[w, f(t1)] because |w— f(t1)| < |f(t1) —b|. Therefore, the path p passes only once at the vertex
b, and therefore, Angy([z,b], [b,a]) < 14D.

We see that in any case, Angy([z,b], [b,a]) < 14D. O

Lemma 4.2.13 (Angles in a cylinder)

Let [a,b] be a geodesic segment, such that for some vertex v in [a,b], Ang,([a,b]) > ©—20D.
Then, Cyl(a,b) = Cyl(a,v) U Cyl(v,b). In particular, if {v} is a parabolic slice of Cyl(a,b),
then Cyl(a,b) = Cyl(a,v) U Cyl(v,b).

Moreover, in such a case, Cyl(a,v) N Cyl(v,b) = {v}.

Recall that [-coarse-piecewise-geodesics are A-quasi-geodesics, hence staying D-close to
the segment [a, b]. Hence, by an argument similar to Lemma 4.1.2, any of them passes at the
vertex v. This defines a [-coarse-piecewise-geodesic from a to v, and another from v to b, and
therefore Cyl(a,b) C Cyl(a,v) U Cyl(v,b).

Let us prove that Cyl(a,v) C Cyl(a,b). Let f : [0,7] — K be a l-coarse-piecewise-geodesic
from a to v. Let T" = T + |v — b|, and let f: [0,T'] — K be as follows : ]F‘[O,T} = f, and
f(T +t) is the point of the given geodesic [a,b] at distance T — T — t from b. Let Fliea
be the last sub-local geodesic of f. Then f l[e,7] is still a p-local-geodesic, by Lemma 4.1.2.
Moreover, again by Lemma 4.1.2, any subsegment of length 1000(5% < p is a A/2-quasi-
geodesic : either it is included in the path f, or in the geodesic segment [v, b], or it is the union
of two geodesic segment that meet at v with an angle greater than ® — 20D. Therefore, f is a
[-coarse-piecewise-geodesic from a to b, coincinding with f between a and v. This proves that
Cyl(a,v) C Cyl(a,b).

Similarly one has Cyl(v,b) C Cyl(a,b). This proves the other inclusion and the equality
Cyl(a,b) = Cyl(a,v) U Cyl(v,b).

The second assertion of the lemma is a consequence of Lemma 4.2.11.

Let us prove now that the intersection Cyl(a,v) NCyl(v,b) is {v}. Let = be in the intersec-
tion Cyl(a,v)NCyl(v,b), and assume that z # v. By Lemma 4.2.12, Ang, ([z,v], [v,a]) < 14D.
Similarly, as z is also in Cyl(v,b), Ang,([z,v],[v,b]) < 14D. The triangular inequality for
angles (Proposition 2.2.5) proves that Ang,([a,v],[v,b]) is at most 28D, but it was assumed
to be more than ©® — 20D. This prove that Cyl(a,v) N Cyl(v,b) = {v}. O

The lemma we just proved allows us to consider unions of cylinders without parabolic slice.
This enables the contruction of regular slices, as it is by Rips and Sela in [R-S].
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Let Cyl(a,b) be a cylinder without parabolic slice, and z € Cyl(a,b). We define the set
Ng"b) (z) as follows : it is the set of all the vertices v € Cyl(a,b) such that |a — z| < |a — v|,

and such that |z — v| > 1006. Here R stands for “right”, and N éa’b) (z) is similarly defined
changing the condition |a — z| < |a — v| into |a — x| > |a — v|. As cylinders are finite, those
sets are also finite.

Definition 4.2.14 (Difference in cylinders without parabolic slice)[R-S]3.3

Let Cyl(a,b) be a cylinder with no parabolic slice, and x,y two points in it. We define
Diffy(a,y) = Card(Ny"" () \ N{*"(y)) — Card(N}"" (y) \ N{*"(2)) + Card(N{{" (y) \
Ng"b) (x)) — Card(Ngl’b) (z) \Néa’b) (y)), where Card(X) is the cardinality of the set X.

Let us remark that this defines a cocycle (see [R-S]).

Definition 4.2.15 (Regular slices in a cylinder without parabolic slice)
Let Cyl(a,b) be a cylinder with no parabolic slice. An equivalence class in (Cyl(a,b)\{a,b})
for the equivalence relation (Diff, (x,y) = 0) is called a reqular slice of Cyl(a,b).

Ordering of slices. We assign an index to each slice of Cyl(a,b) as follows. Let v1,..., v
be the consecutive parabolic slices, ordered by their position on a geodesic segment [a, b]. We
set Sp to be {a}. We define then S;1; to be the unique regular slice of the cylinder Cyl(a,v1)
such that Diff(S;, S;+1) is minimal. If S; is the last slice in C'yl(a,v1), then the parabolic slice
{v1} is labeled S;.1. Then among the regular slices of a cylinder Cyl(v;, vi+1), we define Sj41
to be the (unique) slice such that Diff(S;, S;4+1) is minimal. If Sy, is the last regular slice of
a cylinder Cyl(v;,vi+1) (for i < k), then the parabolic slice {viy1} is Sp+1. Finally we order
the slices of the last cylinder Cyl(v,b) in the same way, and {b} is the last slice (see Figure
3).

Lemma 4.2.16 Let Cyl(a,b) be a cylinder, and v be a vertex of this cylinder. Let [a,b] be a
geodesic segment. Then there ezists w € [a,b] such that |lw —v| < 24.

The vertex v is on a sub-local-geodesic of some coarse-piecewise-geodesic f. By definition
of the elements of cylinders, there is a geodesic segment [f(¢1), f(¢2)] containing v, such that,
for i = 1,2, either |v— f(t;)| > 5D and f(¢;) is at distance at most D of a point w; € [a,b], or
f(t;) equals to a point w; in [a,b] (in fact it is @ or b in this case). Hyperbolicity for the four
points wy, we, f(t1), and f(t2) proves that there is a vertex w on a geodesic segment [a, b]
such that |w —v| < 24. O

Lemma 4.2.17 Let Cyl(a,b) be a cylinder, and let x and y be two points in Cyl(a,b). Assume
that there is a vertex v in some geodesic segment [z,y| such that Ang,([z,y]) > 20. Then,
{v} is a parabolic slice of Cyl(a,b), and if z € Cyl(a,v) then y € Cyl(v,b).

Recall that z and y are 24-close to a geodesic segment [a,b]. Let v and w be points in [a, b]
realizing this distance. If |z — y| > 504, let us parametrize the segment [z,y] by arc length :
g :[0,L] — K, and let g(t) = v. The hyperbolicity for the four points z,y,v,w implies that
g(t — 5d) and g(t + 56) is 26-close to [a,b]. This gives a path from g(t — 5J) to g(¢t + 5d) of
length at most 184, containing an arc of [a,b] of length at least 64. This arc must contain
v and have an angle at v of at least 20 — 284. This implies that {v} is a parabolic slice of
Cyl(a,b), because the consecutive vertices of [a,b] are all in Cyl(a,b).

If now |z — y| < 500, it is a consequence of Lemma 4.2.11.

The second statement is a corollary of Lemma 4.2.12. O
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FiG. 4.3 — Regular and parabolic slices in a cylinder

Lemma 4.2.18 (Slices are small)
If v and v' are in the same slice of Cyl(a,b), then |[v — v'| < 2008 and for all geodesic
segment [v,v'], one has MaxAng([v,v']) < 20.

If the slice is parabolic, there is nothing to prove. Let us assume that the slice is regular. Let
v and v’ be two elements of the slice, and assume without loss of generality that |a—v| < |a—v'].

Let us assume that |v — v'| > 2004. By the previous lemma, there is a vertex w on a
geodesic segment [a,b] such that |w — v| < 26, and similarily, there is w' on [a,b] such that
|w" — v'| < 2§. Note that, as |v — v'| > 2004, the distance |w' — w| is at least 1900.

Now let z be in N éa’b) (v). As it is an element of the cylinder, there is an vertex w, of
[a,b] such that |z — w,| < 2§. The vertex z is at distance at least 1000 from v, therefore
|lw — w,| > 906. Moreover, as |a — z| < |a — v| and |z — v| > 1004, the vertex w is on
the subsegment [w,,w’] of [a,b]. Therefore, |w, — w'| > 2804. This gives, by the triangular
inequality, |z — v'| > 2500. Therefore, z is in Néa’b) (v").

Hence, we have Néa’b) (v) C Néa’b) (v') and similarly Nl(gﬂa’b)(v') C N g’b)(v). Moreover
NI(-Ja’b) (v) # Néa’b) (v") (and similarly N}(za’b) (V') # Néa’b) (v)), because v’ is in Néa’b) (v) and
not in N éa’b) (v"). Therefore, Diff, (v, v") # 0 which is a contradiction since they both are in
the same regular slice.

The bound on the maximal angle of a geodesic segment [v,v'] is a corollary of the Lemma
4.2.17 : if Ang, ([v,v']) > 2O for some w, Lemma 4.2.17 implies that v and w are not in the
same slice (not even in consecutive slices). O

Corollary 4.2.19 (Consecutive slices are close)

Let Cyl(a,b) be a cylinder, and let S and S" be two consecutive slices. Let v € S and
v e s

Then |v —v'| < 10000 and MaxAng([v,v']) < 20.

The bound of the maximal angle is a consequence of Lemma 4.2.17 : if there was such an
angle there would be a parabolic slice between S and S'.

Assume that |v — v'| > 10006, and without loss of generality, |a — v| < |a — v'| . They are
24-close to a geodesic segment [a,b]. Let w be on [a,b], at distance at least 4006 from v and
v', and such that |a —v| < |a — w| — 2006 < |a — w| + 2006 < |a —v'|. By Lemma 4.2.18, w is
not in S nor in §’, and as it is on a geodesic segment [a, b], it is a slice. This slice is not before
S and not after S’, therefore, S and S’ are not consecutive. (]

Lemma 4.2.20 (Locality of the regular slices)

Let Cyl(a,b), and Cyl(a,c) be cylinders without parabolic slices. Assume that Cyl(a,b) N
Bg(a) = Cyl(a,c) N Bg(a), where Br(a) is the ball centered at a of radius R. Then, a slice
of Cyl(a,b) included in Br_opos(a) is a slice of Cyl(a,c).
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Let S be a slice of Cyl(a,b) and assume that S is included in Bg_9pp5(a). Let v be in S.
Let S’ be the slice of Cyl(a,c) containing v. Let also w be another vertex in S. We want to

prove that w is in S’. Let us compute Diff, .(v,v"). It is equal to Card(Néa’c) (v) \Néa’c) (v')) -
Card(N\ (v') \ N\ (v)) + Card(N " (') \ Ny (v)) — Card(N" (v) \ N ().

Note that Nl(la’c) (v) = Néa’b) (v) and similarly for ¢'. If z is in N}(;,c) (v") \Nl([la’c) (v), then
it is 1004-close to v. Therefore, z is in Cyl(a,b), and it is in Nl(za’b) (v")\ Nl({a’b) (v). Similarly
the other inclusion holds, and one has N}(za’c) (v")\ N}(za’c) (v) = N}(za’b) (v") \Ngl’b) (v). Therefore,
Diff, (v, v") = Diff, y(v,v"), and this proves that S’ C S. Similarly, one has the other inclusion,
and S = §'. This proves the lemma. O]

Theorem 4.2.21 (Coincidence of the decomposition in slices)

With the notations of Theorem 4.2.8, let (z,y,z) = (p,ap,y~'p) be a triangle in K, such
that o, 8,7 are in FUF™, and afy = 1.

The ordered slice decomposition of the cylinders is as follows.

Cyl(m,y) = (Sla LEEE) Sk:7 %Za T17 IERE Tm)
Cyl(z,z) = (S1, .-y Sky Hy, Vi, ..., V)
Cyl(y,z) = (Tm7 RN Tla Hma Vla LR V;J)a

where S;, T; and V; are slices and where each H,, (v = x,y,z) is a set of at most 10p(n)
consecutive slices, with no parabolic slice of angle more than 30 + 1004.
The sets H, are called the holes of the slice decomposition.

Consider the cylinders Cyl(x,y) and Cyl(z, z). By Theorem 4.2.8, they coincide in Bg, , ().
Therefore the parabolic slices they contain, and that are located in Bg, , ,—2(z) are the same.

Let {v} be their last common parabolic slice : Cyl(z,y) = Cyl(z,v) U Cyl(v,y) and
Cyl(z, z) = Cyl(z,v) U Cyl(v, z), by Lemma 4.2.13.

The ordered slices of the cylinders Cyl(x,y) and Cyl(z, z) obviously coincide at least untill
the slice {v}.

Let {w} be the first parabolic slice of Cyl(z,y) after {v}, or w = y if there is no such
parabolic slice. Let {w’'} be the first parabolic slice of Cyl(z,y) after {v}, or w' = z if
there is none. By Theorem 4.2.8, Cyl(v,w) N Bg, , .—ja—y|(v) = Cyl(v,w') N B, ,_|z—v|(V)-
These cylinders are without parabolic slices. By Lemma 4.2.20, their regular slices that are in
BRy., .. —e—v|—2005(v) coincide.

In other words, the slice decomposition of Cyl(x,y) and Cyl(z, z) coincide at least until
their last common parabolic slice, and for all slices in B(g, , .—200s) (z). A similar statement
holds for the other pairs of cylinders.

Furthermore, any parabolic slice of Cyl(z,y) of angle greater than 30 + 1000 is a parabolic
slice of either Cyl(z, z) or Cyl(z,y). Indeed, if S is such a slice in Cyl(z,y), then by Lemma
4.2.11, a segment [z,y] has an angle more than 20 + 1004 at this point, and therefore, one of
the two segments [z, z] and [z,y] has an angle more than © at this point, and S is a parabolic
slice for its cylinder. This, with the previous statement of the coincidence of slices, proves the
theorem. [J

4.3 Image of a group in a relatively hyperbolic group

In this section we consider I' a relatively hyperbolic group with associated graph K, and
G a finitely presented group with a morphism h : G — I". We want to explain how to adapt
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Delzant’s method, given for hyperbolic group in [De], to the relative case, in order to obtain
an analogue to Thurston’s Theorem 0.1.

For conveniance, we choose the graph K with the four following properties

It has a base point p with trivial stabilizer. Its vertices are exactly the infinite valence
vertices and the elements of orbit of p. It has no pair of adjacent vertices of infinite valence.
Finally, for a certain word metric on I', one has, for all v in T', for all geodesic segment [p, yp]
in K, |vp — p| x (MaxAng([p,7p]) + 1) = |-

It is possible to choose K satisfying these requirements : see for example the coned-off
graph of the Cayley graph in [F]|, where the angles at the parabolic vertices are bounded by a
word metric of the parabolic subgroups, which are assumed to be finitely generated.

Remark 2 : In such a graph, a cylinder cannot have two consecutive parabolic slices.
Indeed, a geodesic segment between two parabolic slices {v1} and {ve} must contain a vertex
with trivial stabilizer, which would belong to some regular slice of Cyl(vy,v9).

Definition 4.3.1 (Accidental parabolic)

We say that the morphism h : G — T has an accidental parabolic either if h(G) is parabolic
in I, or if there exists a non-trivial amalgamated free product A xc B, or an HNN eztension

Axc, and a factorization of h : G h r or G _h such that f is
\ T’” \ T’“
A X B A*C

surjective and the image of C by h' is a finite, or parabolic subgroup of T'.

Lemma 4.3.2 If a subgroup H of ' has a finite orbit in the graph K, then either H is finite
or it is parabolic.

The subgroup H has a subgroup of finite index P, fixing a point in K. Assume that H
is infinite, and not equal to P. As P is also infinite, it is parabolic, and its intersection with
its conjugates in H is infinite. But it is easily seen from fineness that the intersection of two
distinct conjugates of a maximal parabolic subgroup is finite in a relatively hyperbolic group.
Hence, H is itself parabolic. [

In the rest of this section, we prove the next theorem.

Theorem 4.3.3 Let G be a finitely presented group, and I' a relatively hyperbolic group. There
is a finite family of subgroups of I' such that the image of G by any morphism h : G —» T
without accidental parabolic is conjugated to one of them.

Let h be a morphism A : G — I'. We will construct a factorisation of h through a certain
graph of groups, and then we will deduce that either A has an accidental parabolic, or h(G)
is conjugated to a subgroup of I' generated by small elements.

We choose a triangular presentation of G : G =< ¢1,...,9x|T1,- .., T, > with n relations
which are words of three (or two) letters. This defines a Van Kampen polyhedron P for G,
which consists of n triangles and digons.

Recall that the base point p of the graph K associated to the relatively hyperbolic group
I, has trivial stabilizer. We consider the cylinders of the triangles, and their decomposition in
slices obtained by the Theorems 4.2.8 and 4.2.21, for the family F' = {h(g1),...,h(gx)} CT
and the base point p € K.
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4.3.1 The lamination A on P.
Markings on the edges of P

For a generator g; of G, let L be the number of regular slices of the cylinder of [p, h(g;)p] in

K, and L?, the number of its parabolic slices. Let ¢; the loop of the polyhedron P canonically

T »
associated to g;. Let m;,... miLiHL" be (L} + 2LP) points on ¢;, such that, if ¢;(¢) : [0,1] — P

is an arc-length parametrisation of c;, one has m} = cﬂkﬁ) We call them the markings
of the slice decomposition on ¢;. To each marking of ¢; we associate a slice in the cylinder of
[p, h(gi)p] in K : mz1 is associated to the first slice; if mf is associated to a regular slice, mf“
is associated to the next slice in the ordering, if mf is associated to a parabolic slice, and if
m¥~1 is associated to another slice (or do not exist), then m*T is associated to the same slice
than mf; finally, if mf and mf_l are associated to the same parabolic slice, then mf"'l is
associated to the next slice in the ordering. Note that every regular slice has one marking on

¢; associated to it, and every parabolic slice has two markings.

Regular arcs in a triangle (or a digon) of P

The lamination A is defined by its intersection with each triangle or digon T in P.
Consider a triangle 7' (with an euclidean metric) of P, whose edges ¢;, ¢;, ¢;, correspond to
the relation g;gjgr = 1 of the presentation.

Consider two markings m; of ¢; and mj of ¢;, that are associated to the same regular slice
S

in the cylinders of the triangle (p, h(g;)p, h(g,;l)p) in K. The segment [m], m3] in T is said to
be a regular arc.

Consider two consecutive markings, m; and mg"'l, of ¢;, associated to the same parabolic
slice of Cyl([p, h(gi)p]). There are three possibilities. If the slice is not equal to a slice of any
of the two other cylinders, we do nothing. If it is a slice of one, and only one, other cylinder,
say Cyl([h(gi)p, h(gj)h(gi)p]), then there are two consecutive markings m; and mj-“ of ¢;
associated to it. The segments [mg,mj"'l] and [m;+1,m§] are said to be also regular arcs.
Note that these two segments do not cross. Finally, if the slice is a slice of Cyl([p, h(g;)p]

and of Cyl([h(g;)p, h(gi)p]), there are two consecutive markings m? and m;'"l of ¢;, and two

consecutive markings m’;C and m’,?'l of ¢k, associated to it. The three segments [mg,mfjl ,
[mf“,mj], and [mj-“, m}] are regular arcs. These three segments do not cross each other.

We do similarly after cyclic permutations of 4, j and k. We denote by A,(T') the union of
all the regular arcs in 7'.

Singular arcs in a triangle (or a digon) of P

If the slice decomposition of the triangle has a hole (in the sense of Theorem 4.2.21),
there are markings that are not in regular arcs. In such a case, we add a singular point pr in
the component of T'\ A,(T) containing these markings. For all marking m not in A, (T, the
segment [m, pr| is said to be a singular arc. Let As(T) be the union of these singular arcs in
T.

The lamination A on P is defined by : for all triangle or digon T" of P, ANT = A, (T)UA(T)
(see figure 4).
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Edges of Kt

_________ Leaves of ANT

Ck

FiG. 4.4 — The lamination A NT and the graph K7 in a triangle 7" of P

4.3.2 Graph K on P.

In each triangle or digon T of P, we draw a (disconnected) graph K satisfying : each
connected component of 7'\ K contains one and only one leaf of ANT, and its intersection
with the edges ¢; of T\, KT N ¢; consists of the vertices of K7, moreover they are located on
middles of consecutive markings of g; (see figure 4).

Let K be the union of all those graphs : K = |J;_; Kr;. Some of the components of K
have edges with one vertex in a hole of a slice decomposition. Let K’ be the graph obtained
from K when one has removed all these components.

There are two kind of connected components of K’ : the components K; for which a small
tubular neighborhood NK; is such that N K;\ K; is disconnected (type I), and those for which
it is connected (type II).

4.3.3 G as a graph of groups.

The graph of group we consider is as follow. Its vertices are of two kinds. First there
are the connected components of P\ K', and the groups are the fundamental groups of
those components. There are also the components of K’ of type II, and the groups are the
fundamental groups of a small tubular neighborhood. The edges of the graph of group are the
components K; of K', and their groups are either 71 (N K;), the fundamental group of a small
tubular neighbourhood, in the case of a component of type I, or 71 (NK; \ K;) otherwise, in
type II. Note that in this case, m (N K; \ K;) is of index two in 71 (N Kj).

Lemma 4.3.4 (/De] Lemma II1.2.5)
Let H be a subgroup of G stabilizing an edge of the graph of group. Then h(H) is a subgroup
of ' that has an orbit in K which is contained in a slice. In particular, this orbit is finite.

For the proof, see [De].
In the case of hyperbolic groups, one deduces that the subgroup is finite; in our case, by
Lemma 4.3.2, it is either finite or parabolic.

Corollary 4.3.5 If the map h has no accidental parabolic, then the graph of groups is a trivial
splitting, and h(G) is the image of a vertez group corresponding to a leaf X in P, containing
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singular points of the lamination : h(G) is conjugated to the image of w1 (\) (only defined up
to conjugacy).

4.3.4 If h has no accidental parabolic.

In all the following, we assume that A has no accidental parabolic : we can apply Corollary
4.3.5.

Let Pr be a Van Kampen polyhedron for I, for a finite generating set : it is a cell complex
of dimension 2, whose 1-skeleton consists of finitely many loops. The set of vertices of its

=0
universal cover, Pr , can be identified (after choice of a base point) with I', and with the set
of vertices of finite valence of I : to v € I" is associated vyp € K.

Lifting slices of £ in I

We can consider pre-images in ﬁ;o ~ I of slices of cylinders in K as follows.

If S is a regular slice of a cylinder in K, which is not reduced to a vetex of infinite valence,
then we say that St is the set of elements of I' that send the base point p of K on a geodesic
segment with ends in S : Sp = {y € T'| Js1,82 € S, |[s1 — yp| + |vp — s2| = |s1 — s2|}-

If S = {v} is a parabolic slice of a cylinder in K, or a regular slice reduced to a point of
infinite valence, then Sr is the set {y € I'| |yp — v| = 1}. It is a coset of a parabolic subgroup
of T.

Themapﬁ:ﬁ—)ﬁ;

Let P be the universal cover of P, and * a base point in it. For every ¢ = 1...k, for
every edge ¢; in the one skeleton of P, we denote by & its image in P starting at %. We lift
the markings of ¢; on ¢. By equivariance, every edge of the 1-skeleton of P is marked by
consecutive markings.

Recall that ]31: is the universgl cover of Pr. The morphism h can be realized as a continuous
equivariant map h from P to Pr, such that for all ¢ = 1...k, h(&) is a path from A(*) to
h(g;)h(*), where g; denotes the element of G associated to ¢;. We now choose the map with
more care.

We choose this map to be continuous, equivariant, and such that the three following pro-
perties on the markings of each ¢ (i =1...k) hold. '

If mf is any marking of ¢; associated to a slice S (without restriction), and if 7! is its
image in ¢ then E(Thf) is equal to a vertex yh(x) of P, such that € Sp.

Moreover, if mf is a marking of ¢; associated to a parabolic slice S, there is an unique
marking adjacent to mf in ¢;, which is associated to a slice S’ # S. Then we require that
ﬁ(ﬁﬂ ) = yh(x), where y € Sr is such that 4p lies on some geodesic from v to a point of S’ in
Cyl(p, h(g;)p). We denote by Sr(i, j) the set of such elements vy € Sr.

Note that the images of the two markings of a parabolic slice might be very far from each
other in I, in the same coset of parabolic subgroup.

Finally, if m} is a marking of ¢; associated to a regular slice S reduced to a vertex of
infinite valence S = {v}, then we require that E(Th{ ) = vh(*), where v € Sr is such that yp
lies on some geodesic from v to a point of a slice adjacent to S in Cyl(p, h(g;)p). We denote
by Sr(Z,7) the set of such elements v € Sr.

We can assume that 71(51) is a geodesic between the images of consecutive markings, but
this is not essential.
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Lemma 4.3.6 Let mz be a marking associated to a parabolic slice S = {v}, or a regular slice
reduced to a single vertexr of infinite valence v. The diameter of Sr(i,j) in T (for the word
metric) is at most 20006(20 + 1).

Let v, and 7y, be in Sp(4,5). There are points v; and ve in slices S] and S% adjacent to
S in Cyl(p,h(g;)p). By Corollary 4.2.19, |v — v;| < 10000, and for some geodesic segments,
MaxAng([v, v;]) <20, for i = 1,2.

First assume that S is a parabolic slice. Then, by the definition of Sr(z,7), S| = S5. By
Lemma 4.2.12, Ang,([v,v1],[v,v2]) < 14D < ©. Therefore, by our choice of graph K, we can
deduce that |y 2| < 20006(20 + 1)

Secondly assume that S is a regular slice. Then there is no parabolic slice between S} and
Sh. By Lemma 4.2.17, Ang, ([v,v1], [v,v2]) < 20. Therefore, |7 72| < 20005(20 +1). O

Bounding the lengths of the images of leaves of A in P

The equivariant map h induces a continuous map h : P — Pp.
The next lemma is an analogue of Lemma II.1 in [De], but cannot be deduced from it,
because of the presence of parabolic slices.

Lemma 4.3.7 Let l1,...,l, be a sequence of reqular arcs of A, where l; links the marking
t(l;) to the marking 7(l;), and where 7(l;) = t(liy1). If the path lils...1, has no loop, then
the path h(lily...1,) in Pr is homotopic, with fized ends, to a path in the 1-skeleton of Pr, of
length less than 200005(© + 1) x n (for the graph metric of the 1-skeleton).

As the arcs are all regular, all the markings involved are associated to the same slice of K,

say S. Let us lift the path lyls...I; in a path lily...l; of P, starting at the markmg !, where
mf = 1(l1). Thus, this path is mapped in Pron a path that stays in Sp. As Pris simply
connected, this path is homotopic to any path in the 1-skeleton that has the same ends.

There are two main cases to study, namely if the slice is regular not reduced to a single
point of infinite valence, or if it is reduced to a single point of infinite valence (including the
case of parabolic slices). If the second case, we will have to discuss whether an adjacent arc
of the lamination is regular or not.

First, if thg_ﬁli/ce S is regular, not reduced to a parabolic point, then the end points vy
and v,, of ﬁ(lllg...lm) are vertices of the form vy = ")’oil,(*) for vy € Sp, and v, = ’)’mib(*) for
Ym € Sr. Therefore, there exist sp and s in S and a geodesic segment [sg, sp] in K containing
~Yop (and similarly for 7,,). By Lemma 4.2.18, we have a path from ~yp to yp,p of length at
most 3 X 2004, and of maximal angle at most 20. Therefore, the distance in the 1-skeleton of
Pr between vy and vy, is at most 6005(20 + 1).

Secondly, we assume that S is a parabolic slice or a regular slice reduced to a single vertex
of infinite valence. Then in the edge containing the marking ¢(l;), there is one (and only one,
if the slice is parabolic) marking m,; adjacent to ¢(/;) that is not associated to S. In the
edge containing the marking 7(l;), there is only one marking m,; adjacent to 7(l;) that is not
associated to S, and that is linked to m, ; by an arc (regular or singular) of the lamination of
the triangle or digon. These markings are associated to regular slices (cf Remark 2).

There are two possibilities.

In the triangle containing ;, it is possible that [m, ;, m; ;] is a regular arc of A. Let ;; .. .1;,
a maximal subpath such that this property holds at each step. By Lemma 4.3.6, the end points
of the image of l;, ...1;, in Pp are at distance at most 20006(20 + 1) in the 1-skeleton of Pr.

Therefore, the image of l;, ...1;, in E is homotopic with fixed ends, to a path in the 1-skeleton
of length less than 20006(20 + 1).
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Assume now that [m,;,m,;] is not a regular arc of A. That is that [/; is one of the three
regular leaf of a triangle that is adjacent to a singular leaf. Note that in a path [; ... [, without
loop, this can only happen 3n times, where n is the number of triangles.

Let S be the slice of the cylinders of the triangle containing l;, associated to ¢(l;) and 7(;).
Let S, be the slice associated to m,;, and S; be the slice associated to m ;.

In order to bound the distance between the images of «+(I;) and 7(l;), it is enough to bound
the maximal angle of geodesics between elements of S, and S;. Let v, be in §,, v, be in 5.

We claim that, given a geodesic segment [v,,v;] in K, its maximal angle is at most 50.

If S is a regular slice, it is the triangular inequality for angles in the two edges of the
triangle sharing S.

If S is parabolic, we consider a segment between v, and v, that passes through the vertex
of the slice S. By Lemma 4.2.18, it has no angle larger than 20 except possibly at S, and if
its angle is larger than 50 at this point, S would be a parabolic slice of the third side of the
triangle. By the construction of the leaves in a triangle, the marking 7(I;) should be on this
side, which is not the case. -

Therefore, the distance between the images of ¢(I;) and 7(l;) in the 1-skeleton of Pr is at
most 50.

For a path lyls...l,;, without loop, such a situation can happen only 3n times, where n is
the number of triangles. Therefore the distance between the endpoints of its image, in the
1-skeleton of Pr, is at most 3n x (20000(20© + 1) + 50) + 20006(20 + 1). This is less than
200006(© + 1) x n. O

Lemma 4.3.8 An arc of A linking two markings corresponding to slices in a hole of a same
triangle, maps on a path which is homotopic, with fized ends, to a path in the 1-skeleton of
Pr, of length less than (¢(n) + 1) x (400006(© + 1)).

Such arc is homotopic with fixed ends in P to a path tracking back on the first side of
the triangle, until the first regular arc to the other side, and then tracking on this side to the
suitable marking. By theorem 4.2.21, this path enters in at most 2 x (10p(n) + 1) slices, none
of them having an angle superior to 50. Therefore the distance between the end points of the
image is inferior to 2 x (10p(n) + 1) x (10006(20© + 1)) in the 1-skeleton of the universal cover
of Pr. O

Image of the leaf A

Lemma 4.3.9 ([De] Lemma II1.4)

Let L be a connected graph, Ly be its 1-skeleton, and E a metric space. Let h : L — E be
a countinuous map. Let E' be a subset of E. Assume that :

1) For all edge | in Ly, h(l) is homotopic in E, with fized ends, to a curve in E' of length
less than the constant M.

2) There ezists a finite set of edges L C Ly such that a path without loop, made of
consecutive edges l1,...,l, in L1 \ L}, has its image by h homotopic in E (with fized ends) to
a curve in E' of length less than M.

Then, for all vertex s of L, hy(m1(A,s)) is generated by curves in E' of length inferior to
(4Card(L}) +3) x M.

Let T be a maximal tree in L. The group h.(mi(A,s)) is generated by the images of the
loops of the form [s, s']e[s”, s], where the segments [s,s'] and [s”, s] are in T, and where e is
an edge from s’ to s” in L. In particular, the paths [s, s'] and [s”, s] do not contain any loop,
and contain at most Card(L}) edges of L}. Each of those two segments are the concatenation
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of at most Card(L}) + 1 segment without loop made of consecutive edges in L; \ L}, with at
most Card(L]) edges of L. Therefore the image of [s, s'] by h is homotopic in F, with fixed
ends, to a curve in E' of length less than (2Card(L}) + 1) x M, and the same is true for the
image of [s”, s]. Finally, the image of the edge e is homotopic with fixed ends to a curve of E
of length at most M, this gives the result. [J

Finally, we can prove Theorem 4.3.3. Given a morphism A : G — I' without accidental
parabolics, we set E = Pp, E' its 1-skeleton, and L = ), the singular leaf of A given by
Corollary 4.3.5. We choose L) to be the set of arcs joining two markings of a hole of a triangle,
via the singular point of this triangle, and M = 40000§(¢(n) + 1)(© + 1)} (which is superior
to 200006(© + 1) x n). By Lemma 4.3.7 and Lemma 4.3.8, the assumptions of the previous
lemma are fulfilled. We get that h(G) is conjugated to a subgroup of I' generated by curves in
the 1-skeleton of Pr of length bounded by (4 xn x (30¢(n))?+3) x M. There are finitely many
such curves. Hence, there are finitely many such subgroups, therefore this implies Theorem
4.3.3.0
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Annexe A

Equivalence of definitions

The aim of this appendix is to discuss the equivalence between different definitions of
relative hyperbolicity. It is essentially based on the work of B.Bowditch [Bo6].

Assumption : In all the following, I' is a finitely generated group, and G is a family of
infinite subgroups of I', each of them being of finite type. We assume that G is closed for the
conjugacy by elements of I', and contains only finitely many conjugacy classes of subgroups.

Let us recall the three definitions of relative hyperbolicity. The two firsts were formulated
by Bowditch, the first one being inspired by an idea of Gromov in [G], and the third one was
formulated by Farb [F].

We say that the action of a group on a compactum is geometrically finite if it is of conver-
gence, and if the compact consists only of conical limit points and bounded parabolic points.
The stabilizers of the parabolic points are the maximal parabolic subgroups.

DEFINITION Al [Bo6| : We say that T' is hyperbolic relative to G, if I' admits a properly
discontinuous isometric action on a path-metric space X which is proper, Gromov-hyperbolic,
and such that the induced action on the boundary 0X is geometrically finite, with mazimal
parabolic subgroups precisely the elements of G.

We say that a (not necessarily locally finite) graph K is fine if, for every edge e in K, for
every number L > 0, the set of simple simplicial loops of length bounded above by L and
containing e is finite.

DEFINITION A2 [B0O6| : We say that I' is hyperbolic relative to G if I' admits an action on a
graph K, Gromov-hyperbolic and fine, with finite quotient, such that the stabilizer of each edge
1s finite, and such that the elements of G are exactly the stabilizers of the vertices of infinite
valence in K.

We need a little vocabulary to formulate the third definition.

Let H; ... H,, be elements of G, representatives of the conjugacy classes of subgroups in
G. We choose a system of generators of I' and consider the Cayley graph associated : Cay(T").
We construct a new graph as follow. We add a vertex v,g, for each left coset yH; of each
group H;, and we an edge between v,g, and each element of the coset vH;. This new graph
is called C/‘a\y(I‘).

Given a path w in éa\g/(F), we say that w penetrates the coset gH; if w passes through the
cone point vy p; ; a vertex vq (respectively vg) of the path w which precede to vym, (respectively
succeed to vgg;) is called an entering vertex (respectively an eziting vertez) of w in the coset
gH;. Notice that entering and exiting vertices are always vertices of Cay(I'). A path w in

79



Annexe A

C/’a\y(I‘) is said to be a path without backtracking if, for every coset gH; which w penetrates,
w never returns to gH; after leaving gH;.

The pair (T, G) is said to satisfy the Bounded Coset Penetration property (or BCP property
for brevity) if, for every p > 1, there is a constant @ = a(u) > 0 such that if v and v are
p—quasi—geodesics without backtracking in C/’(Zy(l") such that the endpoints of u and v are in
Cay(T), u— = v_, and dist(uy,v4+) < 1 (the distance is the one of the Cayley graph), then
the following conditions hold.

(1) If u penetrates a coset gH; but v does not penetrate gH;, then the entering vertex and
the ending vertex of u in gH; are an Cay(T")-distance of at most a from each other.

(2) If both u and v penetrate a coset gH;, then the entering vertices of u and v in gH; lies
an Cay(T)-distance of at most a from each other ; similarly for the exiting vertices.

Let us prove that the second assertion is a consequence of the first one. Assume that two
paths u and v penetrate a coset gH;. Let u' be the path obtained from u by taking only
the subsegment from the starting point of u to its entering vertex in gH;. Let v’ be the path
obtained from v by taking only the subsegment from the starting point of v to the vertex vgm;.
The paths v’ and v’ are p-quasi-geodesics. Let v” be the path obtained from v’ by adding one
edge so that its final vertex is the ending point of u’. As this vertex is not in v', the path v"
is a (2p + 1)-quasi-geodesic. Therefore v’ and v" satisfy the conditions of the first assertion
of the property BCP, and therefore, the entering points of w and v in the coset gH; are at a
Cay(T)-distance less than a(2u + 1). This proves that, with another choice of the constants,
the second assertion of the property BCP is satisfied.

DEFINITION A3 [F| : We say that T" is hyperbolic relative to G if a graph C/’a\y(I‘) is hyperbolic,
and if the pair (T',G) satisfies the property BCP.

In the paper [Bo6] of B.Bowditch, it is claimed that the three definitions are equivalent to
each other, and the author gives a full proof of the equivalence of his definitions A1 and A2.
In [Szczl], A.Szczepanski proves that Definition 1 implies a weaker form of Definition A3 : he
proves that the graph C/’(Zy(l") is hyperbolic, but he does not prove the property BCP. We will
show that Definition A2 and A3 are also equivalent :

THEOREM : Under the assumption of the beginning, Definition A1, A2 and A3 are equivalent.
A sketch of proof of this result was previously given in [D1].

A.1 Equivalence between Definitions A1 and A2

We briefly sketch the proof of [Bo6| of the following theorem. The interested reader is
encouraged to read the original paper.

THEOREM (Bowditch) : Under the assumption of the beginning, Definition A1 and A2 are
equivalent.

Assume that I' and G satisfy Definition Al. First, one can construct a strictly invariant
system of horoballs in X. We consider a kind of nerve of this system : it is a graph whose
set of vertex is the set of horoballs, and where two vertices bound an edge if the correspon-
ding horoballs are at distance less than a certain constant. In [Szczl], A.Szczepariski already
considered a similar construction (collapsing each horoball), and obtained that the graph is
hyperbolic. The study can be completed by proving that is is also fine, and therefore one can
deduce that I' and G satisfy Definition A2.
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Assume that I' satisfies now Definition A2. We want to replace the infinite valence points
by (proper) horoballs. This can be done by gluing ideal hyperbolic triangles on triangles of
K whose vertices are infinite valence points. In this process the fineness is essential to get an
hyperbolic space at the end.

A.2 Definition A3 implies Definition A2

As explained in the title of this paragraph, we want to prove :
ProproSITION 1 : IfT" and G satisfy the Definition A3, then they satisfy the Definition A2.

Let C/’a\y(I‘) be a graph as in Definition A3. There are only finitely many orbits of edges,
and each stabilizer of edge is trivial. Moreover it is hyperbolic, and the stabilizers of the
vertices of infinite valence are exactly the elements of G.

Therefore, it is enough to prove that the property of BCP implies that the graph C/’Eg(l—‘)
is fine. Let e be an edge of C'/a\y(F), and a number L > 0. Let [ : [0, L] — C/’(Eq(I‘) be a simple
simplicial loop of length L containing e. Without loss of generality, we can assume that (0)
is a vertex of e of finite valence (there always exists one), and that [([L/2]) is also of finite
valence. This defines two paths from [(0) to I([L/2]), which are both L-quasi-geodesics. As
[ is a simple loop, the property BCP implies that neither I; nor lo penetrates a coset for a
distance greater than rr. Therefore, I; and s stay in a ball of Cay(T") of radius L x (rg + 1)
centered at the element of I' coresponding to the vertex [(0). Such a ball is finite. We deduce
that there are finitely many possible paths [; and ls, and after projection in C'/a\y(f‘), there are
finitely many simplicial simple loops of length less than L containing e. In other words, the
graph is fine. This proves the proposition. [J

A.3 Definition A2 implies Definition A3

Before proving Proposition 3, let us recall that in an arbitrary graph K, the angle between
two edges e; = (v,v1) and es = (v, v2) sharing one vertex v, is the length of a shortest path
between v; and ve in K\ {v} (the angle is 400 if there is none such path).

LEMMA 2 : A graph is fine if, and only if, it is angularly locally finite, that is, given an edge
e and an number ©, the set of edges adjacent to e that makes an angle less than © is finite.

If the graph is not angularly locally finite, there is an edge e, and a number © such that
the set of edges ¢’ making an angle less than © with e is infinite. By definition of angle, this
gives, for each such edge €, a simple simplicial loop L(e'), containing e and of length less
than © + 2. For two distinct edges e’ and e”, L(e’) and L(e”) are distincts, because, as it is
simple, L(e') do not contain e”. Therefore, the graph is not fine. Now assume that the graph is
angularly locally finite. A simple simplicial loop of length less than L is made by consecutive
edges that make angles less than L — 2 between each other. Therefore, given the first edge,
there are finitely many choices. [

ProprosITION 3 : IfT" and G satisfy the Definition A2, then they satisfy the Definition AS3.
For that, we will first prove :

LEMMA 4 : IfT' and G satisfy the Definition A2, then the graph C/'a\y(I‘) is hyperbolic and fine.
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Then, we will prove that

LEMMA 5 : If the graph C/a\y(P) is hyperbolic and fine, then the pair (I', G) satisfies the property
of BCP.

Lemma 4 and 5 together imply Proposition 3, and consequently also the Theorem.

Proof of Lemma 4.

Let K be a graph given by Definition A2. From [Szczl|, we know already that the graph
C/’a\y(f‘) is hyperbolic. To prove the fineness of C/’a\y(F), we will perform a few changes on K
preserving the fineness.

We will use a few results about fine graphs, taken from [Bo6|.

LEMMA 4.5 in [Bo6] : Let K and L be two connected graphs and let T’ be a group. We assume
that T’ acts on K and on L with finite pair stabilizers, and with finitely many orbits of edges
in each. We assume that K and L have same set of vertices (equivariantly). If K is fine, then
L is fine.

LEMMA 2.6 in [Bo6] : If a graph K is fine, then its binary subdivision is fine.

As K is fine, and the stabililizers of its edges are finite, by Lemma 2.9, the pair stabilizers
are finite also. Let e = (v,v') be an edge in K. Its stabilizer is finite; let n be its cardinality.
We consider the graph K, whose vertices are the one of K, whose edges, are the one of X not
in the orbit of e, and n distinct edges between yv and o', for all v in I'. We define the action
of ' on K, such that it coincides on the one of X\ e, and such that it acts freely on one of the
edges between v and v'. The pair stabilizer are still finite, therefore, by Lemma 4.5, this graph
is fine. Let us take K the binary subdvision of this graph ; K is still fine by Lemma 2.6, the
stabilizers of the new vertices are all finite, and now there is a vertex, that we denote by w,
which has trivial stabilizer. We now construct K. identify the orbit of w with I', and we add
finitely many orbits of edges with trivial stabilizer so that a cayley graph Cay(T") simplicially
embeds in K.. Any pair of vertices has finite stabilizer : either the two vertices are in the
graph K4, or there is one vertex with finite stabilizer. Again, by Lemma 4.5, this graph is also
fine. Now, we consider representatives of the orbits of the vertices of infinite valence in K,
(or equivalently in ) : vy, -+, vy,. We now add an edge between w and v; for each 4, and all
their translates by elements of T'. We get a graph K4, which is still fine, and in which éa\y(I‘)
embeds simplicially. Tt is trivial that a subgraph of a fine graph is fine, therefore C/’cZy(I‘) is
fine. O

Proof of Lemma 5.

We argue by contradiction, assuming that the property BCP is not satisfied. Let L be a
number, and p; and py paths in Cay(T"), such that their projections py and po are L-quasi-
geodesics starting (and ending) at points at distance at most 1 from each other. By classical
hyperbolic properties (see [G]) there exists a constant D(é, L) depending only on § and on L
such that p; and po remain at distance less than p; and ps from each other.

Let © be a number. Then, there is a constant d(©) such that, for any two elements g and
g’ is a subgroup H;, at distance more than d from each other (for the word metric in T'), the
angle between the edges (vgy;,§) and ('UHi,gA’) in C/(;y(f‘), is more than ©. Indeed, if this was
not true, there would be infinitely many edges adjacent to an edge (vg,,g) in C/'a\y(f‘), making
a given angle with it, and this is in contradiction with Lemma 2.

Let now © be the number 64 x L x D(d, L) + 1. We assume now that p; penetrates a coset
for a distance greater than d(©), and that ps does not penetrates this coset. This means that
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p1 pass through a vertex v , and that, at this vertex, the two consecutive edges make an angle
more than ©, and also that py does not contain v. . -

Let us parametrize by arc length the paths py : [t_1,%1] = Cay(T), and ps : [0,%2]Cay(T),
such that p1(0) = v. Let now ¢ = Min(t1, L x 10 x D(4, L)), and o1 = pi|o,. Let o2 be
a path of minimal length (hence, less than D(4, L)) from pi(t) to a point po(t'). Let ¢ =
Min(tg,t' + L x 20 x D(4, L)), and o3 = pa|jp - Again, let o4 be a path of minimal length
(hence, less than D(d, L)) from pa(t") to a point py(¢"). Finally, let o5 = p1|jpm o)

The concatenation 01090304035 is a loop. The vertex v is in o1 and in o5 (it is an end of
each of them) but it is not in o3.

On the other hand, we claim that o9 and o4 do not contain v. We prove it for o9, the proof
is similar for o4. If t = L x 10 x D(6, L), then p;(t) is at distance at least 10 x D(d, L) from v.
As o1 is shorter than D(4, L) it cannot contain v. If now ¢ = ¢1, the length of o7 is 1 and oy
can be chosen to be an edge of Cay(I"), therefore, as v is assumed not to be on o3, it is not a
vertex of og.

Therefore, the loop passes only once in v, and its angle at v, is by definition of angles, less
than the total length of the loop : that is less than 2 x (L x 10 x D(d, L) + D(6, L) + L x 20 x
D(6,L) + D(é, L)) < 64LD(é, L).

This means that the angle between the two consecutive edges at v is less than 64LD(6, L),
but they were supposed to make an angle more than ©, this is a contradiction. [J
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