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1. INTRODUCTIONS

1.1. Introduction en francais. Le but de cette theése est d’étudier
les structures réelles sur les variétés toriques compactes. Avant d’entrer
dans les détails, nous allons rappeler brie¢vement les principales notions

utilisées.

1.1.1. Structure réelle. Commencons par la notion de structure réelle
sur une variété complexe. Dans un premier temps, une variété réelle
non-singuliére peut étre vue comme un ensemble de points d’un espace
affine ou projectifréel gui vérifient un systéme non-singulier d’édqguations
a coeflicients réels. Ces meémes éguations polynomiales peuvent étre
envisagées sur C de sorte que la variété complexe qgui en résulte est
invariante par la conjugaison complexe et la variété réelle de départ
devient ’ensemble de ses points fixés par la conjugaison complexe. Ces
considérations nous conduisent a définir une structure réelle ¢ sur une
variété complexe X comme une involution anti-holomorphe X — X
(ou, de fagon équivalente, comme un isomorphisme involutif entre X
et ‘{', o1 X est X muni des cartes complexes conjuguées). On appelle
alors variété réelle le couple (X, ¢) et partie réelle de (X, c), notée IR.X,
I’ensemble des points fixes de X par c.

En plus de notre exemple introductif, figure également celuil des var-
iétés toriques comme Cd, (C‘“)d, CPd et de leurs sous-variétés munies
de la structure réelle canonigque. Signalons aussi ’exemple suivant qgui
nous sera utile. Si (X, ¢) est une variété réelle alors f > cfc * définit
une structure réelle ¢ sur le groupe des automorphismes de X noté
Aut(X) de sorte que (Aut(){),cl) est une variété réelle. Rappelons
que si X est une variété algébricque projective, d’apreés le théoréme
de Chevalley, Aut(X) est une extension d’une variété abédlienne par
un groupe linéaire algébrique et posséde par consécguent une structure
complexe canonique.

TUne des questions principales qui apparailt lors de 1’étude des struc-
tures réelles est de savoir si le nombre de leurs classes de conjugaison
est fini. A ce propos, il est bon de remarquer gu’il y a deux classes de
conjugaison de structures réelles sur CPd si d est impair et seulement
une si d est pair. Cependant sur le tore de dimension J, (C‘I()d, cette
question est plus compliquée et la réponse semble connue uniquement
dans le cas des structures réelles torigques. En fait, dans ce cas, le

>=

nombre de structures réelles multiplicatives est (d+1 — 22).
o=<t2i=td—+1

1.1.2. Variété torique. Les variétés toriques ont été étudides depuis

1970 et utilisées dans de nombreux domaines des mathématiques (pour

plus d’informations voir [11] et [12]). Pour nous, une variété torique est
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une variété irréductible et normale X qgui contient un tore algébrique
T = (C)Ii)d comme ouvert dense et telle gque la multiplication sur ce
tore se prolonge en une action de 7 sur X . Nous utiliserons deux
constructions de X .

T.a premiére est une construction gédométrique a partir d’un éventail
A dans un réseau /V de rang d (expliquée en détails dans [27], [14], [19]).
Dans ce cas, X apparalt comme une variété complexe de dimension 4
obtenue par recollement de <€morceaux toriques>S>. Plus précisément,
X est I’union des variétés toriques affines X_ = Spec(C[o’v M AL]) pour
tous les cones o de 1’éventail A. Puisque X est lisse, chagque cbdbne de
1’éventail est engendré par une partie d’une base de V. De plus, X
étant supposée compacte le support de A est égal a IV = IR.

D’autre part, X peut étre vue comme le guotient, par un sous-tore
I de (C)I‘)r, d’un ouvert de Zariski \ Z£ invariant par 1’action de
(C’I’)r. Cette construction est donnée explicitement dans 1’article de T.

Delzant [17] (voir aussi [2], [9])-

1.1.3. Contenu. C’est O. Viro qui le premier, dans les années 1980,
a utilisé la structure réelle canonicque sur les variétés toriques de di-
mension 2 et 3 pour construire des courbes algébriques réelles planes
de degré 6 et 7 (voir [31]). Cependant, des surfaces réelles trés simples
comme S2 ne sont la partie réelle d’aucune surface toricque munie de sa
structure réelle canonique. C’est pourquoil il est intéressant d’étudier
des structures réelles plus générales. Dans un premier temps, nous
considérerons celles gui nmnormalisent 1’action du tore, c’est a dire, les
structures réelles ¢ sur X telles que pour tout ¢ dans 7 il existe ¢t dans

7 ~vérifiant

c(t - u) = . c(w)

pour tout u dans X. Dans ce cas, nous dirons que c est une structure
réelle torigque. Parmi elles, nmnous distinguons les structures réelles rmul-
tiplicatives telles que c(t - u) = c(t) - e(u). De plus, dans 1’étude de ces
structures réelles toriques nous considérerons deux sortes d’éqguivalence:
1’éguivalence torigque c’est a dire la conjugaison par un automorphisme
torique f (vérifiant FfF(t-u) = t,-f(u)) et I’équivalence multiplicative c’est
a dire la conjugaison par un automorphisme multiplicatif f (vérifiant
F(t-u) = F() - F(w))-

Tout d’abord, nous allons tenter de répondre a la question suivante:
quel est le nombre de structures réelles non-éqguivalentes sur une variété
torique donnée 7 Ce nombre est relié directement au nombre de struc-
tures réelles multiplicatives non-éqguivalentes noté e . Nous calculons
explicitement e en dimension 4, d << 3 en remarquant que e = 2d.

En fait, nous prouvons qu’en dimension d qguelconqgue, ce nombre est
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effectiverment majoré par 2% lorsque Aut(.X) est connexe, Auto()g') est
semi-simple ou lorsque X est la variété torique X (/R) associde a un
systéme irréductible de racines R dans un espace euclidien. Dans le
cas général, nous pouvons seulement affirmer que e < (2d)!.

Au cours de cette étude nous travaillons a 1’intérieur des groupes
engendrés par les structures réelles toriques (multiplicatives ou non)
de sorte gu’une nouvelle question se pose naturellement: quels sont
(& isomorphisme prés) les groupes engendrés par les structures réelles
torigques sur une variété torique donnée 7 Ces groupes en dimension
2 et 3 sont des groupes de Coxeter gque nous donnons explicitement.
IDe plus, dans le cas des surfaces torigques, nous déterminons un modeéele
minimal pour chacun d’eux. En dimension d, les variétés toriques X (R)
conduisent a des sous-groupes de Aut(R).

Une partie de 1’intérét d’une variété réelle (X, c) réside dans IR.X.
C’est pourquoi nous voulons déterminer le type topologique de la par-
tie réelle d’une variété toricque réelle. Nous donnons une classification
compléte des parties réelles, a difféomorphisme prés, pour les surfaces
toriques et les variétés toriques de Fano de dimension 3. En dimension
d, nous démontrons que lorsque IR.X n’est pas vide elle est connexe par
arcs.

Nous avons également examiné dans le cadre des variétés torigques
de dimension 3 munies de leur structure canonique la conjecture de J.
IKollar suivante:

Si V. est une varidété réelle C . de dimmension 3 connexe et hyper-
boligque, il n’existe pas de variété complexe X algébriquerment lisse, ra-
tionnelle et projective telle gque V = IRX .

MNous prouvons que la réponse est positive dans le cas des wvariétés
torigques de dimension 3. D’autre part, nous construisons une variété
torique projective de dimension 3 dont la partie réelle est homéomorphe

a une variété hyperbolique.

1.1.4. Plan. Cette thése est divisée en six chapitres. Dans le chapitre
2, nous fixons les notations et rappelons les résultats sur les variétés
toriques qui seront utilisés par la suite. Dans le chapitre 3, aprés avoir
prouvé que le nombre de structures réelles non-conjugudes sur une var-
iété torigque compacte est fini, nous nous limitons aux structures réelles
torigques multiplicatives ou non et définissons deux sortes d’éqguivalence
entre elles. Enfin, nous présentons un outil important: un algorithme
de construction de IR X provenant de ’application du moment. Dans le
chapitre 4, nous donnons quelques résultats en dimension quelconqgue
d. Plus précisément, nous démontrons que lorsqgu’elle n’est pas vide

IRX est connexe par arcs et nous calculons un majorant du nombre
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de structures réelles toriques non-équivalentes dans quelgues cas par-
ticuliers. Dans le chapitre 5, nous complétons 1’étude dans le cadre
des surfaces torigques et prouvons qgu’il y a au plus, & édguivalence preés,
gquatre structures réelles multiplicatives sur une surface torique. En
fait, on distingue qguatre types de structures réelles et on détermine
pour chacun d’eux le type topologique de IRX ainsi qu’un modele min-
imal. De plus, nous donnons les groupes engendrés par les structures
réelles (multiplicatives ou non) ainsi gqu’un modeéle minimal pour cha-
cun d’entre eux. Dans le chapitre 6, nous effectuons en partie le méme
travail mais en dimension 3. Nous démontrons qu’il y a au plus huit
structures réelles multiplicatives, a écquivalence prés, sur une variété
torigque compacte de dimension 3 et déterminons les groupes qgu’elles
engendrent. On distingue six types de structures réelles et on calcule
dans chacun de ces cas les mombres de Betti (modulo 2) de la partie
réelle. Wous donnons explicitement les structures réelles multiplicatives
existant sur les 18 variétés toriques de Fano de dimension 3 ainsi que le
type topologique de leur partie réelle. Finalement, nous étudions une
conjecture de J. IKollar dans le cadre des variétés toriques de dimension

3 munies de leur structure réelle canonique.

1.2. Imtroduction in English. The aim of this thesis is the study of
real structures on smooth compact toric varieties. Before going deeper
in this subject, we give a quick presentation of the main notions in-

volved.

1.2.1. Real structure. We begin with the notion of a real structure
on a complex variety. Inm a first approach, a real non-singular variety
may be viewed as a set given in a real affine or projective space by
a non-singular system of ecquations with real coefficients. The same

polynomial equations make sense over C, the resulting complex variety

"N

is invariant under complex conjugation and the original real variety
becomes the fixed points set of the complex conjugation involution.
This consideration makes it natural to define a 7real structure c on
a complex variety X as an anti-holomorphic involution X — X (or,
equivalently, as an involutive isomorphism between X and ):', where _X
is X equipped with complex conjugate charts) and to mean by a real
variety such a couple (X,c¢). Then the set of points of X fixed by c is
called the real part of (X, c) and denoted by IR.X.

Besides our initial example, we also have toric varieties with the
canonical real structure, for instance Cd, (C)I()d, de and their sub-
varieties. Let us mention also the following example, useful for our
research. If (X, ¢) is a real variety then f > cfc B defines a real struc-

ture ¢ on the group of automorphisms of X denoted by Aut(-X) so that
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(Aut(X), cl) is a real variety. Let us recall that if X is a projective al-
gebraic variety, then, by Chevalley’s Theorem, Aut(X) is an extension
of an abelian variety by a linear algebraic group, and, in particular,
has a canonical complex structure.

One of the main guestions arising in the study of real structures is
the finiteness of the the number of their conjugacy classes. It is worth
noticing that in the case of CPd there are two conjugacy classes of real
structures, if  is odd, and one, if 4 is even. On the d-dimensional torus
(C*)d, this question is more complicated and the answer seems to be
known only for toric real structures. In fact, in this case, the number

>-

of multiplicative real structures is equal to (d+ 1 — 22).
O<<2i<<d41

1.2.2. Toric variety. Since 1970, toric varieties were studied and ap-
plied to numerous domains of the mathematics (for more informations
see the surveys [11] and [12]). For our purposes, we define a toric vari-

ety as a normal irreductible variety X that contains an algebraic torus

o d
T = (CI ) as an open dense subset and such that the multiplication in
this torus extends to an action of 77 on X. We use two constructions
of X.

First of them is a geometric construction from a fan A in a lattice
IV of rank d (explained in details in [27], [14], [19]). From this point of

view, X is a d-dimensional complex variety obtained by gluing together

c 23

toric pieces ”. More precisely, X is the union of affine toric varieties
X, = Spec(C[o’v M AZ]) for every cone o of the fan. Since X is supposed
to be smooth, each cone of the fan is generated by a part of a basis of
N . Moreover, we suppose that X is compact i.e., the support of A is
equal to /V & IR.

On the other hand, X can be seen as a quotient of some (C’k)r—
invariant Zariski open subset «” \ Z£ by some subtorus /A of (C)I)r_

This construction is given explicitely in Delzant’s paper [17] (see also

[2], [2D)-

1.2.3. Content. In the years 1980, O. Viro first used the canonical
real structure on toric surfaces and threefolds to construct real plane
algebraic curves of degree 6 and 7 (see [31]). Nevertheless very simple
real surfaces such as Sz are not the real part of any toric surfaces for the
canonical structure so that it seems interesting to explore more general
real structures. In a first step, we consider those that normalize the
action of the torus i.e., we suppose that if ¢ is a real structure on X

for each ¢ in 7" there exists ¢ in 7 such that

c(t - u) = £ . c(w)
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for each = in X. In this case, we say that c is a toric real structure.
Among them, we distinguish mwuwltiplicative real structures such that
c(t - u) = c(t) - e(u). Moreover during the study of those toric real

structures, we consider two kinds of equivalency: the toric eguivalercy

i,e., the conjugacy by a toric automorphism f (such that f(z - u) =
¢ - f(w)) and the muwltiplicative equivalency i.e., the conjugacy by a
multiplicative automorphism f (such that Ff(z - - u) = Ff(z) - f(w)).

First, we try to answer to the following cuestion: what is the number
of non-equivalent real structures on a given toric variety 7 This number
is closely related to the number of mnon-equivalent multiplicative real
structures denoted by e. We calculate explicitely e in dimension 2
and 3 and notice that e < 2d. In fact, we prove that in any dimension
d, this number is effectively upper bounded by 2d when Aut(X) is
connected, Auto(‘\') is semi-simple or when X is the toric variety X (7R)
associated with an irreductible root system 7R in an Euclidean space.
In the very general case, we obtain that e < (2d)!.

During this study, we work inside groups generated by toric real
structures (multiplicative or not) so that one more question naturally
arises: what kind of groups (up to isomorphism) are generated by the
toric real structures on a given toric variety 7 These groups are Coxeter
groups in dimension 2 and 3 and we give them explicitely. Furthermore,
in the case of toric surfaces, we determine minimal model for each of
these groups. In dimension d, toric varieties such as X (R) give rise to
subgroups of Aut(7/R).

A part of interest of a real variety (X, ¢) lies in IR.X. Thus, we want
to determine the topological type of the real part of a given real toric
variety. We give a complete classification of real parts, up to diffeo-
morphism, for toric surfaces and toric Fano threefolds. In dimension
d, we prove that IRX when non-empty is path connected.

We have also applied the study of the canonical real structure on
toric threefolds to the following conjecture enounced by J. IKollar:

If V7 is a real o™ threefold connected and hyperbolic, there is no
complex threefold X algebraically smooth, rational and projective such
that V = IRX (for the canonical real structure).

We prove that the response is in the affirmative in the case of toric
threefolds. On the other hand, we construct a projective toric threefold

X such that IRX is homeomorphic to a hyperbolic manifold.

1.2.4. Plan. This thesis is divided in six sections. In Section 2, we
fix the mnotations and recall results on toric varieties useful for our
work. In Section 3, after proving that the number of non-conjugate

real structures on a compact toric variety is finite, we limit ourselves
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to toric real structures multiplicative or mot and define two kind of
equivalency between them. Then, we present an important tool: an
algorithm of construction of IRX arisen from the real moment map. In
Section 4, we give some results in any dimension d. More precisely, we
prove that IRX is path connected when it is non-empty and calculate an
upper bound for the number of non-equivalent toric real structures in a
few specific cases. In Section 5, we complete the study in the case of
toric surfaces and prove that there are at most, up to equivalency, four
multiplicative real structures on a compact toric surface. In fact, we
distinguish four types of real structures and determine for each of them
the topological type of IR X and a minimal model. Furthermore, we give
the groups generated by real structures (multiplicative or not) as well
as minimal model for each of them. In Section 6, we do partially
the same work in dimension 3. We prove that there are at most, up
to equivalency, eight multiplicative real structures on a compact toric
threefold and determine the groups generated by them. We distinguish
six types of real structures and give in each case the modulo 2 Betti
numbers of the real part. Then, we find explicitely the non-equivalent
multiplicative real structures on the 18 toric Fano threefolds and give
the topological type of their real parts. Finally, we examine a IKollar’s

conjecture in case of toric threefolds with their canonical real structure.



10 CILLATRE DEL AUNAY

2. GENERALITIES ON COMPLEX TORIC VARIETIES

In this second section, we fix our notations and recall principal defi-
nitions and results on toric varieties. Detailed constructions and proofs

of theorems of this section can be found in [27], [19], [14], [2], [2], [17].

2.1. Definition. A toric wvariety is a normal, irreducible variety X,
endowed with an action of an algebraic torus 7 so that X contains 7 as
an open dense subset and the action restricted to 7 is the multiplication

in it.

2.2. Construction through fans. Any toric variety can be geomet-

rically constructed. This construction requires, among others, a free

Zi-mmodule NV of rank 4 with a basis e,,...,e; and its dual module
a

1
N = Hom(/NV,Z) with the dual basis e ,...,e . The canonical Z-

bilinear pairing A < N — Z is denoted by ( , ). By scalar extension to

IR, we obtain the IR-vector spaces /N = /V & IR and Ay, = M & IR; the
canonical IR-bilinear pairing is denoted also by { , ) : My =< Ng — IR.
Definition 2.2.1. A strongly convex rational polyhedral cone is a sub-
set o of NV such that o M (—o) = {0} and

o = IR 72, with (72,,...,72,) € Nal

i

A cone generated by 72,,...,7n2 is denoted by [72,,...,7_]- These

s

generators are supposed to be primitive vectors of the lattice V. With

each cone in NV is associated a dual cone in AL .

v
Definition 2.2.2. The dual cone o associated with a cone o is defined
by
4
o = {m e N | {(rm, ) = O for any n» € o}.
Then, a subset 7 of o is a face of o denoted by 7 < o when there

exists 72 in o such that
i

Definition 2.2.3. A fan in /V is a non-empty collection A of strongly

convex rational polyhedral cones such that

- every face of any cone in A is in 2\,
’
- the intersection of any two cones o and o in A is a face of o and

’
=2

TL.et us denote the support of N, U__ . o, by |[A|. The set of the cones

of dimension k is denoted by A(k) and the number of its elements
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is #£A (k). The elements of A(1l) are called the edges of A and their

number is denoted by 7.

From now on, we consider only finite fans.

Definition 2.2.4. By Gordon’s Lemma (see [19] p.12), for any cone
4

o, the commutative additive semi-group o M AZ is finitely generated.

Thus, its algebra C[av M AZL] is a finitely generated commutative C-

algebra and determines a complex affine toric variety

X _ = Spec((C[a'v M AL]).

o

A closed point u of X_ is a homomorphism from the semi-group
v v
o MM to C. If 772,,...,1m, generate the semi-group o M A, u ——>
(ee(rr2y ), - - -, u(mq)) is a selected affine embedding that permits to de-
scribe the equations of X _.

For all 72 in A, we define a character Xm on 7' = Hom (AL, (C’k) by
m
x (&) = ()

-
so that ~ can be considered as a rational function on X_. Moreover,

when 72 is in o'v M AL, X'm defines an holomorphic function on X_ by
m
x (w) = wu(m) for any «v € X .

Examples 2.2.5. 1. If o is a cone generated by a part e,,..., e, of

the basis of 7V

x w _d—rk
X, =C = (C) -
v —1 —1
2. For o = {0}, Cloe M M] = C[X,,X  ,..., N, X, ] and
e w _d
X, = Hom_(M,C ) = (C ) = T.
3. If o = [e,, 2e, — e,] is a cone in a two-dimensional lattice then
_ 3 2
X, = {(u,,uy,uz) € C | w, = 2, g b
X, is a quadratic cone with one singular point @O = (0,0, 0).
If 7 << o, there is an embedding X_ — X _. So that, for o = {0}, we

deduce the following proposition.

Proposition 2.2.1. 7 is an open subset of X_ and acts on it so that
for any t in T and any u in X_

(t - w)(m) = t(m)wu(m) Sfor any m & o M AL

Then, the toric variety is obtained by gluing the toric affine varieties

X _ along this common torus.
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Definition 2.2.6. The toric variety X (A) associzated with a farn A is
defined as the quotient of the disjoint union of the X _ such that = in
X, and 2 in X+ are identified if o’ is a face of o and 4,9(7_1,,) = u where

@ is the embedding X_, — X_.

Examples 2.2.7. 1. If A is the fan whose maximal cones are those

generated by any d vectors chosen among the d + 1 vectors ¢, =

—e, — - - - — e4,€,,---,€4
_ d
XA =P,
’ - - -
2. If A and A are fans constructed as in 1. but respectively in a

lattice /V of dimension d and in a lattice IV’ of dimension d . Then,
PANEPS A, is a fan in the lattice /V & N, and

o

d
XA < AH) = X(A) < x(A) = cr” < cr” .

3. Let a be a positive integer. If A is the fan whose maximal cones
are [e,,e,], [e,, —es], [—es, —e;, + ae,] and [—e, + ae,,e,] then

X (A) is a rational ruled surface denoted by F_.
2.3. Topology.

Theorem 2.3.1. Diagonal maps: X_._ — X_ >x X_, are closed ern-

beddings so that X (A) is a (separated) algebraic variety of dirmension

d. O

The topological properties of X (A) are closely related to the geo-

metrical properties of the fan A. Here are two examples.

Theorem 2.3.2. X (A) zs non-singular if and onrnly if every cone irn A\

is generated by a part of an IN -basis. —c
In this case, we say that A is a smooth fan.

Theorem 2.3.3. X (A) zs compact if and only if AN is complete, zi.e.,

|| = Ng- O

2. 4. Polar construction. A standard method to obtain compact toric
varieties is the polar construction of an integral convex polytope (or
lattice polytope) 7 in A ,. With each closed face F of P we associate

a cone in N
’ ’ 4+
tan(F) = {A(m — m)| m € P, m e F, A& IR }

'
and a cone of dimension d — dim(F) in Ng, og = tan .
The set of cones o, , when F describes the set of closed faces of 7,
is a complete fan A ,. By this way, we associate with the polytope 7~

the compact toric variety X (A 5) which is denoted by X 5.
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From now on, faces of a polytope 77 are supposed to be closed. A
face of codimension 1 of 7 is called a facetz of /. Thus, in the polar

construction, F is a facet of £ if and only if o, is an edge of A\ ,.

E4
Examples 2.4.1. 1. Let 2 be the standard simplex of IR then
_ a
NXp=CFr .

1

1 2 2
2. Let PP be the sqguare with wvertices: O, e e ,e —+ e then X, =

cr' < Pt
2.5. Orbits. As 7 acts on X (A), X(A) is the disjoint union of the

orbits by the action of 7. We can describe the 7 -orbits as follows:

Theorem 2.5.1. TZThere is a one-to-one correspondence betweern 2\ anrnd

the set of T -orbits such that each cone o is associated with
i "
orb(o) = Hom(M Mo ,C ) = orb(z,)

where u, s a particular point in X_, called the distinguished point of
X such that if the orthogonal of a cone o is

i
o = {1 € NMy| {(m,n) = O for any n in o}

A1 4
w, maps each element m in o to 1 anrnd other elements of o N N to

O. -
Remark 2.5.2. When o = {0}, orb(o) = 7 is the principal orbit.

Proposition 2.5.1. The orbits verify the following properties:

(1) for each k-dimensional cone o in 2N\, orb(o) is isomorphic to

<"

d—k&

(2) 7 < o if and onrly if orb(o) C orb(7T)

(3) If o is inn AN(k), orb(o) is a (d — k)- dimensional toric variety and

orb(o) = il orb(7T)

(4) X_ = I orb (7). O

4

T<<o

The orbits are also obtained as limit points of meromorphic curves.

In fact, for every 72 in /V, we define a one-parameter subgroup of 7' by

< — > T = Hom(M,<C")

A — Vm (AN

(rm2,72)

such that, for any 72 in A, ~,_ (A)(m) = A .

Proposition 2.5.2. As 7T s embedded irn X,
lim =, () ewxists 2 X_ 2f and only if n is in o.
>0

Moreover, if o is in the relative interior of a face — of o, lim ~, () =

A0

v, . Thus, orb(T) s the set of limmit points, when A\ tends to O, of the

eromorphic curves defined by t - ~,, () with t irn T . O
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From now on, -X means X (A) if there is no need to mention the

fan.

o> the gen-

2.6. Projectivity. To each edge p of the fan corresponds
erator of VM p and D, = orb(p), an irreducible Z-invariant Weil divisor
on X (A).

IL.et us recall that the group of Z-invariant Weil divisors of X, de-

S >4

noted by Div(X), is equal to Zi D, =~ 2z where r — FAN(1). This
e

group contains the subgroup of 7 -imnvariant Cartier divisors which is

denoted by CDiv,(X). However, when X is smooth these two groups

are isomorphic.

Suppose that X is compact, so that A is complete.

Definition 2.6.1. A function A from |A| to IR is a A-linear support
Sfunctionn when A(/N) C Z and its restriction to each maximal cone is a
linear function /.

Moreover, /- is said to be strictly convexr when A is convex and for

’
every two distinct maximal cones o and o , 2_ is different from /A_/.

o

I.et SEF(/N,A) be the set of A-linear support functions. The map

w
R o— — > h(nP)DP defines an isomorphism from the group SE(/V, A)
P

onto the group CDiv,(X).

Proposition 2.6.1. h is strictly conwvex if and only if w(h) is ample.

O

Theorem 2.6.2. Let X (A) be a compact toric wvariety. Ther, X is
projective if and only if there is a strictly convex A\ -linear support funrnc-
tionn (the latter is equivalent to the existence of an ample T -invariant

Cartier divisor ID orn X ). O

>=

More explicitely, if D = a, D, is an ample Cartier divisor, there
»
is a positive integer k& such that A7 is very ample and the embedding
defined by A7 is given by the holomorphic map f

z

X e <P
e e
v o f(u) = (x (&), ..., x ()
where g, ...,7, are the lattice points of the polytope

{m € M| Yo e AN(1) (e, 2,y = —ka,}.

Furthermore, this embedding is 7Z -equivariant, i.e., for each ¢ in 7

and each w in X, f(t-u) = f(t) - f(u).

Theorem 2.6.3. A compact toric wariety X s projective if anrnd only

if there is an integral convex polytope IP such that X = X 5.



REATL STRUCTURES ON COMPACT TORIC VARIETIES 15

In this case, the functior h defined ornn IN by

R(n) = min_,_ o, {772, 72)
2s strictly conwvex and 12, = (k) is an ample divisor on X called the
divisor associated with . O
Let m2g, . . ., 772, be the vertices of 77, we denote by o, the d-dimensional

v
cone such that o, = tan{2,;} (see Section 2.4).

v
Proposition 2.6.2. D, is very ample if and only if for all i, o, MM

is generated by the set {m — m,| m € P N} O

Here are two important cases where D, is very ample.

If X is a compact toric surface then X is projective. In fact, there
is an integral convex polytope £ such that X = X, and D, is very
ample (see [19] p.70).

If X is a smooth projective toric variety then, each vertex 72, of £ is
incident to exactly d edges of /7: F,,..., F_, and {m; — 17, 1w jeaq (Where

’
e is the point of M M F; nearest to 77;) is a basis of NZ.

Remark 2.6.4. In the general case of a projective toric variety X ,,

there is an integer A& = O such that 2D ,, is very ample. Thus, if we con-

sider the polytope A7 whose lattice points are 7724, - - -, 7, we can write
an embedding of X = X, . in «r? by: 2% —> (xmo (), - - -, qu (ze))-
Examples 2.6.5. 1. Let 77 be the integral convex polytope with
1 2
vertices g = O, m, = ke , m, = ke where k£ is a positive

integer. Then,

1 2
P M= {m,e —+ mye | m, €N, m, € N, m, +m, < k}
(+1)(k+2)
and the cardinal of 27 M A7 is g = ———————.
2
We choose coordinates on CPZ such that for each v = (ug, 24, , 22,)
in orb{0} and each 72 in 22 M AL, )(m(u) = (ﬁz_)ml(ﬁz)m: Thus,
o o
the embedding of X, = CPz into CPQil maps each (ug, 2., 2,)
k—i—3 ; 7
to the (ordered) g monomials (u v u_) for O << 7 << Ak and
(s} 1 2
O < 7 < k — 2. This is the Ak-th Veronese embedding of CCIPz in
—1
cr? .

2. Let 7 be the product of two integral convex polytopes PI, the

, ’ ’ ”

simplex of dimension d with vertices = o, ..., 72 s and 7~ |,
R R R 7 . R ’” 7

the simplex of dimension d with vertices 7y = 0, ..., Lea 3 Then,

the (d’ -+ 1)(d” —+ 1) points of P2 M AL are m; —+ m;’ for O << 7z < dl

and 0 < 5 < .

’ s

o o
We choose coordinates on X, = CZF < CPFP such that for

’ ’ ” ” ’ "o
eachu:(uo,...,ud,,uo,...,ud,,) and eachm:mi—l—mj in 22 M
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u , re

N, Xm(u) = . Thus, the embedding of cPr? < cpr in

o~

CP(“’*l)(d”*l)*l

maps each = to the (ordered) monomials (uiu;’)
for O << 7 < d and O < J = d’. This is the Segre embedding of

’ s

cr? < cpPr? in pt @ D=L

2.7. Fundamental group.

Theorem 2.7.1. The fundamental group of X is

(X)) = N/N .

U

where N is the sublattice of IN generated by o M IV. —_

=P~

So that if A contains at least one cone of dimension 4, X (A) is

simply connected.

2.8. Minimal model. Let X (A) be a smooth toric variety and 7 one

of the comnes in A(k). We denote by p,,..., 2, the edges of 7 and
construct a new fan A*, a subdivision of A. In fact, each cone o of
A with 7 among its faces (so that o = +— —+ o with o M = — {O03}) is

replaced by k& mew cones (and their faces):

4+ ,
o, =P e, AR g p, e o

where g, = 2, -+ ”, -
As A" is a subdivision of A, for each o in A" there exists o in A
such that o C o. Thus, o’ M A is contained in (o'*)v M AL and we
obtain a 7 -equivariant holomorphic map from X_~ to X_ by restricting
each «" in X_~ to o A Ar.
Then, gluing these maps (see [27]), we deduce that there is a 7-
equivariant holomorphic map from ‘\'(A*) to X (A). Furthermore, the

"
number of cones of A contained in a cone o of A is finite and o is

ecqual to their union so that we have the following result:

Theorem 2.8.1. The toric variety X - s the blow-up of X, along its

T -invariant submanifold orb(7r). —

This blowing-up provides a 7 -equivariant birational morphism from
X\~ to X so that we call it the 7T -egquivariant blowing-up of X along
orb (7).

In the case of smooth compact toric surfaces, there are only two

minimal models. More precisely,

Theorem 2.8.2. FEwvery smooth compact toric surface is isomorphic to
one obtained by a finite sequence of T -equivariant blowing-ups along

2
T -fized points starting from CFP or F_,, a > 0, az 1. —

a
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Remark 2.8.3. This theorem agrees the result on smooth rational
projective surfaces which proves that blowing-down a finite sequence

2
of (—1)-curves on a rational smooth projective surface, one obtain C/’

or a CP' -bundle over CP .

2.9. Moment map. Let X be a projective toric variety and 7 be
an integral convex polytope providing a Z -equivariant embedding of
X = X, in cr? (see Remark 2.6.4 concerning the existence of such a

polytope)

o

(), - - T ()

1 g+1
The action of the Lie group (S )q on <pPr? gives rise to the moment

-
u —> (X

map /: «cr? — PP such that

a

| = |
H (=g, ---52g) :ZH,mi where H, = — .

i

From the 7 -equivariant embedding of X, in < P? and the fact that

ey 2 e, 2 -
| x (w)| = |x (z )|, we deduce the moment map on X .

Definition 2.9.1. The moment map on X, is the map o« : X, — P

such that
a

. >=

g
p(u) = 1IN ()l 7,
. .
2= X ay) e
i—o
Considering the compact torus (Sl)d = Hom (AL, Sl) C 7" which acts
on X, we observe that
1_d
r(t - w) = () for any ¢ in (S ) .

1.
Theorem 2.9.2. u is the quotient map of the actiorn of (S5 ) orn X 4.

—

To refine the last statement, let us denote by F,, A = O, the set of
k-dimensional faces of P and by X, the union of orb(oz) for every F in
F - In this notation, an additional information on the structure of u
can be stated as follows: for any A == O, the map 4 induces a fibration

x> Y oineF) with fiber (55,
Fer,
Let us recall that X, is the disjoint union of the 7 -orbits orb(oz)
for every face F of P, where orb(oz) is the set of those elements of
)(.7}’_ that map each element 72 in o'; into € and other 72 in a';/__ M AL

"
to O, so that orb(oz) =~ Hom(o M AL, C')_ Furthermore, int(F) is
F

homeomorphic to Hom(a; M AL, R+I) Then,

. 1
orb(og) = int(F) >x< Hom(o, M AL,.S ).
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II

orb(o so that one deduces easily
< face of F (o), >

Moreover, orb(oz) =

the following topological construction of X ...

Proposition 2.9.1. Zopologically, X is the gquotient of the disjoint
unionr of F < Hom(ai M AL, Sl) over the faces F of P by following
identifications: whern F, and F., are two intersecting faces of F, the
points (m,w,) and (m, u,) respectively ire (F, M F,) >=< Horrl(o';1 M AL, Sl)
and (F, M F,) > Horrl(o';2 M AT, 51) are identified if ©,(u,) = w,(u,)

where , and ., are the restriction maps given by

L
F, M F,

L ) 1 M 1
Horrl(o'}__1 M AL, S ) —> Hom (o M AL, S ),

. 1 =z N 1
Hom(o, M A, S ) —> Hom(o M AL, S ).
>

M,

Remark 2.9.3. If we consider any integral convex polytope 7 such
that X = X, (so that its associated divisor is not necessarly very

ample), the map £ : X, — P defined by

>

(u) = —— Ix

q
IXT )] o

2

()| s

>=

i—o0

where {724, ... ,mq} are the lattice points (or even the vertices) of /2
verifies Theorem 2.9.2 and its refinement (see [19] p.81). Thus, it is

also called a moment map on X 5.

2.10. Homogeneous coordinates. When A(1l) spans /V; (and that
is verified when X (A) compact), we consider the homomorphism from
M to Div(X) that maps each 72 in A to the divisor D, = di\v‘()(m) =
ZPeA(l) (12, np) D, and the homomorphism from Div(X) to the Chow

group A, (X)) that maps each divisor D to its linear equivalence class

[D]. They define an exact sequence
»
O — M — Z —A, (X)) — O
and by duality using Hom(—, (CI)IK), we deduce another one (see [9])
Z £ kad Ed
1 — N — (C ) — T — 1
w.( "
with /N = Hom(A,; ,(X),C ) and 7T = Hom (AN, ).

IDefinition 2.10.1. There is a gradation of the polynomial ring .S =

D a.
C[.’cp | € AX(1)] by A, ,(X) such that the degree of = = II x, is

>-

deg(a’ ) — D] — [ a, D]
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S is called the hRAomogeneous coordinate ring of the toric variety, in fact,

S >/ SE) P

S = S where S = C x

acA, (X)) deg(=" )=a

ILet us denote by o(1) the set of the edges of o and by S_ the local-

ization of S at = =— 11 a .
pEs(1) P

D
Proposition 2.10.1. e o Az if and only if @ T & S —_

4

Now, we consider the ideal B of S generated by the monomials in
{.27'5r | o € A} and the subvariety Z = V (B) of " called the exception—

nal subset. Then,

U I1

c \ Z = U, where U_ = {(z,), | t, % O}
e pEo(1)
and S_ is the coordinate ring of U_.
D D
Moreover, IX acts on .S by u- @ = p([L2]) >< = .

A
Proposition 2.10.2. CCI[crv N A =~ (S,) ]

So that using Delzant’s construction (see [17]) or Cox’s paper (see

[92]) we have the following result:

Theorem 2.10.2. When A\ is simplicial, X (A) is the geometric quo-

tient of <" \ Z by IX Z.e., for any o in 2N, X_ is the geometric gquotient

of U_, under the action of the growup IK<. _
2.11. Automorphism group. To study real structures on a toric va-
riety X, we mneed to consider some automorphisms of this complex

manifold and the groups generated by them.

First, let us note that any automorphism is determined by its action
on the elements of the principal orbit, orb({0}). Thus, when we are
given a basis B =— (el, B ,ed) of N, an element ¢t of orb({0}) is de-
t,) where ¢, = t(ei). Similarly, an

termined by its coordinates (#,, ...,

automorphism f of X is characterized by its coordinate functions

(Fys oot ) > (F (s - - - s F(BDa)-

In case of such a description, we say that f is written in principal orbit
coordinates.

For example, if we denote by Aut(X) the group of automorphisms
of the complex manifold X then the torus 7' can be seen as a subgroup
of Aut(X): each £ in 7 gives rise to an elementary toric autormorphism
of X', denoted also by =; in principal orbit coordinates it is written by

=

t——> = -t = (s1ty,.--.,54t4)-
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Moreover, with each linear automorphism s of the lattice /V preserving
the fan A is associated a muwuwltiplicative autormorphism s" of X written

in principal orbit coordinates by

- , A
t—> t = t
where A = (@;;) 1« ;< 15 the matrix of s in the basis of /V dual to B
’ A . @y g
and ¢t = ¢ means that for each 2, t, =1t .. - td .

Note that the multiplicative automorphisms of X are the 7 -equiva-
riant automorphisms of X. They form the group of mwltiplicative awuto-
morphisms Aut, (X)) = {s*l s € Aut(V, A)} where Aut(/V, A) denotes
the group of automorphisms of /V preserving A. Since A is a finite fan,
Aut (X)) and Aut(/V, A) are finite groups.

NMore generally, we define a toric automorphisrm of X as an automor-
rhism Ff of X that nmnormalizes the action of the torus, i.e., for each # in
7" there exists ¢ in 7" such that

F(t - u) = ¢ - f(u) for each =z in X .

Proposition 2.11.1. A toric automorphism of X is egqual to a mwuwl-
tiplicative automorphism composed with anrn elementary toric autornmor-

phism. Such a decompositiorn is unique.

Proof. L.et f be a toric automorphism. Then, for each ¢ in 7~
’
F(t-ug) =t - f(ug)

where u, is the distinguished point of the principal orbit.

The map ¢ —> ¢t defines an automorphism of the torus, so that there
exists an integral matrix .4 such that P tA. Furthermore, f(zy) being
in the principal orbit, their exists = in 7 such that f(xgy) = = - 4.

Then, in principal orbit coordinates f is written by ¢ > s-t:l. Since f
extends to X, the matrix A should belong to Aut(/V, A). We conclude
that f is composed of the multiplicative automorphism written by ¢ +—>
t‘4 and the elementary toric one, =. —

Alternatively, we can use Delzant’s construction of X as the quotient
of some (C*)r—inxﬂ'ariant Zariski open subset <" \ £ by some torus Ix C
(C‘I()r (see Subsection 2.10 and for more details [17] and [9]).

From this second point of view, the natural action of (C)IA)T on <«
preserves Z and commutes with the action of ZA'. Thus, an elementary
toric automorphism can be seen as an element of ((C)I()T/I( ~ 7.

More generally, any s in Aut(/V, A) preserves the fan and permutes
the edges of A, so that it induces an automorphism s of < preserving
Z and an automorphism ¢ _ of ((Cl*)r preserving /3 such that for all g

in (€))7 and all = in < \ Z

s (g @) = . (g) - s ().
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Thus, the multiplicative automorphism s can be considered as the
automorphism of X =~ (Cr \ Z2)/1IL that maps each orbit X - & to the

orbit Z\ - s’(.r) R

4
Example 2.11.1. Toric involutions on CZF are written in homoge-

neous coordinates by: (&,,...,x4 ) —> (61"”a(1)’ e, deva(d)) where o is
one of the involutions of {1,...,d} and 8 = (3,,...,3,) is an element
of ((Cl*)d/c* satisfying for each iz, 515‘;(1) = 51./30,({)_

From now on to the end of this section., toric varieties are

supposed to be smooth and compact.

Remark 2.11.2. The group of toric automorphisms is the normalizer
N(T) of T in Aut(X) (see [3] or [92]) while Aut (X)) = N(IT)H/T, i.e,

Aut,  (X) is the Weyl group of Aut(X).

We can also follow Demazure ([18] and [27]) and use fan root systerns

to describe Aut( X ). Recall that an element o« of AZ is a root for the

fan when there exists p_, in A(1) such that (x,72,_) = 1 and
’
{ex, 72,y =< O for any P € A1) — {p T-
Let R be the set of roots, R, = RN (—R) and R, = R\ 7.
Remark 2.11.3. If « is a symmetrical root, i.e., an element of R_,

there exists an unique couple (p, p,) in (A(l))2 such that
(e, 2> = 1 (exy, 72,0 — —1
and for all other elements p” of A(1), («, np::) = O.

To describe Aut( X ), Demazure first studies derivations on 7Z'. To do
this, he considers the isomorphism & from /V © C to Lie(7Z') that maps

each 72 to the derivation &§(72) such that for any 72 in AL
” ”
S()Ix 1 = (2, ) x -

He proves that there is a unique map « from AZ to IV, with a finite sup-

>=

port, such that each derivation on 7 can be written Xim S((w (1))
me AL

Then, using the fan root system, he deduces (in particular case A is
complete and X is smooth) that the set of derivations on X is equal

to Lie(77) & < x T S, )

acR

Subsequently, to recognize this set as the Lie algebra of an algebraic

group, he constructs, for each root «, a one-parameter subgroup x_ :
- - — - -

C — Aut(X) such that Lie(z_(C)) = C ~ J(npa)_ To reach this aim,

he defines for every A in C, a birational map «_ from 7 to 7 by

el

@ (A [m] = () [1 + t(—a)A]T”
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for each ¢ such that 1 + t(—a) = O and each 72 in A, and extends it

to an automorphism of X .

Finally, he concludes considering the different cases I M — R = 0,

R — — IR and the general one.

Theorem 2.11.4. Aut(X) s a linear algebraic group with T as maxi-
mal torus. The connected component of the identity in Aut( X)), Auto(‘Y)
has the following properties:

(1) R is a root systemn for Auto(){) with respect to the maximal torus
T so that Auto()() Zs the group generated by T and the famsily of
unipotent one-parameter subgroups {x_ (C)| o« € R}.

(2) The unipotent radical I, of AutO(AY) zs isomorphic to the product
of ®_(C) with «« € 2.

(3) There exists a reductive algebraic subgroup H,_, having R, as a root
systermn with respect to the maxirmal torus T so that Auto()g') is the
semidirect product H, > H_. MAMoreowver, each simple component of
2, is of type A.

(4) With each symmetrical root o is associated an element w_ of

Aut(V, A) defined by
wo(n) =n — LK,y (2, — 72, __)

Then the Weyl subgroup of H_ is the subgroup W of Aut(lV,AN)

generated by {w_| o« € R, } anrnd

o
Aut(X)/Aut (X)) zs zsomorphic to Aut(IV, AN) /W

2.12. Homology.

Proposition 2.12.1. For a compact smooth toric variety X of dimer-

szon d

r—d
H(X,Z) ~ Z where FEN(L) = r.

More precisely, for each edge p of A, o, has its fundamental class
w, in H,,; »(X,Z) and if o is one of the cone in A(d), (wp)pég(l) is a

basis of H,, ,(X,Z) = H (X,Z).
2.13. Cohomology.
Proposition 2.13.1. 7The Poincaré polynomial of a smooth compact

toric variety X is

HAN(D — B (2 — 1)
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Consequently, its FEwuler characteristic is given by
X = Px(—1) = #F#A(D
and its Betti numbers, b, = rank(Hk(‘X',Z)), verify

r b, = O 2f k 2zs odd

4 a
b,, = Z:(—1)‘; i(qv) FHFEN(d — q) otherwise.

g=1i

For more details see for instance IKhovanskii’s paper [23].

As in the previous subsection, we define a map from A4,(X) to
HZdizk(lY,Z) associating with each k-algebraic cycle on X its funda-
mental class._

Then, the Chow ring A, (X)) is generated by the D, (see Section 3.4)

which verify

{ orb(e) if o (1) — {py,---sp.}
P1 Pa
O otherwise
and for all 72 in AL, <m,np> D, = O.

pEA(L)

Thus, if we consider the following ideals of the polynomial ring,

Zilw,| p € A(1)]:

> ,
I generated by { (1) (e, > x, | 7 € M}
J generated by the sgquare free products IT z,, P+ -+ p, [F VAN
i—1

we obtain two homomorphisms of graded rings

Zilx,| p € N(]/(L + T) —> A (X)) —> H (X,Z).
In fact, as Danilov proved ([14]),
Theorem 2.13.1. For a smooth compact toric variety X,

A(X) = 2 (X, 2) = Zx,| p & AN(1D]/(L + J).
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3. GENERALITIES ON REAL TORIC VARIETIES

3.1. Finitemness. Is there a finite number (up to conjugation) of real
structures on a compact toric variety 7

Of course the same question is avalaible on any complex variety and
if the response is clearly in the affirmative in dimension 1, even for
the surfaces this finiteness problem is not completely solved. In fact
finiteness is proved for any minimal algebraic surface and any algebraic
surface of INodaira dimension > 1, as well as for minimal surfaces of IKo-
daira dimension O, i.e., hyperelliptic, abelian, I3 and Enriques surfaces
(for more details see [16]); information on ruled surfaces is available in
[33]). But in the case of non-minimal rational surfaces the problem is
still open and seems to be difficult. Further results and references on
this subject can be found in a survey [22].

We have studied this guestion of finiteness in the case of compact
toric varieties and have shown that the response is in the affirmative

in all dimensions._

Proposition 3.1.1. A compact smooth toric variety admits only a fi-

nite number of real structures (up to conjugation).

Proof. TL.et ¢ be a real structure on a smooth compact toric variety X .
As we have already said (see Introduction), f > cfci1 defines a real
structure on Aut(X) so that Aut(X) is a Z,-space. Then, using Galois
cohomology Hl(Zz, Aut( X)) can be viewed as the set of equivalence
classes of real structures on X . Let us consider the distinguished sub-
group Auto(‘Y) and denote its quotient Aut(lY)/Auto(‘Y) by Aut’(){).
Then, we can write the following exact cohomology sequence
N (Zg, Aut’ (X)) — > ' (Zg, Aut(X)) —> 77 (Za, Aut (X))

Since A is finite and Aut,(‘Y) is isomorphic to Aut(/V, A) /W (see The-
orem 2.11.4), we deduce that Autl(A\') and then Hl(Zz,Aut,(A\')) are
finite. Thus, Hl(ZZ, Aut(X)) is the union of a finite number of fiber of
p’_

On the other hand, Auto()g') is a linear algebraic group so that, using
Borel-Serre’s Theorem (see [4]), for any cocycle g in ZI(ZZ, Aut(X)),
Hl(Zz, gAutD(AY)) is finite and each fiber of p, is finite. Finally, Hl(Zz,
Aut(X)) is finite and there is only a finite number of conjugacy classes

of real structures on X . D

Thus, to get bounds on the number of their conjugacy classes, in
case of toric varieties, it seems natural, as a first step, to consider real
structures ¢ that normalize the action of the torus 7 and we define

them in the next subsection.
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3.2. Definitions. Toric real structures are real structures c¢c that nor-
malize the action of 7Z'. That is, for each ¢# in 7 there exists ¢t in T such
that
c(t - u) = . c(w)

for each = in X . In this case, the map ¢ > t' defines an anti—automor-
phism (i.e., an anti-holomorphic bijection) of the torus 7. As any
anti-—-automorphism it can be considered as a composition of an auto-
morphism with the standard complex conjugation so that choosing a

basis B of the lattice IV, we deduce the following:

Proposition 3.2.1. A real structure associated with an involution s

o IN, is written i principal orbit coordinates by

A
tr——> = - ¢
A —1
where = € 7', A is the matrix of s and = = = . —
Remark 3.2.1. Sometimes, it may be useful to write log ¢ = log = +

— —A
A log ¢ instead of t — = .

From now on, when there is nmno other mention real structure
means toric real structure.

We say that c is a mwultiplicative real structure when it preserves the
distinguished point of the principal orbit, i.e., when = = 1. Amny toric
real structure c can be decomposed in an elementary toric automor-
rhism s and a multiplicative real structure ¢ _,. Such a decomposition
c = =, is unique and we call ¢,, the multiplicative part of c.

In order to classify the different real structures on a toric variety, we
consider two kinds of equivalence relations between them.

Two (multiplicative or not) real structures c and & are multiplica-
tively egquivalent if there is a multiplicative automorphism f of X such
that

1
c = f cf.

This equivalence relation is denoted by

Proposition 3.2.2. Let ¢, and s be two multplicative real structures
m

multiplicatively equivalent. Then, for each = irn T there exists s in T
1o
such that = c,,, is multiplicatively equivalent to s c_ . In fact, zf f is a
-
1
multiplicative automorphisrm such that ci_n = f c,,.f then = = f(s,)_
—1 —1 ’
Proof. WNote that f (sec,)f = (f =f)ec . In principal coordinates,
™
—1
the elementary toric automorphism e = f =f) is written by
—1
—1 A A —1
t —> f (-t )=+« -t = f (s) - ¢

where f(z) = £t D
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’
But, we can also consider that two real structures c¢c and ¢ are torz-

cally equivalent if there is a toric automorphism f on X such that

This equivalence relation is denoted by
c ~ c.

Proposition 3.2.3. Zwo multiplicative real structures are torically egquiv-

alent if and only if they are multiplicatively equivalenrt.

Proof. L.et ¢ and & be two multiplicative real structures and f a toric
automorphism such that f 1cf — & or cf = fcl_ Using Proposition
2.11.1, we write f = =f,, with = an elementary toric automorphism and
S, a multiplicative automorphism. Then, c¢f = c=f,,, = (c=sc)(ef,.,)
and fc’ = s(fmc,)_ Since c= ¢ is an elementary toric automorphism, we

’
obtain by identification of the multiplicative parts of cf and fc that

’ ’
cf = e - Therefore, ¢ and ¢ are multiplicatively equivalent. D

Thus, we say now that two multiplicative real structures are equivalent
(or not) without more precision concerning what kind of equivalence

relation is involved.

Example 3.2.2. Using homogeneous coordinates we determine the

a
multiplicative real structures on CZF . They are given by

(@o, - --s@g) —> (ZTooyr - -+ » Tacay)

where o is an involution of {O, ... ,d}

We get representatives of their multiplicative equivalence classes with
the following involutions of {O, ... ,d}

for d = 2p, vy = id and for 1 < k& < p, «, product of the transposi-
tions (27 — 1,27) for 1 < i < k

and in the same way, for d = 2p + 1, the previous involutions

[ IR = and (= product of (=" by the transposition (2p + 1,0).

Remark 3.2.3. Note that in the case of multiplicative real structures
o
on CZF , the number of equivalence classes is quite different from the

one obtained in the case of general real structures (see Introduction).

3.3. Groups generated by real structures. Let K1(X) be the KKlei-
nian group of X, i.e., the group generated by Aut(X) and Isom (X, ‘{')_
The real (respectively, multiplicative) structures on X generate sulb-
groups of K1(X ) denoted &G (X ) (respectively, &, (X )). These groups

act on the fan by

c-o=4¢c, o= s(o) for any o e A
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where ¢, is the multiplicative part of the real structure ¢ and s is the
involution in Aut(/V, A) associated with it. We denote by &G (V) the

subgroup of Aut(/V, A) corresponding to their action.

3.4. Projectivity. ILet us consider a subgroup & of the finite group
Aut(/V, A). For each s in G consider the dual automorphism ‘s i AT —

N and denote by & the group {tsl s e G}.

Lemma 3.4.1. For any projective toric wvariety X and any subgroup
G oof Aut(IN, AN), there is a lattice polytope P preserved by &' swuch that

N o= X .

Proof. Since X is projective, there is a strictly convex A-linear support

function A2 from |A| to IR (see 2.6). As & is a finite group, we can

>=

consider A, such that A, = hs. Then, ik, is also a strictly convex
sed&

A-linear support function and for each s in &G, hAos = h. T.et us

associate with this invariant function /A the polytope £,

P = {m & Mg| Vp & XN(1) <m,np> = hG(nP)}
such that X = X ,. Each element s of & verifies for all 772 in 77 and all
edge p of A\, <ts(m), np) = (772, s(np)) so that 7 is preserved by ‘s D

Remark 3.4.2. Note that if 7 is preserved by G,, for any integer
k = O, P is also preserved by < Thus, we may suppose that X = X,
with 7 a lattice polytope preserved by &' and such that its associated

divisor is very ample.

Using the above lemma with &G = G(/V), we deduce the following

result:

Proposition 3.4.1. For any projective toric wvariety X there is a lat-
’
tice polytope IP preserved by G (IN) and associated with a very ample

divisor orn X such that X = X .

Proposition 3.4.2. Ifc is a real structure on a projective toric variety
X, there is an embedding » of X in cr? and a real structure on CP°
such that the restriction of w to IRX s a real toric embedding of IR.X

in R(CPY).

Proof. LLet ¢ be a real structure on X associated with the involution

s in Aut(V,A) and 27 a lattice polytope preserved by ‘s such that

X = X 5. Then, there is an involution o« of {0O,...,g} such that for
. *
each O < 7 < g, 12,0, = s(r2;).
Using the embedding «» : X, — cr? (see 2.6.4), we find a real

’
structure ¢ on CZ° associated with o making the following diagram
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commutative

w
X — <P’
NMore explicitely, if ¢ is written in principal orbit coordinates by % —>

—a ”y
s-t we denote x (g) by 3; for all O << 7 << g. Then, the real structure

.
e on ©P? is witten by

’
c(@g, - - - :“’:q) = (Boicx(ojv--- ,qu‘a(q)).

Note that the identity ez — 1 is equivalent to /ég,‘ = Xm" (571) ie.,

,Biéa(i) = 1 for all O << 7 << g. D

3.5. Real moment map. We will prove in Theorem 4.1.1 that when
IRX is non-empty the real structure is torically equivalent to its mul-
tiplicative part. Thus, to determine the topological type of non-empty
real part, we only need to consider a multiplicative real structure c on
X associated with an involution s in Aut(/V, A).

Consider a 1:s—irlw'ariarlt lattice polytope 7 such that X = X, (for its
existence see 3.4.1). We denote by 7 the set of points of 7 fixed by z.s_
This is a convex polyhedron of dimension < d and there is a restriction

of the moment map:
’
RX —— .

Let F be a face of 7 invariant by ts. Then, the set of points of F fixed
.
by *s is a face of 2 that we denote by . Moreover, Hom(aF M AL, Sl)

. 1
M AT, S)

is included in orb(oz) so that there is a subgroup of Horrl(a'F

formed by its elements invariant by ¢ that we denote by G . Let us

note that if F and E are two invariant faces of 77 such that E is a face

of F, there is a restrictionn map ~v: G —> G g such that (=) is the

i

restriction of u« to o.M N . Moreover, as A is smooth there is a basis
1 x i R R 1 14 i

(e ,...,e ) of o_ M A4 that is a part of a basis (e ,...,e ) of o_ M AZ.
E F

Thus, for each v in Gz, there exists an element u of Gy that coincides

i .
with v on aEr‘*u\I and maps to 1 every e’ for 4+ 1 < ¢z << I. This specific
—1
element u of G g such that v(u) = v is denoted by ~ (7). Using the
Proposition 2.9.1, we obtain an algorithm that gives the topological

type of IR X .

Remark 3.5.1. In dimension 2 and 3, this algorithm determines also

IRX up to diffeomorphism.

Proposition 3.5.1. IRX s homeomorphic to the following quotient of

the disjoint uniorn of F o< G g over the faces F of FP: the points (1, u,)
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and (1M, u,) respectively zin (F1 m Fz) >< G}__.l anrd (Fl mM Fz) >< GF: are

identified if the irmages of v, and u, under the restrictions maps

G, —> G mr G —> Gmr,

1 2

coincide.

Proof. T.et us consider a face F of 77. Then, every element of orb(oz)
is written by (7, ) with 7 € int(F) and « & Hom(a; M AL, Sl). But
c(rm,u) = (ts(m),c(u)) so that (72, u) is preserved by c if and only if
m e F and u E Gp. SinceRX C X and the number of compact spaces
F' o< Gy is finite, to conclude we only need to make the identifications

induced by those defining X . D

Example 3.5.2. Let us consider the complete fan A such that A(1) =
{le.].[ex].[—e,, —e-]} and the multiplicative real structure on X (A) =
CP2 written in principal orbit coordinates associated with [e,,e,] by
z —> (EZ,ZI). We denote by A the vertex of P such that o, = [e,,e,].
Then, 72 = [A,7] and Gp = {(¢,¢t )| ¢t € S5 } so that PP x G, is
homeomorphic to the cylinder [4, 7] x< st (see Figure 1). Furthermore,
the restriction maps associated with the faces F, = {A} and F, =
[B, C] are respectively written by (z, til) —> 1 and (%, til) — ot o Thus,
all the points of the circle {A7} > s' are identified and each point of the
circle {773} > Sl is identified to its diametrically opposite point. Finally,

2
IRX is homeomorphic to IR/~ .

From the previous proposition, one can deduce an easier construction
’
of IRX using only facets of 727 . For each face F of 77 invariant by the

real structure ¢, we denote by v, the restriction map: G, — G .

Proposition 3.5.2. IRX s homeomorphic to the following quotient of
P o< G the points (m, u) and (1, u,) are identified if there is a facet
ral of 7 such that m IS F and v (u) = qu(u,).

’
When two points (772, ) and (72, « ) are identified we write

(2, u) &E(rm, u,).
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Proof. We consider the map «: o< G p — IRX defined by «[(7m2, w)] =
cl(m, u) where cl(7, u) is the set of points identified with (72, ) during

the construction of IR X given in Proposition 3.5.1. Let us note that if

7 is in a facet F of PP and w, » are in G then cl(m, w) = cl(mm, v ()
and cl(rm, u,) = cl(m, ‘«/F(ul)). Thus, if (72, u) E(m, ul) then [(m, )] =
wl[(72, u,)]_ Therefore, ¢ induces a continuous map from the qguotient

space (P, < G p)/E to IRX that we denote by 50’. Furthermore, if 772 is a
point of a face F' of P then for every v in G' g, cl(m, u) = cl(m,ﬁ;l(u))
where ‘y;l(u) is the specific element of &', defined just before Remarlk
3.5.1. Since [, ‘)/;1(1_1)] = cl(m, u), we conclude that gp, is surjective.
It remains only to prove that 4,;*’ is an injection to conclude that it is a
continuous bijection from the compact space (P, < G p) /¢ onto a Haus-
dorff space IR X, i.e., a homeomorphism from (PI < G p)/¢E onto TR X .
The injectivity of 4,9, is a straightforward consequence of the following
lemma and the fact that if (72, ) and (7, u,) are two points of o< (=N

such that cl(m,u) = cl(m, ul) then there is a face F of 72 such that

(1) — () 4

Lemma 3.5.3. Let m be a point of a face o of . Then, for every w
ire Gy
N —1
(7, u) & (2, v, Ve ()]
1
Proof. If F = P then vp(u) = v = 7 o (z) and the relation is verified.

Suppose now that F' is the intersection of & facets (F,-I)1<i<k of P'. For

1 << 2 < k, we denote by 7/, the intersection r“l:i F, We consider the

17
following restrictions -, = YrE, and -, : GH-,I — G, for 2 < 7 < k.
Then, we define a sequence (%;)ge;—72 PY 2y = u and u; = ~,;(xw,;_,) for

—1 — 1
1 < z << k. Since the restrictions to GF‘ of g (2;) and ‘)rH'il(ui 1) are
equal we conclude that

s, (u)) @ Gy, Gy ).

1 —1
Furthermore, H, = F and u;, = ~z(u) so that . (u)) = e [ (2e)]
.
1 1 —1
and (m, v, (1,0 € (m, v, [ve (D). Finally, ~p (1) — g, [v,  (;)] so
—1
that (72, ) & (m,ﬁl (z,)) and we are done. D

A pplication 3.5.4. Let us consider the canonical real structure on a
toric variety X of dimension d. We use Proposition 3.5.2 to find the
topological type of the real part.

In this case, P — P and G p is isomorphic to {—|—1,—1}d. Then,
IRX is obtained by gluing the facets of P < {+1, —l}d (2d copies of
P,). The rule is the following: if F is a facet of 77 such that o, is

generated (modulo 2) by a,e; + - - -+ ayze,; then for each 772 in F and =

in {—l—l,—l}d, (e, u)&E(rm, su) where s; = (—1)‘1" for 1 < 7 < d.
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Proof. The coordinates a; for 1 < ¢ << d are mot all equal to O so that

L
we may suppose that a, =— 1. Therefore, o, M N is generated (modulo

1 .
2) by a;e —+ e’ for 2 < 7 < d and the image of ©u by the restriction map

Y P Gp — G is 2 such that u; = w, wu, for 2 < 7z < d. Thus, if «
and v are two distinct elements of G, v(u) = ~v(v) if and only if
v, = (—1)T 2w, for all 1 < i < d. O

Examples 3.5.5. Let us consider the canonical real structure on X =
CPZ. Then 72 > &, consists in four triangles and after identifications
we obtain IRX = RPZ.

In the same way but with quadrilaterals, if X = F_, then IRX is the

torus (51)2 when a is even and the Klein bottle #., ]}KF’2 when a is odd.

Let o € A be a cone generated by three primitive vectors n,, 7n,
and 72;. Then, the affine chart X_ C X is a non-singular variety if
and only if (72,,72,,725) is a basis of V. On the other hand, using the
algorithm explained in the previous application (that is also true in
case of singularities), we deduce that IR X_ is a topological manifold if
and only if (2,, 72,, 253) are independent when reduced modulo 2. In the
specific case of the canonical real structure on toric surfaces we obtain

the following result.

Proposition 3.5.3. For the canonical real structure, the list of topo-
logical two-manifolds which can be obtained as the real part of a toric
surface comnsists of the torus, connected surns of several IR132 and cor-
nected surns of odd number of tori. Only the torus and the connected
sums of several RPz can be obtained in the case of algebraically nor-

singular surfaces.

Proof. In the case of a smooth compact toric surface, using minimal
models for toric surfaces (see Theorem 2.8.2), we only need to verify
that if X is the blow-up of X along a 7 -fixed point then ® X' is the
connected sum of IR X with RPz_ In fact, blowing-up of X adds a new
edge to P and the identifications show that a neighbourhood of this
edge in ®RX is a Mdbius strip. Using previous examples, we conlude
that IRX is the torus (51)2 or a connected sum of IRFP". Therefore, ac-
cording to the topological classification of surfaces, any non-orientable
two-manifold is the real part of a toric surface.

Suppose now that IRX is an orientable two-mamnifold. ILet F,, F,

and F3; be three consecutive edges of A such that TFr o TF, and oF, are
respectively generated (modulo 2) by 7,, 72, and 7. Then 7, # 72,
and 72, F 725. If », = 72, + 7253, there is a neighbourhood of F, in

IRX which is a Mdbius strip and that contradicts our hypothesis of

orientability of IRX . Thus, n, = 723 and 7 is even; say r = 2Ak. But
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Zr

;.2 = O (mod 2) so that k(ny + 2,) = O (mod 2) and k& is even.
Say k& = 2p with p = 1. Moreover, the Euler characteristic of IRX (see
[15]) is given by x = 4 — r» = 2(2 — 2p) and IRX must be a connected
sum of (Zp — 1) tori.

T.et us consider the lattice polygon 77 in A{,, preserved by the sym-
1 2
metry exchanging e and e , with 4p vertices .A,, Ao {AL,---, 4421271}
and their symmetrics such that

1 -

2
= ie —+ (i + 1l)e for all O << 7 < 2p — 2 and As o

Then, IRX ,, is an orientable two-manifold and its Euler characteristic

is equal to 2(2 — 2p) so that it is the connected sum of (2p — 1) tori. D

2
Remark 3.5.6. Neither S nor connected sums of an even number
of tori can be the real part of a toric surface for the canonical real

structure.

3.6. Real homogeneous coordinates. Let X = X (A) be a smooth
compact toric variety associated with a fan A. Let us consider a mul-
tiplicative real structure c¢ on X associated with an involution s in
Aut(V, A). It induces an involution ts on NM. An homomorphism f
from AZ to " is said to be invariant (in fact, we should say equivariant
with respect to the involution les and the complex conjugation) when,
for all 72 in AL, f(ts(m)) = fF(m).

We denote by 72,,...,n

~ the successive primitive generators of the

edges of A and by A, ,(X) the Chow group of X (see 2.10). Since
>-r

i—1

A, (X)) isisomorphicto {a Zr| {2, ;) a, = O for any 7 in AL},

we mnotice that I = Hom(A4,; ,(X), ") is isomorphic to {ux € (C")7|

11~ (rm,m;)
) e

i—1 E2

= 1 for any 7 in AL }.

On the other hand, ¢ induces an involution s on < , Z and A, (XD
written by (a,,-.--.,a,) —> (aa(l), R aa(r)) where o is the involution of
{1,...,7r} such that, for each 7, s(n;) = 2oy - In the same way, we can
define invariant homomorphisms from Cr, Zr, or A, ,(X) to <" with
respect to their own involution. We denote by & the real structure on
<" associated with s and given by a +—> (s'(a))-

Choosing coordinates, we have that

ke —A

Hom,, (M,C') = {te T|% =1t3},

Hom,, (Z ,C ) = {u & (C )| (Baciys--- 1 Paim) = (Has- 5003,
I = Hom,, (A, (X)), C) = {un & Nle, () = B

ILet us recall the exact sequence (see 2.10)

z e r e
1 — > I — Hom(Z ,C' ) —s Hom (A, T ) —> 1
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Restricting to invariant homomorphisms, we obtain another exact se-

gquence.

Proposition 3.6.1. T he following sequence s exact

i

1 — IN,,, —> Hom

kel e » e
. imo(Z ,C ) —> Hom,,, (M,C ) —> 1

inv

Proof. The only mon-trivial part of the statement is the surjectivity of
-
TLet 7 = [e,,-..,e,] be a cone preserved by s which is not strictly

contained in any other preserved cone. Its generators are preserved or

pairwise exchanged by s. Furthermore, there is a cone o = [e,, ..., e ]

of A(d) such that o = 7 -+ 7', with — M 7-, = {O3}. I.et us note that
’

no vector of = are preserved by s so that in the basis (e,,..., ey ) the

matrix of s is written by

A

(2 =)

- Id =

where 7, , is the identity matrix and D is a block-diagonal matrix with
(o 1)
1 (o]

equal to 1. We denote the entries of C by c

its g last blocks ecual to and its first A — 2¢g diagonal entries

F.l-
We may suppose that for 1 << i < d, n; = e,. Then, for every g in
Hom(Zr,C’k), () = (t,,...,¢t,;) with for each 1 << 7 < d
» E4
5
, 11 = A 27
;= e, and 7; = .e;.
=1 F=1
—Aa
On the other hand, ¢ invariant means ¢ = ¢ . Thus, for A+ 1 < 7 < d,
2
|t_7.| = 1 and we choose £ such that H, o= t,. Furthermore, the gen-
erators 72, 4,,..., 7245 are respectively exchanged with some generators
T2y 15---5754 z of a cone adjacent to o along 7. For j => 2d — k we
choose ry; = 1 and for £ + 1 < 57 < d, Hipa o = By - Then, for all

Erl<gj<d

()5 S HR, =,
E4
— | | — S5 2
In the same way, for 1 < 7 < k — 2qg, t; = t; tl so that tj B
I—=rk41
o a
2 TT 2% | ) .
|tj| 7, . Therefore, t, = Bj|tj| 7, with /3_7' = +=1. Let us
I—rk1 I—r1
choose ;= ,let_ﬂ = ; then, for all 1 < 7 < &k — 2¢g
E4 E
I I e I I S
r(p); = p Fog e = BslE;l 7, =t;

I—=Fk-+1 I=k+1
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Finally, for 1 < 7 < g and 7 = k& — 2qg + (27 — 1)
E4 E4
— I I — S5 — I I — i+
t; = t; 4 tl and ti,. = t; tl -
I=Fk41 =K1
a
_ II 5.0 ; .
T.et us choose Ky, = R; = T, e, . Then, for all 1 << 7z < g and
I—r1
J =k — 2g + (27 — 1)
E4 o
I I  Ssu _ I I 2850
rP(H); = 5 H, 41 +, =z,
I—r41 I—k41
and in the same way, since S0 = C;41.
E4 E4
_ Si4-1.1 S _ Sid4-1.1
PCR) oy = Fyyy II &, =, IT ©, A, =z,
I=F41 I—=FK41
Thus, we have constructed an invariant g such that p(x) = ¢ and so we
are done. D

Proposition 3.6.2. /n the case of a muwultiplicative real structure c,

IRX 2zs the gquotient of U by the action of I\, where U is the set of

e

points of <" \ Z preserved by the induced real structure s

Proof. We only have to prove that there is a fixed point of «” \ Z over
each fixed point of X. Note that for every toric real structure c and
every come o in A, c(orb(o)) = orb(c(o)). Thus, if there is a fixed
point in X, it must be in the orbit of a cone preserved by ¢ and we may
suppose that this cone is a face of a cone 7 = [e,, ..., e,] preserved by
s that is not strictly contained in an other preserved cone.

Then we use the previous proof (with its notations) and see that over
each fixed point of orb({0}) there is a fixed point of (Cﬂ')r and so we
are done for a real structure associated with —id. It is also obvious for
the canonical real structure.

NMore generally, as o is a face of 7, each ¢ in orb(o) verifies ¢, % O

for all £ + 1 < 7 << d. Therefore, the invariant u such that p(u) = ¢
II-
obtained in the previous proof, verifies ros M # O and we conclude
F=
that g is an element of U_ and consequently is in <" \ Z. D

Examples 3.6.1. Let us consider two multiplicative real structures on
_ 1 1
N = CP =< Cr .
Sz

- — 2
1. ¢ ——> (%,,%t,). The corresponding involution on A, (X) =~ Z is

’ a
(a,,ay) — (a,,a,;) and the real structure c, on C is written by

(T, @, g, @y) —> (s, Ty, T4, T3)-
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So that U = {(&,,&,,x,,T,) & C4| @&, % O or @, ¥ 0}. While
K., = {(u,m)| C"'} is isomorphic to <" and its action on U

is given by
@, , T, w0y, Tr) = (U@, AT, LT, AT5)-

Hence, IRX is diffeomorphic to the qguotient of CZ\{(O,O)} by
(2., 2,) = (p2,, px,), 1< C)I(, and thus diffeomorphic to 52_
s

—1 —_
t—> (2, .2

1
> ). The corresponding involution on A, (X)) is trivial

a4
and the real structure on C is written by
(@, @, @5, @y) —> (B3, @4, 2T, @)
a
So that U = {(@,, ., &,,@,) € C | @, £ O and =, % 0}. While

e z
;.. =~ (IR ) and its action on U is given by

oty 12) (@ @ns, @4, @) = (K@, Ho@ns 8, H5T5)-

-
Hence, IR X is diffeomorphic to the quotient of (C ) by (z,,x,) =

(e @y, po@s), (ty, o) € (]R’k)z, and thus diffeomorphic to (51)2.
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4. REAL TORIC VARIETIES OF DIMENSION d

Throughout this section, X is supposed to be a smooth compact

complex toric variety of dimension Jd.

4.1. Eqguivalence of real structures. In this section, we prove that

every real structure is torically equivalent to a reduced one.

Proposition 4.1.1. A real structure c with multiplicative part c,, s
torically egquivalent to a real structure which can be writter, i appro-
priate coordinates on the principal orbit, by t > =-c¢,,(t) with =,,...,=s,

equal to +1 or —1.

Proof. During this proof all the automorphisms of X are written in
principal orbit coordinates. Thus, the real structure c is written by
t — = - ;,—x where A is the matrix of the associated involution s in a
basis of /V and s is an element of 77 such that 55*‘4 = 1. The reduction
of ¢ is made in three steps.

First, we change the basis of V. There is an other basis of the lattice

(see, for instance, [13]) in which the matrix of s is

(o= )

o —1,

where z, and /7, are the identity matrices of order g and A& such that

k + g = d and the entries of the matrix C are integers denoted by
—1

¢; - Let us consider a matrix Q@ in GL(d,Z) such that Q AQ = A,

. . (=>4 . -
and the automorphism f given by ¢ +—> ¢ (note that f is not a toric

1 —a
automorphism). The composition f cf is written by ¢ +—> ~ - ¢t ' with

—1

pEY A
& = sQ and the relation =& becomes equivalent to ~5 ' = 1. This
last relation gives rise to the equations
—1
~: . = 1 for all g + 1 << 7z < d
B
2 Sia _ Cim . . .
A Vg " _A"q+k = 1 for all 1 < 7z < g
Let us denote v, = (71, ---,7g) and v = (Vg 1,---5Vgprn) We get
Ay ke —2 B
> = 1 if and only if 5V e R and |~y+| = v -

Subsequently, we change coordinates on the torus. Let us consider an
1 1
elementary toric automorphism g given by ¢+ o - ¢. Then, g i cfg
—1 _ A,

—A
is written by ¢ — & - ¢ ' with § = « a ~v. Then, we choose « to

reduce §. Let us calculate the coordinates of &.

—=2
{51.:|a1.| ¥ for all g + 1 < 7z < d
2 _2 S Sim
S, = & |, & - - - & i for all 1 < i < g
Z g+1 a+k

We choose o in (R+)k)k such that

for all g+ 1 < 7 < g + k.
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2 _ 2 —2_ 5 R
Then, o« = |v_| and &, = oz+|oz+| & v, . Since

B 2 2 B 2 B —B
& ~, 1 = (> D) vl =~ ~ =1,

N

B

it is possible to choose o, such that x, = v, and |, | = 1 so that
5+ = 1. Observe that, with this choice of o, the g first coordinates of
S are equal to 1 while the others are equal to 1 or —1.

Finally, we return to the initial basis of the lattice and consider
—1 _—1 —1 . . - (=4 =1
fa Vi cfaf which is written by ¢ +— & -t . We are done because
1 . R : <@
faf is an elementary toric automorphism written by ¢ +— «o -t and

the coordinates of JQ are equal to 1 or —1. —

Theorem 4d.1.1. Any real structure on X such that IRX is non-empty

zs torically egquivalent to its multiplicative part.

Proof. If there is a fixed point in X it must be in the orbit of a
cone 7 preserved by the real structure (see proof of Proposition 3.6.2).
Then, with the notations of the proof of the Proposition 3.6.1, the real

—Aa
structure c is written in principal orbits coordinates by ¢ +—> = - ¢ with

(2 =)

_Idfk

== = 1 and
A
Then, with the same reduction as in the proof of the previous propo-

- - - - - (= i - -
sition, we obtain that c is torically equivalent to # +—> & -t with Q in

GL(d,Z) such that @ ' AQ — A, with

( Ly 4 <y )
o

A .
_Id7k+q
This reduction of A is obtained replacing the basis (e,,...,e ;) by
(e’l,...,e;) such that for all 1 =< 7 < k£ — 2qg and & + 1 < i < d,
’ R ’ ’ R
e, = e; and for all 1 < 7 < g, € kg — S5 + e, € gy = €541 with
J =k — 2g + (27 — 1). Thus, the matrix ¢ is written by

/ Z, ., O o \
Q = o <Q o .
\ ; . J

Let us denote 8% by <. Since for all 1 <7< k — g, §;, = 1 we deduce

i

that si = 1 for 1 << 7 << kA — 2g. Moreover for each # in orb(7), ¢, % O for
_a —1
A+ 1 << 7 < d so that the relation ¢ = P implies that #, = Ei't' and
i

s = 1 for all & + 1 < 7 < d. Now, let us note that all entries of a row

i
L, of Q’ are null except one equal to 1 if A~ is odd and two equal to 1 if

’ ’

R is even. Thus, for all 1 < 7 < g, = . = 1 and = = 4=1.
r—2g4(2i—1) xk  2g-+2i

‘A
Finally, since = = 1 we have for all 1 < 7 < g, . = -
k—2g+(2i—1) k—2g+2i7

1 and we conclude that £ = JQ = 1. O
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4.2. Corollaries.

Proposition 4.2.1. If a real structure on a smooth projective toric

variety N s such that IRX is non-empty thenr IRX s path-connected.

Proof. Using Theorem 4.1.1, we may assume that the real structure
is multiplicative. Let us consider the face F of the polytope 77 globally
invariant by ‘s of minimal dimension P (see Section 3.5). Then, ‘s
induces an affine involution on F without fixed point except the center
of the face so that 's acts on a; by —id. If p = d, s = —id and

1. d
G = (S5 ) while if p << d, s permutes the d — p generators of o,.
Since this permutation is a product of disjoint transpositions, there is

o
a basis of 7V such that its p last vectors form a basis of =g and in which

(e )

— 7,

the matrix of s looks like

A

where p < &k, I, , and 7, are the identity matrices and the entries of
' are ecual to O or 1.

As the p last vectors of the basis form a basis of o';, G . is isomorphic
to (SI)P and is path-connected. Then, to obtain IRX we use the algo-
rithm explained in Subsection 3.5 so that each connected component

of P =< G is glued to F o< Gy and IRX is path-connected. —

We denote by e the mumber of non-equivalent multiplicative real
structures on X . Since G (/V) is a finite group (see its definition in
Subsection 3.3), ey is finite. NMoreover, the canonical real structure
commutes with each multiplicative real structure so that & (X)) is

isomorphic to Z, < G (V).

Proposition 4.2.2. The number of torically non-egquivalent real struc-

a
tures orn X is upper bounded by 2 e .

0

Proof. It follows from Proposition 4.1.1 and the definition of e

In next subsection we determine an upper bound for e .

4.3. Maximal number of non-equivalent multiplicative real struc-
tures.

o
Proposition 4.3.1. There are at most 2 non-equivalent multiplica-

tive real structures such that any two of thern commute and this upper

bound is reached for some X .

Proof. Since the involutions associated with the multiplicative real
structures are palirwise commuting, it is possible to diagonalize them

o
in a same basis of /V. Thus, there are at most 2 multiplicative real
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structures pairwise commuting on X. Let us note that we have not
used the fact that they are not equivalent.

Now, we construct explicitely a toric variety on which this upper
bound is reached. We begin with dimension 1, the only two multi-
plicative real structures on (CPI commute and are not equivalent. In

dimension 2, let us consider Y, the toric surface associated with a fan

AN whose edges are generated by e,,e, + e,,¢e,, —e,, —e, — e,, —e, with
(e,,€e5) a basis of the lattice /V. The real structures associated with
the involution s exchanging e, and e,, 2 = —id, hs and id are not

equivalent (see Remark 5.2.2) and any two of them commute.

Now, we prove by induction on d (d = 3) the following proposition,

There is a toric wariety N, direct prodwuct of CPI by a compact
smooth toric wvariety Y, ,, on which there are 2d non-eguivalent, pair-
wise commuting, multiplicative real structures. AMMoreowver,

v, << FEAN(D)
where v, is the mawximal number of cones of dirmmension d to which a

generator of an edge in the subfan defining Y_; , belongs.

When d = 3, we consider X; = CPl > ¥Y,. Fach generator of the

>

subfan defining Y, i.e., e,,e, + e,,e,, —e,, —e, — e, and —e, belongs
to four cones of dimension 3 so that v; = 4 and 2v; << #F#FA(3). Let
us denote by e; and —e; the generators defining CPI; each of them
belongs to six cones of dimension 3, we say that its valency is 6.
Observe that an automorphism of the lattice preserving A must also

preserve the valency of each generator so that it preserves e; and —ej

or exchanges them. Its matrix in the basis (e,,e,, e;) of 7V looks like

(4 o)

(o] =1

where 4 is the matrix of an automorphism of the sublattice generated
by (e,,e,) that preserves the subfan defining Y,. Then, involutions on
X3 are given by previous matrices such that A42 = 7 and are equivalent
(or commute) if and only if the associated involutions on Y}, are equiv-
alent (or commute) too. Consequently, the four non-equivalent real
structures on Y, give rise to eight non-equivalent, pairwise commuting
real structures on X;.

Now, let us assume that X, exists and construct X First, we

d—+1-"
consider Y, the blow-up of X, along the point orb(o) for each cone of
dimension 4 and X, ,, = cr' =< 3} ,. Let 3, (respectively, 3,,,) be the

number of cones of dimension d (respectively, d+ 1) in X, (respectively,

X4 1) then B,,, = 2d3,.
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ILet us determine the valency of each generator of the fan defining

X4,.- The generators e,,, and —e,,, defining cr' in X — cPr' =< 3,

d+1
1 1
belong to 43, maximal cones while those defining C#/Z in X_j; = CF~ >
Y, 4 belong now to (d — 1)3, maximal cones. In the same way, the

generators appearing with the blowing-up of X, belong to 2 4 maximal
cones and all the others belong to at most 2(d— 1)v,; cones of dimension
d + 1. Recalling that by induction 2 v, < 3,, we deduce that the
maximal valency of a generator defining Y, is v, ,, = Ba(d — 1) so that
2vg1 < Baga-

Moreover, the valency of e, ,, and —e_,,, verifies d3, > v,,, so that
each automorphism of the lattice preserving A must preserve oOr ex-
change these two generators. As in case d =— 3, we conclude that the
2d real structures on X, exist again on Y}Y; and then give rise two 2d+1

non-equivalent, pairwise commuting, multiplicative real structures on

Xoaa-

-
a
Remark 4.3.1. In fact, 2 is the maximal number of pairwise com-

muting real structures on a compact d-dimensional toric variety.

As G'(IV) is isomorphic to a finite group of GL(d,Z), we can use the

following theorem established by Newman ([26], p.175).

Theorem 4.3.2. If G is a finite subgroup of GL(d,Z) of order g thenr

(2d)! = O mod(g)-

Thus, the order of G (V) is less than (2d)!. Moreover there is a
one-to-one correspondence between multiplicative real structures and

involutions in G (V).

Theorem 4.3.3. ZThe number of mwltiplicative real structures orn X s

less thar (2d)!.

In fact, we will get in Sections 5 and 6 a better upper bound for e

when the dimension of the toric variety is less than 3.

Proposition 4.3.2. The number of non-equivalent mwultiplicative real
structures on a srmooth compact toric wvariety of dimmensiorn d, d < 3 is

a
less tharn 2 .

E4
However, the question: Is ey < 2 in any dimension d 7 is always
open. But, in a first approach, we use fan root systems (see Subsection

E4
2.11) to construct some toric varieties X such that e < 2 .

Theorem 4.3.4. If X is a smooth compact toric variety of dimensionr
d such that Aut( X ) is connected then there exist positive integers d;

such that
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where S, is the symmmnetric group of order (d; + 1)!'. Thus, in this
=4
case, there are at most 2 non-equivalent muwultiplicative real structures

ore X .

Proof. Let us assume that Aut( X ) is connected, i.e., Aut( X )= Auto(“()_
Using Demazure’s Theorem (see 2.11.4), we conclude that Aut(/V, A) =
WM~ where W7 is the Weyl group of the reductive group #/_. Furthermore,
according to this theorem, "W is a Coxeter group generated by the re-
flections {w_| o« € R_} in Aut(V, A) and all its components are of type

A. Therefore, if d is the semi-simple rank of #_, d < d and

R =

I1 >, _

Aut(V, A) =~ Sdi+1 and P

Then, we calculate the number of involutions, up to conjugation, in a

Coxeter group of type A, i.e., Sg.41-

TLemma 4.3.5. In S there are, up to conjugation, (p—+ 3)/2 involwu-
tions when p is odd and (p—+2) /2 involutions when p is even. Moreowver,

this number is less than 2° when P = 1 and less than 27 + if p = 2.

Proof. WNon-trivial involutions in &S are products of disjoint trans-

P+1
positions and two of them are conjugate if and only if the number of
transpositions in their decomposition is the same (see for instance [13]).
Thus, the number of non-conjugate involutionsin S, , is (p+3)/2 when
P is odd and (p + 2)/2 otherwise. D

Using previous lemma, the number of non-equivalent involutions in

a ES E4
Aut(/V, A) is less or equal to 2 TLoi2Tr =2 and consecquently less or

equal to 29, Since G (V) is a subgroup of Aut(/V, A), there are at most

E4
2 mnon-equivalent multiplicative real structures on X . D

In fact, the hypothesis Aut(X ) connected is very restrictive, for in-
o
stance it is verified by CZ/Z but not by a product of projective spaces.

T.et us study this latter case.

Proposition 4.3.3. X s a prodwuct of projective spaces if anrd only if

o
Aut (X)) zs semi-simple.

o
Proof. First, assume that Aut (X)) is semi-simple then, £ is a

symmetrical root system, i.e., R = IR and R spans Ng. Let o =

s
[e15---,€e4] be a maximal cone and o« a root for the fan. Using Remark
7?7 on symmetrical roots, we distinguish the following cases,

there is exactly one generator e; of o such that {(«,e;) % O . Then,
replacing if necessary o« with —a, we may suppose that (o, e,;) = 1 such

i

that o« = e . We say that o is a root of the first type;
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or there are exactly two generators of o, e, and e, such that (v, e;> =
1 and (<, ej> = —1. Then, replacing if necessary oo with —a, we may
suppose that o« = e — e with 7 << F- We say that o« is a root of the
second type.
When there is some root of the second type, we can consider a se-
i i1 . P E
quence of roots R, = (e —e )1<1.<P71 such that forall 7 > p+1, e —e
is mot a root. Then, every generator of an edge different from those of

o is written by

a(e, +---+ e, ) +be, , + -+ b, e,
and for all 1 < 7 < p and 7 = p + 1, e’ — &’ is not a root. In fact, if
e’ — e’ is a root then, for each previous generator bj — a so that & — &7

is a root which contradicts our hypothesis on the sequence.
By the same way, if there is some root of the second type that is not
in the space spanned by /Z,, we construct another sequence of roots of

second type. Finally, we obtain sequences of roots (Rk)1<k<q+1 such

that

i i+1

7, = (e — e )P1+---+P;.71+1S¢'§P1+-"+P;.71 for all 1 < A < g-

Since the rank of R, is p, —1 for alll << A < g and R spans N, LPrH P

is a root for each A. Thus, there is set ” = {ej| P+, 1< 7 =<

dy U {epl P

| 1 < & < g} of roots of the first type. We deduce from
these sequences of roots that every generator different from those of o

is written by

a a

>-

x(Cp, tiitp, 1 H ey ) bye;
=1 =Pyl
Observe that for each root o in R,, there is exactly one of such gener-
ator 72 such that {(«,72) = —1 while for the others {(«,2) = O. Let

us note also that, as soon as one of the integers «, or bj is equal

to —1 the others are equal to O. We conclude that the generators
of the edge of A are e, —e;, for p, + - + P, + 1 < F < d and
oy b B 10 €y ap s (o 1 H e ), fOor 1<
k< g.
1 . d—py ——
Thus, X = CP7 =< -« - < CP7 < (P ) e
d, i o :
Reciprocally, when X = (C#£ * )21 < - - - < (CPr " )1"
o _ i i
Aut (X)) = (PGL, )" = - =< (PGL, )"
o
Aut (X)) is semi-simple, /R is symmetrical and spans Ng. —

a
Proposition 4.3.4. There are at most 2 non-equivalent mwultiplica-

o : 4 :
tive real structures ornn X = (CP N )11 < --- < (P )2" . Moreowver,
7y ik
W s isomorphic to S X< - - - xS
dy+1 d, +1
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and Aut(IN, A) is the semi-direct product of the normal group W by the

direct prodwuct ‘Si1 > - < S,
I

Proof. As X is a direct product of projective spaces, A is a direct

z
sum of fans associated with these projective spaces so that YW ~ Sdl <
1
z
EEEEES Sd"+1 and Aut(/V, A) = (‘S'i1 > - - - > Sf;.) < V. To upper bound
»

the number of non-equivalent multiplicative real structures on X we

only need to establish the following

TLemma 4.3.6. Let . A = I < W be a group, semi-direct product of a
subgroup I" by a normal subgroup W . An elerment of A writtern by fw
with f irn Im and w in W Zs an involution if and only if f is an involution
zre I" and fwjf =— u_vi1 zre W . AMoreowver, when f is conjugate to f, X
I, for every w in W there exists w' in W such that fw s conjugate to

;o
J w irn AL

Proof. First assertion comes from fw fw = f2(f71wfw) so that (fw)2 =
id if and only if f2 = id and fw f = w 1. For the last assertion, we write

’ —1 —1 ’ ’ ’ —1 D
f =g fg with g in I" so that g Sfwg = f w with w = g weg-

Lemma 4.3.7. There are at most 2 non-egquivalent involutions inr

£2
S, < S :
r+1

Proof. Using Lemma 4.3.6, we only need to consider involutions written
by 7w with 7 chosen among non-equivalent (i.e., non-conjugate) invo-
lutions in &, and w in S;+1_ If 2 = 1 we conclude with Lemma 4.3.5
and if 7z > 2, say ¢ = 2k or « —m 2k + 1 with &2 > 1, we denote those non-
ecuivalent involutions by (Tj)ﬂijik where 7, = Zd and, for 1 < 7 < k&,
7; is the product of the j disjoint transpositions «;, = (27 — 1, 27) with
1 <7< 5.

First step. IL.et us choose 7, 1 << 7 << k&, and consider the involutions

11
- - - 1
written by Te0 with w = g1 w, and w, in S 1- AS TiwT, = w , we

obtain the following relations

—1

o gy = for all 1 < 7 < 7
2
w = id for all g = 27 + 1
a
Then,
E i
T (T) T, = wT; = (o, qwon,c¢;) w,
1—=1 g—27+1
. 1’ 1 LTI o
so that Tj(‘rj..a)‘rj = 1:1(w2171a,w2171) g2y w,- As any two of the

Wy commute, we have

1 T II_ -

Tj("j“—’)"j = ( “-’2171)(7'_7' “—’q)( Cor1)

71— g=27+1 1—
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Hi

and the involution 7w is equivalent to 7 w_. Thus, there are
7 7 g=—27+1 a
P i—27 - - - - -
at most (27) non-equivalent involutions of this kind.
Second step. There are at most 2% jnvolutions written by «w. But

TR T is equivalent to w so that the number of non-equivalent involu-
tions written by w such that 7,w7, £ w is divided by 2. Moreover, as

in the previous step, 7,w7, = w if and only if
o, Lo = Wy for all 1 < I < k.

Thus if 7 = 2k + 1 (respectively, z = 2k), there at most, up to equiv-

Y. . S R B
alence, 275E (respectively, 2 P) involutions w such that 7w, = w.

prk—+p

1 i 13
Therefore, there are at most _(21” — 2 )+ 27 +P
2

1 : 13

— —(21”—{—2? +p) non-
2

i

1 A
equivalent involutions written by «w when ¢ = 2k + 1 and — (27 4+ 27)
2

when i = 2k&.

TLast step. If i = 2k + 1, we conclude that there are at most, up to

2kp—+p rk+p E :k

1 2k+1 27
ecuivalence, A,, , , = ;(2 + 2 ) + » -+ 7

71(2 D involutions

2kp+pr

and it remains to prove that A,, , , =< . To do this, we calculate

Zk

F=1

P 2k+1—27

2" = (=

kp—+p kp
k1 = 2 2" +2

2kp+p 2 ¥4

ZP)/(ZZ — 1). We remark that 2(22 —
kp+2p

1HYNL, —+ 22p). Then, we only have to prove that

kp kp+2p 2p kp+1 2p

(2 + 2 +2) < 2 (277 — 1)

P P

%
. This last inequality is equivalent to 27 = 2 p(22 — 3) and so is verified

as soon as kE = 2 or p = 2. In case p = 1 = k, we compute directly AZ,
3

and obtain A; = 8 which is less than 2 .

P 2pk—+1 pk+2p

In the same way, if z = 2k, 2(22 — 1)H)NL,, = 2 — 2 4+ 2

pk pk

27 4 (277

¥=3 » rk

— 1)22 and 2(22 — 1) NL,, =< 2(22 — 1)22 if and only if

fo2 S 2kep+2 2%
—2 4 2TTTTE 2P o TTFTER g o7

When A = p = 1 this inequality is verified and it is also true for

2 K
(= 1,p = 2) or k& > 2, since in these cases 2 =< 2 (a4° — 3). [l

Is-it possible to obtain the same upper bound, 2d, assuming only
that Auto(l\') is reductive 7

ILet us consider the special case of a toric Fano variety X (R) as-
sociated with a reduced root system 7R in an FEFuclidean space V of
dimension d (see [32]). In fact, the Weyl chambers of this system de-
fine a complete non-singular fan in the lattice of weights and X (R) is

the toric variety associated with it.

Remark 4.3.8. Note that R is not a root system for the fan as defined
in Subsection 2.11 and even in some cases the root system for the fan,
2, may be empty. NNevertheless, for these toric Fano varieties /2 = /2

s

so that they are reductive.

Using Richardson’s Algorithm (see [30]), we prove the following
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Theorem 4.3.9. Let X (R) be the toric variety associzated with arn ir-

redwucible root syster TR in a Fuclidean space of dimensionrn d. Thenr,
o

Aut(IN,N) = Aut(R) and there are at most 2 non-equivalent mwulti-

plicative real structures on zt.

Proof. Let us denote by 7V the lattice of weights, by A the complete
fan defined by the Weyl chambers and by A4 the automorphism group
of the system of roots /R. Then, Aut(/V, A) is isomorphic to .4 and we
study non-conjugate involutions inside .4 to deduce an upper bound of
the number of non-equivalent multiplicative real structures on X (7R).
We consider successively the different types of R.

Type A, Whend = 1, A —~ Z, and there are exactly two involutions
in it. When d = 2, A ~ Z, =< S,;,, and we use Lemma 4.3.5 to conclude
that there are at most 2d non-conjugate involutions in _A.

Type G,. In this case, A ~ Dy and we will prove in Subsection 5.2
that there are at most four non-conjugate involutions in it.

Beyond these two cases, we need Richardson’s Algorithm to conclude

and we expound it briefly (for more details and proof see [30]).

Let (W,.5) be a Coxeter group and W~ —f> GL(E) be a geometric
representation of it such that £ is spanned by {e_ | s € S}. For each
subset J of .S, the subgroup of W generated by J is denoted by W7,
and the subspace of EF spanned by I Aa— {e.| s € J} is denoted by E,.

Then, by definition, J satisfies the (—1)-condition if there exists c_
in W such that for all v in E_, f(c_)(v) = —wv.

The set of subsets of S satifying the (—1)-condition is denoted by Z.
Among finite Coxeter groups, those verifying the (—1)-condition are

those of type A,, B, (n = 2), D E., E;, G,, F,, H;, H, and I,(2p);

27n 7

others, not verifying this condition , are of type A, (2 = 2), D i

2r+41° 6

and I,(27 + 1).

Moreover, two subsets J and A of S are said to be W-equivalent if
there is ww in W such that f(u_*)(Jl) = .

Theorem. If c zs an involutionrn in W, there exists a subset J irn I
such that c is conjugate to cj irn W . Moreover, for two elements of I
J and IX, c; and cji- are conjugate ire W if and only if J anrnd IX are
W -egquivalent.

Therefore, there is a bijection between the set of conjugacy classes of
involutions in VW and the set of WW-equivalence classes in Z. This the-
orem gives rise to an algorithm that determines W -equivalence classes
in Z .

First, let us choose J in Z then, A(J) is the set of s in S — J such
that L, connected component of J U {s} containing s, does not verify

the (—1)-condition. Let us recall that, there is a longest element w,
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in W, such that wi = id and ‘u.'L(L*) = —r". Thus, there is a non
~trivial permutation o, of L such that w, (e, ) = —€a,(s) for all s in L.
If s° = a,(s), the set I (s, J) = (J U {s}) — {s,} is MW -equivalent to

J. By this way, we construct a secquence of W-equivalent subsets and
every two W-equivalent subsets in Z can be joined by such a sequence.

Now, to end the proof we use this algorithm with W, the Weyl group
of R and S, the set of reflections associated with a basis of R. IL.et us

begin with an easy case.

Type Eg. We write S = {s,|] 1 < ¢ << 6} such that the Coxeter graph
is represented by Figure 2. For J = {s,}, A(J) = {s,} and s; = s,
so that I = (J U {s,}) — {s,} = {s,} is W-equivalent to J. In the

same way, {s,} is W-equivalent to {s,,,} for 2 < & << 4 and {sgz} is
W -equivalent to {sg}. Thus, there is only one W-equivalence class of
’
type A,. Then, for J = {s,,s5;}, A(JT) = {s,,s,, s} and s, = s,, s, =
’

s_ = sz so that W, = J, N, = {s,,s,}, INg = {s,,s6) and I\N,, g4

s
3> 6

are W-equivalent to J. In fact, there is only one W-equivalence class

of type 2A,. Moreover, for J = {s,,s5;,5;}, A(JT) = {s,,s5,,5¢) and
Sl2 = s,, S; = s,, s;_’ = s5; so that W, = I, = J while Wy = {s,, s, sg}
is MW -—equivalent to J. There is also one W-equivalence class of type
3A,. Finally, let us consider J = {s,, 83, 5,, Sg} then, A(J) = {s,,s.3}
and s’l = s, sls = s; so that I, = K, = J. There is only one

W -equivalence class of type D, in Z. Thus, up to conjugation, there
are exactly five involutions in W. But, A = Z, >< W so that, up to
conjugation there are ten involutions in -4 which is less than 2d = 26.

We conclude in the same way for the following types,

Type E.,. There are one W-equivalence class of type A, ,2A,, 4A,,
D,, D,+ A,, Dg, E, and two of type 3.4,. Thus, there are, up to
conjugation, ten involutions on A4 which is less than 27_

Type E;. There are one W-equivalence class of type A, 2A,, 3A,,
AN D, D,+A,, Dg, E., E

T hus, there are, up to conjugation, ten

1> 8-

involutions on -4 which is less than 25_
Type F,. There are one W-equivalence class of type 2A,, B,, F,

and two of type A,, Bj. Thus, there are, up to conjugation, eight

a
involutions on A which is less than 2 .
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Thus, it remains to consider R is of type B, or D,.

Type B_,. We prove by induction that if d = 2p the number of
non-conjugate involutions in .4 is /sz = (p + 1)2 while, if d = 2p + 1, it
is By, = (@ + 1)(» + 2). In both cases, this number is less than 27,

If p = 1, i.e, for B, and B; direct computation using Richardson’s

Algorithm gives the answer. Let us assume now that is true for p and

then study type B We consider that its Coxeter graph is obtained

2p+2-

from the one of B by adding s, and represent it in Figure 3.

2p+1
To W-equivalence classes of subsets J included in {s,,..., 32p+1} we

must add one of type (p + 1)A, given by J = {s,;| O << 7 < p}, and

1
one of type B, + (p+1 — —g)A,, for each even g between 2 and 2p + 2,
2

- . 1

given by J, = {s5;] O < 7 < p — ;q} (6] {52P7Q+2’ L, S2P+1}_ Thus,
2

Bopirz = (P + D@ +2) +1 4+ (»+ 1) = (» + 2) . In the same way,

to B

passing from B we must add one W-equivalence class of

2p+2 2p+3°2

type (p + 2)A, and one of type B, + (p + i(B — g@))A, for each odd g
between 3 and (2p—+3). Thus, Bopias = /32P+2—|—1—|—(p—|— 1) = (p+2)(P»+3)
and so we are done.

Type D,_,. As for the previous type, we prove by induction that if
d = 2p the number of non-conjugate involutions in W is i(p2 “+ p + 4)
while if d — 2p 4+ 1, it is i(p2—|—P—|—2). When d — 2p+1 and d = 4, A ~
Zi, > W so that the number of non-conjugate involutions is (p2 +p + 2)

2p+1

which is less than 2 . When d = 2p and d > 4, A is a semi-direct

product and we must look closer into R.

To do this (see [5]), we comnsider (s,,...,5s5) an orthonomal basis of
Rd for the usual inner product { ) and R = {4=, 5_7.| 1 << 7z << j < d3}.
A basis of the root system is ¢ = {3,,.---,08,} with 3, = =, — =,
for 1 < 7 < d— 1 and B, = =s,_, + 4. With each 3, is associated a
reflection s; given by s, (v) = v — {(3;,v) 3;. Moreover, A is the semi-

direct product of the subgroup I" of automorphisms of R that preserve
& and the normal subgroup "W generated by the s,. By Lemma 4.3.6, we
only need to consider involutions written by fw with f chosen among

2
non-conjugate involutions in I and w in W such that (fw) = id. We

begin with d = 4 and the following lemma.

Lemma 4.83.10. Let R be a reduced root system of type D,. Ther,

a
there are at most 2 mnon-conjugate involutions i Aut(7R).
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Proof. In this case, I" acts on ¢ as the permutation group of {3,, 35, 3,7} -
Up to conjugation, there are two involutions in it, id and f that ex-
changes 3, and (3; preserving 3, and 3,. In the basis (s,,s,,=3,=,), f

is given by the matrix

EE | 1 1 —1 1

-1

2 \ 1 —1 1 1 }
— 1 1 1 1

Then, to the five non-conjugate involutions in W, we must add those
written by fw with w in VW such that fw fw = id. But, VW is also a
semi-direct product U pv< Z. In fact, U acts on =,,=s,,=5,=, by permu-
tations and Z by changes of even nmnumbers of s, to —=,. Let us denote
by 8, the identity, by &, = /2 the element of Z that changes every =; to
—s,;. Other elements of Z change exactly two signs, §, those of =,,=,,
S, those of =,,=5, &5 those of =,,=,, &, those of =,,=;, §; those of =,, =,
and S5 those of =5, =,. Thus, an element in W is written by od;, with o
in U and O << z << 7 and it is associated with an involution fw if and
only if w fwf = id, i.e., o(5,f)o(S5,;f) = id. Therefore, for each wvalue
of i, we determine the maximal number of non-conjugate involutions

written by fod,.

For z = O, we are looking for o such that ofof = id. As o

2
permutes the s, without changing signs, (of) = zd if and only if
o(s,4 ;41) = 444, for all (Z,7) such that cr(sj) = =,. Let us note that

=, (respectively, =,) is preserved by o if and only if =, (respectively, =5)

is preserved by o.

If o(s,) = =,, when o(s,) = =5, o is the transposition 7, of s, and =,
whereas when o(s,) = =,, o is the identity.

If o(s,) = =,, there are four possibilities. When o(s,) = =,, o is the
transposition of s, and =, denoted by 7,. When o(s,) = =,, o(s,) = =4
and o is a cycle denoted by o,. Finally, when o(s,) = =5, o(s,) = =,
and o = 7,7, or o(s,) = =, and o is an other cycle denoted by o,.

In the same way, if o(s,) = =, we obtain a';l and c'i and if o(=s,) =

1 2
=5, we obtain o, and o, - Thus, there are ten involutions written by fo.
1 —1 —1
But 7, (fo,)m — fo, and £(fo)f — fo ' sothat fo,, fo., fo, . fo,
R 2 2 2 2
are conjugate and so are fa'l,fc'z_ NMoreover, = (frl)a'l = f1,- We
conclude that there are at most five non-conjugate involutions written
2
by fo: f, frmy, fo., fa'1 and fr,7,-
For ¢ = 7, i.e., 8, = h, foh is an involution if and only if fo is an
’
involution. Furthermore, foh is conjugate to fo A if and only if fo is

’
conjugate to fo . Thus, we deduce from the previous case, that there

are at most five non-conjugate involutions written by fod..
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Now, let us assume that ¢ = 1. In the basis (s,,s5,,55,5,4), &, f is

given by the matrix

1y —1 —1 1 —1 1
| 1
2 \ 1 —1 1 1 }
—1 1 1 1
2 2 —1
Observing that (§,f) = o,, we remark that (&§,f) (=;) has three (re-
spectively, one) coordinates equal to —1 for Z = 2 or 1 (respectively,
—1 —1 —1
i = 3 or 4). Thus, o (=,) and o (=5,) (respectively, o (=3) and

071(54)) are equal to s, or s, (respectively, 5 or =,).

If o 1(51) = =, then o 1(52) = =, and (5, f)o(S5,f)(s3) = =5 so that
o(s3) = =5 and o(s,) = s,. Thus, o is the transposition of s,,=s, and
we denote od, by 5_’1.

If 0'71(51) = =, then 0'71(52) = =, and (5, f)o(S5,f)(s3) = =, so that
o(s,) = =53 and o(s;) = =s,. Then, o is the transposition of =5, s, and
we denote o8, by Jlll.

For i = 6, since hS, = &g, we obtain also involutions written by

féJG and fJ;, where 5; transposes 5, s, and changes their signs and 5;’

transposes =5, =, and changes signs of =,,=,.

In the same way, when 7 = 2, &, f is given by the matrix
{ —1 —1 —1 1 \
1 1 1 —1 1
| 1
2 \ —1 1 —1 —1 }
—1 1 1 1
so that (52f)2 B o'f. Thus, involutions written by fod, are fé’z and fJ;I
where 5’2 transposes £,, £; and changes their signs and 5’21 transposes
=,, =, and changes signs of =,, =;5.
For 7z = 5, since hS, = &; we obtain, with the same notations, the

involutions written by fé‘i and fé'g.
Subsecuently, let us assume that 7 = 3, then J§;f is given by the

matrix

{_1 —1 —1 1\

1 1 1 —1 1
| 1
2 \ 1 —1 1 —1 }
1 —1 —1 —1
2 —1
and (&3f1) = —7,7,- We remark that (&;f1) (=;) has three (respec-
tively, one) coordinates equal to —1 for ¢ = 1 or 4 (respectively, z = 2
1 1 1 1
or 3). Thus, o (=,) and o (=4) (respectively, o (=,) and o (=3))

are equal to s5; or s, (respectively, s, or =,).
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If o '(2,) — =, then o (=,) — =, and (8, ) (85 F)(=,) — =, so that
o(s,) = =, and o(s,) = =5; o is a cycle denoted by o; associated with
the involution foz;8;.
If o 1(51) = =, then o 1(54) = =5 and (S3f)o(S3f)(s,) = =, so that
—1
o(s,) = =, and o(s,) = =4; o is equal to L= which is associated with
1
the involution fo_, J;.
In the same way, for 7 = 4 since AS; = 5§, we obtain also involutions

—1
written by foz8, and fo"‘3 S,-

Thus, we have found twelve involutions: f5;, f(S’ll, f5’2, f(S;,, f5’5, f(S;,,

’ ’” —1 —1 , ’
st, f56, Sfos8;, f::,v'3 S3, fozd, and fo'3 S,- But, T1(f‘51)7-1 = frz, (f
55)7‘1 = fTs and Tz(fal)"_z = f55 so that f51, f52, f65 and st are con-
jugate. Since h5: = 5:’, we deduce that fé'lll, f5’2l, féJsl and fS;I are also
conjugate.
1 , 1
Moreover, 72 (fo383)7, = f(o, &3) and o, (fF ), = f(o353) so that

1 —1
f(o385), f(o'3 S;) and féJl are conjugate. In the same way, 7'2(f<:r3 S, )7
’ —1 —1 —1
= f(o35,) and ‘71(f‘56)‘71 = f(o'3 S,) so that f(oz8,), f(a'3 S,4) and
fJ; are conjugate.
1 —1

Finally, al(fJ_’ll)al = f(o, J3) so that the twelve previous involu-

tions are conjugate and we conclude that in Aut(7R) there are at most,

4
up to conjugation, 5 + 5 + 5 + 1 = 2 involutions. D

Now, we comsider R of type D, with d = 2p and p > 2. The Coxeter
Graph of R is represented by Figure 4. In this case, we denote the
orthonormal basis of Rd by (sg>---5>=4_41) so that A = T < W where
I is the subgroup generated by the involution f that changes s, , in
—s4_, and preserves any other =,.

If we omit s,, we obtain a subgraph corresponding to a subroot
system R’ of type D, . Automorphism group of R is A — 1T =<
W' where I is generated by the restriction of f (denoted also by f)
to the space spanned by =,,...,s,4_ , and w s group generated by
the restrictions of s,,...,s,; ,. We try to relate, up to conjugation,
involutions in A and those in A .

First, we study involutions lying in WW. We have already proved that,
to obtain conjugacy classes in ¥, we must add at most p + 1 classes

’
to those obtain in W .
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Now, we comsider involutions written by fw with w in W. But
W = U < Z with U acting on =s,,...,s, , by permutations and Z by
changes of even numbers of =, to —=,;,. As in the previous lemma, we are

looking for elements of YW written by od with o in U and § in Z such
that o(§f)o(Sf) = id. We define Supp(o) as theset of 7, 0 << 7 < d—1,
such that o(s;) 7 =; and define, in the same way, Supp(§f) or Supp(§).

If i & Supp(o), ((85F))°(s;) = =, while if i € Supp(e), i-e., o(;) = =,

with & = Zz, we must distinguish two cases as Z belongs to Supp(8f) or

not. When ¢ € Supp(5f), o(5f)(s;) = —=, so that (o(5)) (=,) = =, if
and only if £ € Supp(df) and o(s,) = =,. While, when 7 &€ Supp(d5df),
F(5f)(=,) = =5 so that (o(55)) (=,) = =, if and only if £ & Supp(5s)
and o(s,) = ;. Thus, fod is an involution if and only if o = id or o

is a product of disjoint transpositions T exchanging =; and =5 and &
changes an even number or signs of s, including eventually both signs

of =, and =5 when they are exchanged by o.

ILet us assume that Supp(o) = {0,...,(d — 1)}, so that there is at
least one k& such that o(s,) = s, and k£ s d — 1. If O € Supp(o) then,
To w(fod)Ty 0 = fa’Sl with & — To 2970 % s = To 2T To  and O & Supp(o”)

Thus, up to conjugation, we may suppose that O does not belong to
Supp(o). Moreover, if O does not belong to Supp(d) (or Supp(fS&)) fod
corresponds to an involution in A’ Whereas, if O belongs to Supp(d), we
denote by &, the transformation that changes =, in —=s; and preserves
others =, and by s = 85, (note that s’ changes an odd number of
signs among those of =,,...,=,

1- Then, —3&8, changes =, to —s,; for

1 <7 <d— 1 and preserves s, so that —&;, commutes with o. Thus,
’ 2 ’ r
fod = fod (—38s) 8o — (—f5)9(—38 55)8, — (o5 ),

with & preserving s, and changing an even number of signs among
those of =,,...,s45 ;. We conclude that, in this case, fod corresponds
to an involution (up to conjugation) in w' composed with &,.
It remains to treat the case, Supp(o) = {0O,...,(d — 1)}. Up to
T[i=<¢—=2

conjugation, we may suppose that o = —o Ty i1 If {O,1} is not
i= ,

contained in Supp(s8), fobd = (fa"J)TO’l with o — 7o, and there are
2p71 possibilities for §. In the same way, when {0,1} is contained in
Supp(d) we denote by &;,; the transformation that changes the signs
of =4 and =, and preserves others and by s = 550’1_ Then, fofd =
(fo"él)‘rO’lSo’l and there are 27 possibilities for s

We conclude that, up to conjugation, there are at most (p + 1) —+
(p — 1)2 + (p— 1) + 2 + 2 - 21371 = p2 -+ 3 + 2” jnvolutions in .A. Since
p = 3, 2¥ = 1+ p + ip(p — 1) + ip(p — 1) (p — 2)) which implies that

27 (2" — 1) > p(p2 -+ 5) > (p2 —+ 3) and so we are done. [
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Remark 4.3.11. In the very general case, G (V) is a finite group gen-

erated by involutions so that it is a quotient of a finite Coxeter group.
E4

Nevertheless, using the previous algorithm, we obtain that 2 is again

an upper bound when G (V) is a Coxeter group of type A, B,, D, _,

n

E,, E,;, Eg, F, or G-

6
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5. REAL TORIC SURFACES

Throughout this section, X is supposed to be a symooth compact

complex toric surface so that » is also the number of two-cones, i.e,

HA(2).
5.1. The different types of real structures.

Proposition 5.1.1. There are four types of real structures on a toric
surface:
(type I) those defined by the identity map on IN and writtern in prire-

cipal orbit coordinates by
_ 1 1
tr—> = -t with =e S =< 5 ;

(type II) those defined by a non-trivial involution preserving at least

one two-cone |e,,e,] and written in coordinates associated with [e,, e,]

1>
by
_ _ w2
t = (t,,t,) —> (=,t,,=,%,) with = , £,.5, = 1;
(type I1I1) those defined by an involution preserving mno two-cone but

at least one edge [e,] and writter in coordinates associated with an

adjacent cone [e,,e,] by

_ _a 1 e e 2 —
t’—>(51t1t2:52t2 ) with = € C <R , a € N, |51|=s2 H

(type IV) those defined by —id on IN and writtenn in principal orbit
coordinates by

1 w2
t—> = - ¢ with s e IR .

The two latter types occur only if r is ever.

Proof. We use coordinates on the principal orbit and determine = by
A
means of =& = 1, see 3.2.1.
T.et s be the involution of /V preserving A associated with a real
structure ¢ and k4 the maximal dimension of a cone o preserved by s.

The different cases come from the values of A&

If s preserves a two-cone o = [e,,e,] then it preserves e, and e, or
exchanges them. In the first case, s = id and |=s,| = |=,| = 1 while in
the second case, =,5, = 1.

If £k = 1, s preserves o = [e,] and then must exchange the two-cones

adjacent along o. These cones being smooth, may be written by [e,, e,]

and [e,,ae;, — e,] with a in Z. Thus
s(e,) = e, , s(ey) = ae, — e,
e 2 a
and =, € IR , ls.l =, = 1.

If no cone is preserved except {0}, then s does not preserve any non-

zero vector in /Np. In fact, if there is such a vector it cannot belong
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FIGURE 5

to an edge and consequently must be in the interior of a two-cone o.
Then, s(o) Mo is non-empty and s preserves o which is impossible. We

conclude that s is the central symmetry A = —id and = & R’IQ_ D

Remark 5.1.1. When 7 is odd, real structures that are not of type I

preserve exactly one two-cone.

5.2. Classification of multiplicative real structures. From now
on, in this subsection, we consider only multiplicative real structures.

To study them, we may use two distinct points of view. First, they
act on the lattice /V by involutions preserving the fan. Thus, we work
inside a subgroup of GL.(2,Z).

But, choosing properly the polygon /7 (see Proposition 3.4.1), they
induce also an action on it. Then, making a distortion of 77 to a regular
r-polygon P‘“, they can be seen as orthogonal involutions of P Using
a misuse of language, we say that an involution of the lattice is a
reflection when it corresponds to a reflection of P Thus, we worlk
inside the orthogonal group of a regular r-polygon, i.e., the dihedral

group 22,.

Example 5.2.1. There are exactly six multiplicative real structures
on X (A) = P’ < CP': the canonical real structure (type I), two of
type II, two of type III and one of type IV. If we denote the generators
of the edges of A\ by e,,e,, —e,, —e, , they correspond respectively to

the following six involutions of 7V
, ,
id,s,hs,s ,hs , R

where R = —id, s is the reflection preserving the two-cone [e,, e,] and
s’ is the reflection exchanging it with [e,, —e,]. From the second point
of view, s and s are seen as reflections on a square and generate the
dihedral group 22, (Figure 5). Since (ss,)2 = 7/, the real structures
associated with s and hAs (similarly with s and hs,) are ecquivalent.

Moreover, by a direct computation or using the following remark, we
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’
prove that the real structures associated with s and s are not equiva-
lent. Consecquently, there are exactly four non-equivalent multiplicative

1 1 ’
real structures on CZF? >x CZF? and they are associated with id, k2, s, s .

Remark 5.2.2. A real structure of type II cannot be ecuivalent to a
real structure of type III. In fact, writing for the associated reflections

’
s and s

1 ’

fsfi = s
with Ff an automorphism of /V preserving the fan, we see that if s

’
preserves a two-cone o, s must preserve also the two-cone f(o).

Theorem 5.2.3. ZThe number of egquivalence classes of muwultiplicative
real structures on a toric surface is one, two or four. They are repre-

sented:

(1) when the number r» of two-cones is odd, by the canonical real struc-
ture and possibly by a structure of type 11,

(2) when r = 4, besides the canonical real structure by a real structure
of type 111 or by one real structure of each of the three types, 11,
177 ard IV

(3) when r is even, r = 4 and —id does not preserve A\, by the canonrn-
zcal real structure and, possibly, by a real structure of type 11 or
177,

(4) when r is even, r %= 4 and —id preserves I\, besides the canorni-
cal real structure and the structure of type IV, possibly by either
two real structures of type 1717 corresponding to two reflections with
minimal angle between their invariant subspaces, or one real struc-
ture of each type 11 and 111 that can be written respectively by

. 1 1
t—> (t,,¢t,) arnd t —> (tz , T

£, -

Proof. If » is odd, say » = 2k + 1, then 7 = —id does not preserve A.

’
Iet us consider two multiplicative real structures ¢ and ¢ associated

’ ’
respectively with non-trivial involutions s and s . In fact, s and s
’ e
are reflections and ss is a rotation preserving ~". But the group of
e ’
rotations of 2" is a cyclic group of order » so that (ss )r = id. Hence,

7

(ssl)ks(s,s)k = s 1)

’
and ¢ ~_, ¢ . Thus, there are at most two non-equivalent multiplicative

real structures on _X.

If » is even, we distinguish two cases: kA =— —id preserves the fan or
not.
’
Assume that A2 does not preserve A IL.et s,s be two reflections

associated with non-equivalent multiplicative real structures on X . As

we have already seen in (1), if the order of ss is odd, s’ must be
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equivalent to s. Hence the order of ss is even, say 2k. But, in this
case, (ssl)k is a non-trivial orientation preserving involution of A which
is impossible.

Now assume that A~ preserves A. First, consider the case there is a

reflection s preserving A\ and a cone o = [e,,e,]. Then, we prove that
hs ~ s if and only if r = 4

here Rs ~ s means that there is an automorphism f of /V preserving
—1
A such that fsf = hs.
In fact, as explained in the previous remarlk, for f as above f(o) is a

two-cone preserved by the reflection As and there are two possibilities:

e, — e, or —e, + e, belong to the interior of f(o).
2 2
Furthermore, f(o) = [ze, + ye,, —ye, — we,] with |z — zy | = 1 so
that f(o) is [—e,, e,] or its opposite and » — 4. For the reciprocal see

the previous example.
’
Now we may suppose that » % 4 so that 2s £ s. Let s be a reflection
preserving the fan, not equivalent to s. With the same arguments as

in the case 2 preserving A, we conclude that the order of s's is 2% so

*
that (s,s) = . But for £ = 2g + 1, we write
’ ’ ’
(s s)qs (ss )q = hs
and conclude that s ~ hs, while if £ = 2g we get
’ gq—1 7 ’ 7 _g—1
[(s s) s |]s[s (ss) ] = ~s

and s — As which is impossible.

It remains to treat the case no reflections preserve a two-cone. If
there are such reflections, we choose s and s among them such that
the angle between their subspaces of invariant vectors is minimal. Then
s'ss’ is also a reflection preserving A ecquivalent to s. In the same way,
conjugating successively by s and s we obtain 2k reflections equivalent
to s or s (where 2k is the order of ssl). TLLet us motice that if there
is a reflection mot equivalent to s or sl, we can construct similarly a
reflection nearer to s than s which is impossible. Now we prove that
s & s . Let [e,] and [e’l] be nearest edges preserved respectively by s

and sl, we denote by s’ the reflection exchanging them and prove that
”
s ~ s if and only if s € Aut(/V,AN).

—1

In fact, as usual, fsf — s with S preserving A, implies that f(e,) =

:I:e,1 and there are four possibilities. T.et us denote by [ell, elz], [e’l, e;]
’

the two-cones adjacent to [el] that are respectively direct and indirect.

If f(e,) = e’l and f(e,) = e;, considering the adjacent two-cones

’
between e, and e, we deduce that f is the reflection exchanging e, and
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, ” ”
e, - Then, s = f and s preserves AA. The other three cases correspond

”
to s equal to:
fs, hf, Rhfs.
’ ’
As s is the reflection nearest to s, s ¢ s and we conclude that there

are exactly four multiplicative equivalence classes associated with:

id, h, s, s . D

5.3. Toric equivalence. In case of toric surfaces we can precise results

of Proposition 4.1.1.

Theorem 5.3.1. Real structures = c,, of type I, type 11, type 11l with

s, => 0 and type IV with s, => O =, > O are torically equivalent to their

multiplicative part. Real structures = c,,, of type 11l with =, << O are
torically equivalent to cec,, with o« = (1, —1) and those of type IV with
s, < O or s, << O are torically egquivalent to « c,, with «, = =,;/|=s,]|.

Proof. For a real structure c of each type, we consider an elementary

toric automorphism A4 of X and write the equivalent real structure

1
& = & ck in principal orbit coordinates. If ¢ is of
. 1.2 2 ’ o .
type I, we choose kb in (S ) such that 2 = =s. Then, ¢ is written by
—1— —1- ) - 1 —2 —1 .
t > (s,k, kyt,,syk, kyt,). Since kk = k = = , ¢ is the

canonical real structure.

’ —1_ - —
type II, with k£, = s, and kA, = 1, ¢ is written by % > (slkl to, skt ).
- ’
Since sk, — =£,£, =— 1, ¢ is the multiplicative part of c.
1 2 =
type III, let us choose 4., in S such that k1 = =,|=,]?> and Ak, =
1
. L. - - —1_ a— -—a —2_ 1
|=5]2. Then, ¢ is written by ¢ +—> (slklkl k2t1t2,52k2 L ). But,
— 1 a 2 a 1 2 —1
kyk, k, = k, k, = =, and kA, = |=5]| . So that for s, => O,

’ ’
c is the multiplicative part of c¢; otherwise ¢ is written by ¢ >

- — a —1
(2,2, ., —2, )
L 2

type IV, we conclude in the same way with &k, = |=,|2 and kb, = |=,]|2.

]

5. 4. Topology of the real part. Since the real parts of torically
equivalent real structures are homeomorphic, we only need to consider
the eight cases cited in Theorem 5.3.1. Using Theorem 4.1.1 we may
suppose that the real structure is multiplicative and use the algorithm

explained in Subsection 3.5.

Theorem 5.4.1. For the canonical real structure, the topological types
of IRX are listed i Propositiorn 3.5.3. In the other cases, the topological
types are the following:

type I71: IR X s homeomorphic to the real projective planre RPZ whenr
7 Zs odd and to the sphere 52 otherwise;

type 111, =, << O (so that a is even):. IRX is empty;
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1.2
type 111, =, => O: IRX zs homeomorphic to (S ) when a is even, and
to the Klein bottle whenr a is odd;
1.2
type [V: IRX s homeormorphic to the torus (S ) if =, > O =, => O

and is empty otherw:ise.

Proof. In the case of a structure of type II, P is a segment [A, B]

—1 1
with o, a preserved two-cone and G, = {(#,,¢, )| ¢, € S }. For the
facet Fll = {A} the group GF1 is reduced to a point but for the facet
le = { B}, we have to distinguish two cases: 7 is even or not.

When » is even, “r, is the second two-cone preserved by s and GF:
2
reduces also to a point so that IRX is homeomorphic to .S .
1
While if » is odd, =g=R is an edge of A associated with G;lr2 = .S and
2
the gluing map: &G, — GF2 is defined by ¢, +— t1' The cylinder of this
map being a Mdbius strip, we conclude that IRX is homeomorphic to
2
R .
For a structure of type III, 7 is again a segment [A, B] and G, =
1.2 2 —a . R -
{(z:,2t:) € (8§ ) | t, = ¢t, }. Then, we distinguish two cases: a is odd

or not.

x —1
Suppose that a = 2k, we use new coordinates: =, = tt,, u, = t,
1_ 2 2
to obtain Gy = {(u,,u,) € (& ) | v, = 1} so that &', is the disjoint
1
union of two copies of .S . Now, for the facet Fll = { A3}, T, is an edge
1
of A preserved by s so that GFI = .5 and the gluing map: G p — GF1
is defined by (u,,u,) — u,.
The case of le = { B} is identical and we obtain that IR.X is homeo-
. 1.2
morphic to (S ) .
Now suppose that a = 2k —+ 1. Using the same coordinates, we
2 1
obtain Gp = {(wu;,u,)| », = w,}. For F,, Gy = S and the gluing

2 ’
map is w, —> w, . Doing the same work with Fz, we conclude IRX is the
2
connected sum of two IR/ .
/
In case of a structure of type IV, 77 is a point associated with the

group (51)2 so that IRX is homeomorphic to (Sl)z. D

5.5. Minimal model for a real structure. We say that a real toric

surface (X, c) dominates a real toric surface (‘\'I, c’) if there is a toric
’ ’

morphism of degree 1 from X to X that transforms c¢ to ¢. We look

for a minimal model of a real structure c, i.e., for a real toric surface

(X, ec) that cannot dominate another one not isomorphic to itself.

To determine minimal models, we use the characterization of toric
isomorphic compact surfaces by weighted circular graphs (see [27]). Let
724,-..,72,, be the successive (primitive) generators of the edges of A.

For each 1 << 7 << r, there exists b, € Z such that

b,re; + 12, 4 + 72;,4, = O where 2 = 72,. and T2, = 724
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Ficure 7
In this case the weighted graph is represented by Figure 6.
For instance, the weighted graphs of CP2 and F_ are represented in
Figure 7.
A T -equivariant blowing-up along the 7 -fixed point orb(r,,7,,,)
modifies the graph by introducing a new vertex of weight —1 between

b, and b,,, and subtracting 1 from each of &, and & We easily deduce

i1
the inverse transformation of a graph by an elementary contraction.

According to Theorem 2.8.2, every toric surface X is obtained from
either CP2 or F_, by a finite succession of such blowing-ups. Therefore,
they are minimal models for the canonical real structure and their
weighted graphs are the only graphs with respectively three and four
vertices. Consequently, a weighted graph with at least five vertices has
at least one of its weights equal to —1.

Note that any involution of 7V preserving A also preserves the weighted

graph of X .

Theorem 5.5.1. A minimal model for a real structure of
type 1 is CCIP2 or F_ .
type 11 zs CP2 whern r is odd and CPI >< CPI otherwsise.
type 111 is F .

1 1
type IV s CF > CFr .

Proof. For a real structure of type II, we distinguish cases: 7» is odd or

not.
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Ficurre 9. With all weights from ¢, to ¢,/ _, different

from —1._

Suppose 7 is odd, say » = 2k + 1. Then, the graph of X is preserved
by the reflection s associated with the real structure (see Figure 8).

If one of the b,, with 2 < 7 < k, is equal to —1, we suppress the
two corresponding vertices by symmetrical contractions. Thus, by a
succession of such transformations, we obtain a new symmetrical graph
with 2& —+ 1 wvertices. For o= 1, we are done since it is the only
graph with three vertices corresponding to CP2_ But, for 15 > 2, we
distinguish two cases whether 6,,,, = —1 or not (weights from &, to b,/
being different from —1).

First, if &,/ , ;, = —1, we contract it and obtain a symmetrical graph
with 2k’ vertices. The only symmetrical graph with four vertices corre-
sponds to CPl >< CPI so that for & — 2, X is a blow-up of CPI >< CCI}D1
and also a symmetrical blow-up of CP2. For & > 3, the graph is

represented in Figure 9.

Lemma 5.5.2. Suppose that the real structure is of type 11 and the

graph of X is formed by a sequence of k vertices with weights (—1,c5, . . .

Cr1,—1, —1l,c 1,...,C,—1) so that it is symmetric under s. Thenr
1 1

k = 3 and X s the symmetrical blow-up of CIF > CF> associated with

the edges generated by e,,e,, —e, + e, and their opposites.

Proof. TLLet us consider a two-cone [e,,e,] preserved by the real struc-

ture. As e, and e, have the same weight —1, A contains also the
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Ficure 10

Ficure 11

two-cones [e;, — e,,e,] and [e,, —e;, + e,]. Let us denote by |[7, nl] the

other two-cone preserved by the real structure with the same orienta-

tion as [e,, e,]. Its generators n — we, + ye, and nl = ye, + wxe, verify
.r2 — y2 = 1 so that 2 = —e; and n = —e,. Their weights are also
equal to —1 so that the last two-cones of A are [—e,, —e, + e,] and
|[—e, + e,, —e,]- D

If ¢, = ¢, = —1, we conclude by the previous lemma that E = 3
and c, = —1 which is impossible.

Suppose now, that ¢;, = —1 and ¢, as well as the others are different
from —1. We make successive anti-clockwise contractions from upper

c, until it remains only four vertices. At each step, the weight directly
following —1 is equal to —2 as well as its symmetric. At the end, we
obtain an impossible graph with four vertices (see Figure 10).

So, when 7» is odd, we must still forbid &6, — —1 and all other weights
different from —1. Proceeding in the same way by anti-clockwise con-
tractions from upper &,, we obtain the same impossible graph.

Now suppose 7 is even. Say » = 2AkA. By symmetrical contractions,
we obtain a symmetrical graph with 2%’ vertices as above (see Figure
11).

If & — 2, we are done: the graph is associated with CPI >< CPI . For

2 > 3, we have already proved that is impossible.
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FiIGUurE 12. With all weights from c¢, to ¢, different

from —1

For the other types 7 is necessarly even. Say r» = 2A. Considering
first a real structure of type III, by successive symmetrical contractions

we obtain a weighted graph with 2%’ ~vertices represented by Figure 12.

And if & =2, ¢, = a ¢, =0 5 = —a; it corresponds to F,. While
’

if £ = 3: ¢, or c,-,,; must be equal to —1 since all other weights are

different from —1. Suppose ¢; = —1 and suppress it by a contraction.

We recognize the previous case of a symmetrical graph with an odd
number of vertices and conclude that X is obtained by symmetrical
blowing-up from F, = CPI >< CPI_

In the case of a real structure of type IV, the weighted graph is
centrally symmetrical. Then, by successive symmetrical contractions,
we suppress weights equal to —1 until it has only four vertices. But the
only centrally symmetric weighted graph with four vertices corresponds

to Crt < crt. ]
5.6. Groups generated by real structures.

Theorem 5.6.1. For any real toric surface X, the group G, (X)) genrn-
erated by the multiplicative real structures is isomorphic to Z., or to
Z

- < W where VW is a Coxeter group of rank one or two. More pre-
cisely:
(1) G, (X)) == Z,, if the canonical real structure is the only multiplica-
tive real structure orn X ;
(2) G (X)) =~ Z, < Z,, 2f there is exactly one more multiplicative real
structure ore X ;
(3) G, (X) 2s zsomorphic to Z, < D, with k € {2,3,4,63}, if there are,
at least, two other muwultiplicative real structures (im this case, VW

is a Coxeter group of type A, < A,, A,, B, or G,).

Proof. T.et us denote by c; the canonical real structure and suppose
that there is only one more multiplicative real structure ¢ on X. Then,
c and ¢, are two commuting involutions so that they generate a group

isomorphic to Z, =< Z,.
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Now, suppose that there are at least two reflections preserving A\, i.e.,
at least two multiplicative real structures different from the canonical
one. As we have already seen, all the reflections preserving A are in
the dihedral group 77, generated by s and s’ where s is the reflection
nearest to s so that G (/V) (see Subsection 3.3) is isomorphic to D,.
Since ¢; commutes with every multiplicative real structure, we conclude
that &, (X)) is isomorphic to Z, =< G (IV), i.e, to Z, =< I7,.

Now let us consider the positive definite inner product on /N, which

is preserved by each element of G (ZV), given by

-

’ .
(2,2 ) = — (F ), £ D)
e
FESF(NV)
where e is the order of G (/V) .
Then ss is the rotation of angle € = 27 /k and its trace is an integer

so that the possible values of £ are: 2, 3, 4 or 6. It is easy to verify that
these values are respectively obtained for the toric surface whose edges
are generated by e,,2¢e, + e,,e, + e,,e,, —e, + e, and their opposites,
(CPz, CClPl >< CPI and the toric variety whose edges are generated by

e,,e,, —e, + e, and their opposites. D

To determine G (X ), we consider one of its subgroup 7, defined by
Ty, = 7T M G(X). So that its elements are the elementary toric auto-
morphisms belonging to G (X ). Let us choose a basis of /V and denote
by A1 the set of matrices of involutions associated with multiplicative
real structures on X . For all A in A1, we define the subgroup 7, of 77

by T, = {s € T| et — 1%.

Proposition 5.6.1. 7, is generated by the subgroups T ., for all A in

M and G(X) — Ty &, (X).

Proof. For each A in A and £ in 7, we denote by ¢, the multiplicative
real structure associated with the involution of matrix .4 and by c =
s c, the real structure on X . Then, cc_, is an element of G (X ) written
in principal orbit coordinates by ¢ +> = - ¢#. Thus cc_ is the elementary
toric automorphism denoted also by s (see 2.11) and belongs to 7,. By
this way, we prove that every subgroup 7, and consequently the group
generated by them are contained in 7.

Now, let us consider a product of two generators of G (X ), s c_, and

’ ’ 2 7, ’
s c,,r with (A, A) € M, = € T,, = & T ,. Then, (s c,/)(sc,) is
- - - - R R 7 _a’ a’a
written in principal orbit coordinates by ¢ — = & -t . Note that
A’

= & T 4r 44 - In fact,

(A’aa’ya’
=
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Thus, 7T, is contained and then equal to the subgroup of 7 generated
by the subgroups 7, for all A4 in M, G(X) = T,G,,, (X)) and T, M
&G, (X)) = {1}. Moreover, 7, is the kernel of the morphism from &G (X))
to &L,(X) which maps each s c, to its multiplicative part ¢, so that

G(X) =Ty = &, (X). ]
Using results of Theorem 5.6.1, we precise G (X ).

Theorexm 5.6.2. [f the canonical real structure is the only muwultiplica-
-~ - 1.2

tive real structure orn X, G(X) =~ (S ) > Z,.

When there is exactly one more multiplicative real structure orn X of

1 e
type 17 or 171, G(X) =~ (S >x C ) > (Z, < Zy). If the additional real
ez

structure is of type IV, G(X) —= C > (Zy < Zn).

When there are, at least, two other multiplicative real structures,

-
G(X) = C > (Zay < D) with k€ {2,3,4,67%}.
Proof. If the only multiplicative real structure on X is the canonical
1.2

one, T, =7, = (S5 ) and so we are done.

When there is exactly one more multiplicative real structure c_ of

1.2
type I1, 7, is generated by 7, = (S ) and 7, with
1 [ 1
T, = {(r3,r ) r e IR , B8 e s }.
1 e 1.2 R

Thus, the group {(r=s,,r =) r € IR , = € (5 ) } contains 7, and

7', and consequently contains 7. Furthermore, each of its element
—1 —1

(r=s,,r £,) is the product of (r,r ) belonging to 7', and (=s,,s,) be-

longing to 7, so that

—1 -+ 1 2
To =A(r=s,7 =)l ~e®wR , =€ (S5 ) 3}

1 w 1
and (rs,,s,) > (r=,,7 s,) defines an isomorphism from <" =< S to
T,.
Suppose now that the additional structure is of type ITII. We distin-
guish two cases: a is even or nmot. Assume that a = 2k, then
% e 1
T,={Url B, MHDlreR, 35 }.
—& 1 -
The group {(|=,] s, =, €5, =, € <" } contains 7, and 7, and
—
consequently contains 7,. Furthermore, each of its element (|=,| £,,5)

% —1
is the product of (|=,] s l=51) belonging to 77, and (=, =, |=,]| ) belong-

ing to Z,; so that
—r 1 .
Ty = {d=2l s,:)l s, €5, =, € C 3}

—r 1 e
and (s,,s,) — (|=5] £,,s,) defines an isomorphism from 5§ >x C to
7

o-

In the same way, when a = 2k + 1 we conclude that

T, ={C """ rer’", e sy
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r—1/2 1 e R R
s,,s)| =, € 5, =, € € } so that 7, is again

and 7, = {(=|_
isomorphic to Sl < <" .

It remains to consider the case: the extra structure c_ is of type IV.
Then 7, = dez and clearly 7, = kaz_

Finally, suppose that there are at least two multiplicative real struc-
tures different from the canonical one denoted by ¢, and c_ /. If one of
them is of type IV then 7, contains and then is equal to (14&2 . Otherwise
A and A" are matrices of two reflections with supplementary eigensub-

2
spaces of eigenvalue —1. Thus, for all 3 in (R+I) , there exists d in

(R+*)2 and & in (R+*)2 such that log 3 = log d + log d and

’ ’ ’,
logd + Alogd = O logd + A logd = O
, ,
so that d € 7,, d € 7T, and B = dd is in 7,. We conclude that 7,

2

e 1 e a2
containing (R+ ) and S > C is equal to C . D

5.7. Minimal model for a group generated by real structures.
Now, we consider that X dominates X' if there is a toric morphism of
degree 1 from X to X' that transforms G(X) to G(‘YI). We provide,
in each case of the previous section, a minimal model for the groups

&G, (X)) or G(X) (it is the same).

Theorem 5.7.1. When the canonical real structure is the only mwulti-
plicative real structure or when there is exactly one more multiplicative
real structure, a minimal model for the corresponding real structure is
also a minimal model for the groups generated by real structures G, (X )
or G(X ). In case there are at least two other multiplicative real struc-
tures orn X, the minimal models are the following:

cr' = CPl, if &G, (X)) s isomorphic to Zi, < D, or Z, < D,

CPz, of &G, (X)) is isomorphic to Z, < Dy,

the toric surface associated with the farn A\ whose edges are generated

by e,,e,, —€, +€,, —€,, —€,,e, —e,, 2f &G, (X)) is isomorphic to Zi, < Dg,.

Proof. Suppose that there are at least two reflections preserving A and
keep notations of the proof of Theorem 5.6.1. We treat in details the
case G (X)) = Z, < D, with # = 3 for » even or not, proof of the other
cases being very similar. However, since k divides », A = 3 is the only
possibility when » is odd.

We begin with an even 7 and represent the weighted graph and the
axes of the reflections s,sl, s'ss’. Let us suppose that all these real

structures are of type II. The graph is represented by Figure 13.

If g = 1 the associated group is Dy which contradicts our hypothesis
on &, . (X). When g = 2, making circular contractions, we suppress
the weights equal to —1 (if any) from &, to b, , so that b6, = —1

or b = —1. Using Lemma 5.5.2, we conclude that the case &6, =
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Ficure 14
bq = —1 is impossible. Thus, we may suppose that &, = —1 and
bq % —1. Then, we contract successively and circularly the wvertices
associated with the sequence of weights &,,56,, . .., bq, bq, ---,b, to obtain

an impossible graph with three vertices (see Figure 14).

Suppose now that one of the real structure is of type III. Then, they
are all of the same type and the weighted graph is represented by Figure
15.

If there are six wvertices, i.e., g = 2, making a circular contraction
of one of them we must obtain the weighted graph of CP2 and the
initial graph was associated with Dy which contradicts our hypothesis
on G, (X). Otherwise, ¢ = 3 and we make circular contractions to

suppress weights equal to —1 among by, ...,0 Then b, or b, is

g—1-°
equal to —1 and we contract circularly one of them to obtain the graph
of (CP2 or a weighted graph with an odd number of vertices which,
after a renumeration can be represented by Figure 16.

Thus, to end the case of an even » we have to treat the case of an odd

one (after suppression of the weights equal to —1 among b,, ..., bqil).
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FicureE 16
If 6, = —1 we contract it circularly and we use the previous case to
conclude, while if 6, = —1 then bq = —1. Making successive and

circular contractions of the vertices associated with the sequence of

we obtain an impossible graph with

O]

weights bq, e b,,06,,6,, .., bq 1

three vertices (see Figure 17).



68

CILLATRE DEL AUNAY

2qg — 2

2qg — 2

2qg — 2

Ficure 17
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6. REAL TORIC THREEFOLDS

Throughout this section, X is supposed to be a smooth compact

complex toric threefold.

6.1. The different types of real structures.

Theorexyxm 6.1.1. There are six types of real structures that appear on
a toric threefold:
(type 1) those defined by the identity map on IN and written in prire-

cipal orbit coordinates by
— 1 3
t—> = -t with s e (5 )

(type 11) those defined by a non-trivial involution preserwving at least
one maxirmal cone [e,, e,, e;] and written in coordinates associated with

[eis ez, e3] by
_ _ _ 2 1
t ——> (s,%t0,s0t,,=3t5) with s e C < .S | =s,5, = 1;

(type I11) those defined by an involution with negative determinant
preserving no maxirmal cone but preserving at least one two-cone [51, ez]
and written in coordinates associated with an adjacent cone [e,, e,, es]

by

a 3 —1
t —> (51t1t3 s Sttt , S5t D

2 —&
and |s,| = = H

with = & C)I(z >< R)I(, (a,b) Z2 swuch that | =, |2= = s

3
(type IV) those defined by an involution with positive determinant
preserving no maxirmal cone but preserving at least one two-cone [el, 62]
and written in coordinates associated with an adjacent cone [e,, e,, es]
by
— _a — —a —1
t —> (sltzt3 s Sat ., Ssty D

—a

"z e
with = & <" >< Rl,a € Z such that =,5, = s,

(type V) those defined by an involution preserving nmo two-cone but
at least one cone [ez] and writternn in coordinates associated with an

adjacent cone [e,,e,,ez] by

&

— 1 — a— —
,Est, t, t3)

— 1
t—— (s, ,=5t,

e e e —b
with s€R|2><(CII,(a,b)€Z2 such that|s3|2=5 = H

1 2
(type V1I) those defined by —id ornn IN and writternn inn principal orbit

coordinates by

—1
t——> = - t with s e IR .

Proof. L.et us consider a real structure c defined by an involution s on
A
N and £ in 7 such that =& = 1. Let £ be the maximal dimension of

a cone preserved by s.
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If s preserves a cone o = [e,, e,, e3], we may assume that s(ez) = e
and then, s preserves e, and e, or exchanges them. In the first case,
s = id and |s| = 1 while in the second case =s,5, = 1 and |s5| = 1.

If # — 2 then s preserves a two-cone [e,,e,] so that it preserves e,

and e, or exchanges them. But [e,, e,] is a face of two adjacent cones

[e,1,€en,e3] and [e,,e,,ae, + be, — e;] exchanged by s so that s(e;) =
ae, + be, — ez with a in Z and b in Z. Thus, we distinguish two cases,
. _ _ . 2 a 2 » _

one not preserving orientation with |=,] s, =1, l=5 | s, =1, =5 = 55
and another one preserving orientation with a = b, 51§2s: = 1, €5 = &3.
When k2 = 1 the involution s preserves an edge [e;] of a maximal
cone [e,,e,,e;] such that (e,,e,,e;) is a basis of the lattice. In this

basis, the matrix of s looks like

(4 o)

—

2 2
with A = 7 and C = (a,b) € Z .

T.et us assume that there is a mnon-trivial vector invariant by s different

from e; and —e;. Since A is a complete fan, there is a cone of dimension

greater than two preserved by s which contradicts A = 1. Therefore
w2 a & 2

A= —7, (s4,5,) € R and 5152|€3| = 1.

When no cone is preserved except {0}, the involution s has not any

*3
fixed non-zero vector so that s = —id and = & IRI - D

6.2. Classification of real structures. Using the reduction explained

in the proof of Proposition 4.1.1, we conclude that

Theorem 6.2.1. Real structures of type I and II are torically equiva-
lent to their muwultiplicative part. AMoreower, a real structure of
type 111 is torically equivalent to its multiplicative part whern =5 => O
otherwise, it is equivalent to t —> (tltsa, tZtSb, —t:l). In the latter case,
both a and b are evernn and IR.X Zis empty.
type IV is torically equivalent to its multiplicative part whern s5 => O
a

_ _ —_ _ 1
otherwise, for an even a, it is equivalent to * +—> (tztsa, ¢, . —2t, )) and

a

IR X zs empty, while for an odd a, it is equivalent to t +—> ({'2;3 5 —z,F
—iTS 1)) arnd IRX s also empty.

type V is torically equivalent to its multiplicative part cg or to = cg
with = equal to (—1,1,1), (1,—1,1) or (—1, —1,1).

type VI is torically equivalent to its multiplicative part to s cg with

s = 1.

(]
Now, we determine the maximal number of non-equivalent multi-
plicative real structures on a toric threefold X . Let us denote by e the

order of the group G(/V) generated by the involutions of /V associated
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with the multiplicative real structures on X (see its definition in Sub-
section 3.3). If we consider the inner product on N invariant by &G (V)
written by
. o>
(e, ) = — -

e

(f(m), f(nl)> (cf. proof of TTheorem 5.6.1)
FESF(NV)

then the involutions associated with multiplicative real structures on

X become orthogonal involutions in Vg .

Theorem 6.2.2. There are at most, up to equivalence, eight rmwulti-
plicative real structures on a toric threefold. The group of multiplicative
real structures G (X)) 2s a Coxzeter group isomorphic to Z, < W where

W s a Coweter group of ranrnk one, two or three. More precisely:

(1) G (X)) =~ Z,, 2f the canonical real structure is the only multiplica-
tive real structure ore X ;

(2) G, (X)) =~ Z, < Z,, if there is exactly one more multiplicative real
structure or X ;

(3) G, (X)) is isomorphic to Zi,><W with W isomorphic to 12,, Zi,><17,
with k irn {2,3,4,6} or to a Coxeter group of type Az or B, if there

are, at least, two non-canonical mwultiplicative real structures.

Proof. As in Theorem 5.6.1, we conclude that if &, (X ) contains at
most one real structure different from the canonical one then it is iso-
morphic to Z, or to Z, > Z,.

T.et us say that a system of g reflections, 1 < g << 3, in the planes

Mi=e
I, is an affine subspace of

i—1 z

o, ..., Hq is in general position if
dimension 3 — g. We denote by p the maximal number of reflections
in G'(ZV) such that their system is in general position; so that p = O
means that there is no reflection in G (/V). We treat succesively the
cases p — 3,2,1 and p = O. Through this proof, the distance considered
is the distance associated with the invariant inner product (mentionned
just before this theorem) and is denoted by §.

Thus, we begin with p = 3, i.e, we assume that &G (V) contains
at least three reflections s,,s,,s; in the planes 7, ,, H,, F{; such that
H, M H, M H; = {03}. These planes determine triangles on s° and
we choose a triangle 7' such that its area is minimal among those
of all triangles associated with three reflections in G (/V). Then, the
reflections _g.sigi1 where g is in the group generated by s,,s,, s; are
associated with planes g(#f;). Therefore, we obtain a triangulation of
52 with triangles _g(TI) such that each side of a triangle spans a plane
of a reflection equivalent to s,, s, or s;. If s is a reflection in a plane 7

that is not a side of a triangle, by successive ecquivalences we construct

a reflection equivalent to s in a plane that intersects the interior of
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7' and that contradicts the minimality of the area of T’ Thus, each
reflection in G(ZV) is a reflection in one side of the triangulation of
Sz; it is equivalent to s,, s, or s; and belongs to the group generated
by s,,s5,,s55- Furthermore, each involution of &G (/V) which is not a
reflection or ==7d is an orthogonal symmetry in a line 1D, i.e, a half-turn
of axis ID. TLet us consider one of them, a symmetry s in a line D, by
successive equivalences we may suppose that 72 M 52 is a point AZ in
T'. Let IT be the tangent plane to s% at AL and (BC),(AB), (AC) the
intersections of Il respectively with #H,, H,, IHH;. Note that s(Il) = 11
and the restriction of s to II is the symmetry s,, of center AZ. We
distinguish three cases: A7 is in the interior of T,, A is in the interior
of a side of 77 or AZ is a vertex of T .

ILLet us suppose that AZ is in the interior of ' Then, ss,s is a
reflection in a plane H; and H; N IT = s,,[(BC)]. The inecquality
28(NM, BC) < 8(A, BC) (where §(AM, BC),5(A, BC) are the distances
from A4 or A to (BC)) would imply that the planes Hi, H, and H, de-
termine another triangle with an area less than the area of 7' and that
is impossible (see Figure 18). Therefore N must verify the inequalities
26 (M, BC') = &§(A, BC), 28(M, AC) = (B, AC) and 286(NM, AB) =
S(C, AB) which is impossible. Furthermore, if A/ is in the interior of a
side of T,, say in the interior of [BC'], there is a reflection s in a plane
' such that s — sls, and 77 M H, M 5% = {AL}. In this case, one of
the triangles determined by If’, I, , H, or H’, H,, H; has an area less
than the area of 7" which is impossible (see Figure 19). Finally, if AL
is a vertex of T,, say H, M H, M 52 = {A4} then s is the symmetry in
the line /Z, M H, denoted by s,,. Let us note that s,, is in the group
generated by s; and s,.

We conclude that, up to equivalence, there are at most eight mul-
tiplicative real structures on X and they are associated with one of
id,s,,85,, 85,515, S13, Sng, —2d. If 2 = —id belongs to G(NV) then hs,

is a symmetry in a line and there exists g in the group generated by
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s,, 85, S5 such that g(hsl)gil = S,,, 8,3 Or S,5 so that 2 belongs to the
group generated by s,, s,, sz. Thus, G(/V) is the group generated by the
three reflections s,,s,,s; and &G, (X) = Z, < G (IN). Moreover, G (V)
preserves a lattice so that it is a cristallographic Coxeter group W gen-
erated by three reflections. Therefore, VW is isomorphic to Z, > D, or
to a Coxeter group of type A; or B; (see [7]). Note that the trace of
any rotation in VW must be an integer so that k. is in {2,3,4,6} (see

the proof of Theorem 5.6.1).

ILet us assume now that p = 2, i.e., that &G (/V) contains two distinct
reflections s, and s, in the planes /A, and H, such that H, M H, = D,
and all other reflections in G'(/V) are in planes containing DD,. We

choose s; and s, such that the area of the slice L determined by 7, , H,
2

on S is minimal. As in the previous case, the minimality of the area

of L implies that all the reflections in &G'(/V) are equivalent to s, or

s, and are in the group generated by s, and s,. Now, if s € G (/V)

is a symmetry in a line 7D such that {A4} = ID M 52, by successive

2
equivalences we may suppose that A is in L. If {M} = H, M H, S
then s = s,, and belongs to the group generated by s, and s,. It

remains to treat the cases: N4 is in the interior of a side of L or in the
interior of L.

If A is in the interior of a side, we suppose that AZ is in A, M 52 (or
F, M Sz). Then, there is a reflection s in a plane ' such that s — sls’
and H, M 7 s = {AZL}. Therefore, ' does not contain D, and that
is impossible.

If M is in the interior of L, ss,s is a reflection in a plane H; = s(#,)
that contains Dy, by hypothesis. Thus, I{;F“IHI = D, and D is invariant
by s so that A is in the plane I’ passing through the center of Sz and
orthogonal to 72,. T.et us denote by / the plane passing through 75,,
orthogonal to IT' that contains AZ and by @ (respectively, o, and «,)
the dihedral angles between H,, HH, (respectively, H,, H and H,, H).

Since the area of L is minimal €& must verify the inequalities € < 2o,
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and € < 2«, so that ooy = o, = €/2 and ss,s = s, (see Figure 20).
Therefore, each reflection in &G (ZV) is equivalent to s, and for each
reflection s in G (IV), there exists g in the group generated by s,s,
such that gslgi1 = s, so that s is in the group generated by s, s,.

To conclude, we distinguish the two cases G'(/V) contains a symmetry

s in a line 70 such that ss;s = =s

1 » Or mnot. In the first case, there

are at most, up to equivalence, five multiplicative real structures on
X associated with id,s,,s,s,,, . NMore precisely, the restriction of
ss, to I’ is a rotation of angle € and order k£, A € {2,3,4,67%}. If
k = 2 then 6 = 7 and s, = s, which is impossible. If & = 3 then
(s'sl)3 is the reflection in Il which is also impossible. If & = 4 or 6
then (ssl)k/z = s,, and A does not belong to G (/V) otherwise hs,, is
the reflection in II'. Thus there are at most four multiplicative real
structures, up to equivalence, associated with id,s,s,,s,, and G (V)
is the group generated by s, and s. We conclude that, in this case,
&L, (X)) is isomorphic to Z, < D, with k& in {4,6}.

In the second case, 2 does not belong to &G (/V) otherwise ks, is a
symmetry in a line orthogonal to F, that must be equivalent (using
an element g in the group generated by s, and s,) to s,, and that is
impossible. Thus, there are at most, up to equivalence, four multiplica-
tive real structures on X associated with id,s,, s,, s,, and & (X)) is
isomorphic to Z, < D, with & in {2,3,4,63%}.

If p = 1, G'(IV) contains exactly one reflection s,. Since it is supposed
to contain another non-trivial involution, it contains 2 or a symmetry in
a line. In both cases, there is a symmetry in a line s in G (/V) such that
ss,s5 = s, and ss, = h”2. We conclude that there are four multiplicative
real structures on X and & (X)) is isomorphic to Zz

Finally if » = 0O, all elements of G (/V) are rotations and there are
among them two symmetries in a line s, and s,. We comnsider the
auxiliary group w generated by G(/V) and A; it is the direct product

of G'(/V) by the group of order 2 generated by A. In fact, G (V) is the
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subgroup of rotations of ‘1fl, denoted by VT/'; and &, (X)) is isomorphic
to Z., =< V";. Since W' contains £ and two distinct reflections hs,,hs,,
we deduce from the previous discussion that there is a system of three
reflections in general position in w'. I1f W is of type Bg, ‘1’; is of
type A;. Note that W' can not be of type Az otherwise ‘*T'; is the
alternate group of order 12 that is not generated by its elements of

order 2. Lastly, if w o= Zi, >< I, then V"; is isomorphic to I7,. D

Remark 6.2.3. Products of toric varieties and toric varieties associ-
ated with irreducible root systems (see Theorem 4.3.9) provide exam-
ples of toric varieties X with a group &, (X ) of each type listed in the

previous theorem.

6.3. Real structures on Fano threefolds. Before study real struc-
tures on toric Fano threefolds we must recall their classification estalb-

lished by T'.Oda in [27].

Theorem 6.3.1. Zoric Fano threefolds are equivariant blow-ups along
a T -firzed point or a closed irredwucible subvariety of dirmension one pre-
served by the actionrn of T of the following minimal models

(1 «r®,

(2) cr' < cPr’,

(3) the CPl—bundle over (CP2 associated with the fan whose edges are
generated by e,,e,,e3, —e€53, —€, — €, — 2e5,

) (@rPhH®,

(5) the cr' _bundle over (CP1)2 associated with the fan whose edges

are generated by e,,e,,€53, —€,, —€, — €,, —€, — €5

Since these minimal models appear to be toric bundles, we first con-
sider real structures on equivariant ‘Y(A”)—bundles: X (A) — ‘Y(A,).
As it is knowmn, such a toric bundle is associated with the following

data:

- a map of fans f, i.e, a Z-homomorphism from the lattice 7V to the
’ ’

lattice /V so that its extemnsion to NV verifies: for each o in A
there exists o in A such that f(o) C o',;

_ a fan A” in the lattice Z\7”, kernel of the Z-homomorphism f;

’
- a subfan Ao of A such that f induces a homeomorphism from
’ ’ ’ ” ’ ’ ’” ”

|A0| onto A | and AN = {o + o | o E A, o AN ¥-

In this case, we say that A; is the pre-image of A associated with

the toric bundle.

Example 6.3.2. Let us consider X (A), the (CPl—bundle over F_, a =

1 such that A — {l[es], [—ez]} and .A;(Z) = {[e,,esl,[es, —e, + a(e, +
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ez)], [—e, +a(e, +e3), —e,], [—es, e,]1}. We determine the multiplicative
real structures on this toric threefold denoted by X .

To do this, we may use the following double-weighted triangulation of
5% associated with a smooth compact toric variety X (A) (see [27] p.-54).
Namely, the fan being smooth and complete, there is a triangulation of
52 such that each maximal cone intersects the sphere on a triangle and
for each pair of adjacent triangles determined by [7,, 725, 23], [nll, 725, 723]

there exist two integers &, and &; such that
’
bore, + bgreg + 72, + 7, = O.

Then, we say that (b,, b;) is the double-weight of the side [72,, 725]. Let
us note that each element of Aut(/V, A) preserves this double-weighted
2
triangulation of S . Tn our example, the common edge of [e,, e,, ez] and
[—e, + a(es, + €3),e,, €3] is the only edge of the triangulation with the
double-weight (—a, —a). Therefore, these maximal cones are preserved
or exchanged by the involution s associated with the real structure.
If s(e,) = e, and s(e;) =— e; the real structure is the canonical real
1 g —a—
structure c; or the real structure c; written by % +— (i‘1 ,tlatz,tlats)_
While if s(e,) = e5, the real structure is the real structure c, written by

a

- —1 a
t +—> (t,,%t5,%,) or the real structure ¢, written by % +—> (t1 st Tyt t,).

Lemma 6.3.3. For each multiplicative real structure orn X_, associated

with an involution s of IN, there exist two fans A and A such that X,
” ’ ”

s an equivariant X (A )-bundle over X (AN ) and s preserves I\ ard

A;, the pre-image of I\.

Proof. The involutions associated with the real structures c; and c4
preserve the fans A" and A; given in the Example 6.3.2. This is not
true for the real structures ¢, and ¢,. Nevertheless, X is also a (CCIPI)Z—
bundle over C©Z' . For this new fibration, A" is such that A“(Z) =
{lez; esl; [es, —ez]l, [—es, —esl, [—es5,e3]} and A; = {leil.[—es + ale; +

e3)]} and the involutions associated with c, and ¢, preserve the fans

Al and A", O

Proposition 6.3.1. Let X (A) be a toric threefold and ¢ a multiplica-
tive real structure omn X (A) associated with amn involution s of /N .

If X (A) is arn equivariant toric bundle over a toric variety then there
exist toric varieties ‘Y(Al) anrnd ‘Y(A”) such that X (A) — ‘Y(A’) s an
equivariant )&'(A”)fbundle and s preserves A" and .A:), the pre-image

of A

’ ”
If s preserves Ao and A as in the previous proposition, we say that

the real structure c preserves the toric fibration.
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Proof. Let us comnsider the linear map f from /V to ZVI; coming from
the given toric fibration X (A) — )((A”) (see motations just before

Example 6.3.2). Then,
dim(IKerf) + dim(Imf) = 3

Except trivial cases, the dimension of Ierf is equal to 1 or 2 and we

begin with dim(IKerf) = 1. Thus, every maximal cone o in A can be
’ . ’, ’ " ”

uniquely written by o = o + o with o € A (2), o e A (1) and

s(o) = s(a") —+ s(a'”) with s(a”) e A(2) and s(a'”) e A(1). T.et us

denote the edges of A" by [ez] and [—eg].

First, assume that s(e;) = e;. For each maximal cone o = o’ —+
[es], s(o) = s(o’l) —+ [e3] and since —e; does not belong to s(o) there
exists 0_11 in .A; such that s(o) = o"l —+ [e3]. Note that s(o) being a

three-dimensional cone, e; does not belong to the vector spaces s(crl) —+
(—s(o”)) and a"l -+ (—a"l)_ Then, for each 72 in s(o”) there exist 72, in o"l
and g in ]R+ such that n = 7, + puez. Therefore n, = n — pe; but
belongs to s(cr,) —+ [e3] so that g = O. Thus, s(cr,) [ o"1 In the same
way, for each 7, in o"l there exist 7z in S(O") and gz in R+ such that
72, =— 12 + pey;. Therefore n = 7, — pe; and g4 = 0. Finally, s(a”) = o"l
and s preserves A; and A”. The case s(ez) = —eyz; can be treated in a
similar way.

Now suppose that s(e;) # e; and s(ez;) % —ez;. Then there is a
maximal cone o of A that has two edges generated by e; and s(ez)-
Therefore, we can choose a basis (e,,e,, e3) of IV such that s(e;) = e,
and o = [e,;,e,,e;]. Moreover, the cone of A(3) adjacent to o along
[e,, e3] can be written by [ell,ez,es]_ Since e, and e’l are preserved or
exchanged by s, there exists a in Z such that e; = —e, + a(e, + e5). If
s(e,;) = e, then s maps the maximal cone 7 adjacent to o along [e,, e;]
to [e,, e, —e3] so that A is the fan defining X, (see Example 6.3.2). We
recognize the real structure ¢, on X_, and conclude by LLemma 6.3.3. If

’

s(e,) = e’l, s maps 7 to [e e

1> €25 —ez] and A is again the fan defining X .

This time, we identify the real structure ¢, on X_, and conclude by the
same lemma.

Then assume that dim(IKerf) =— 2 and consider [e,] in A;, [es, es] in
A”(2) such that [e,,e,, e;] is a cone of A. The other edge of A; can be
written by [e’l] with 6’1 = —e, +ae,+be; and a, b € Z. Note that a cone

’
of A cannot contain e; and e, otherwise its image under f is a cone of

AN that contains f(e,) and —f(e,;). If s(e,;) = e, then for each maximal
cone o = [e,] + &, s(o) = [e,] + s(o") and there exists o, in A" such
that s(o) = [e,] —l—a’ll. Since e, does not belong to s(o’”) —+ (—s(a”)) and
cr’l’ —+ (—a”l’), we conclude as previously that s(c:r”) B cr’l’, i.e., s preserves

’ ” ’
A and A . The case s(e,) = e, can be treated in a similar way.
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If s(e,) # e, and s(e,) F#* ell then there is a maximal cone o of A
that has two edges generated by e, and s(e,). Therefore, we can choose
a basis (e,;,e,,e;) of /V such that s(e;) = e; and o = [e,,e,,e;]. Let
[e.> e;, ez;] be the cone adjacent to o along [e,, e;]. Since there exists s
in A”(Z) such that [e,, e’z, ez] = [e;] + a'”, e’z must be in the sublattice
generated e,,e;, i.e., there exists p in Z such that e’z = —e, + pes-
Moreover, s(e,) = e5 so that e; and e, are preserved or exchanged by
s and p = 0. Therefore, 2N contains the cones [e,,e,,e;], [e,, —e,, e;5]
and consequently [e’l, e,, es], [e’l, —e,, e3]. Furthermore, A contains the
images by s of these cones so that it contains also [el,ez,s(e;)] and
[e., —es. s(e’l)] Since [e,, s(e’l)] is a cone of A”(Z), we conclude that
b = O and A contains the cones [ell,ez, s(ell)] and [ell, —e,, s(ell)] Let
us note that e’l = —e, + ae, so that if s(e,) = e, then s(e’l) = ae, — e4
while if s(e,) = —e, then s(e’l) = —ae, — ez;. In these two cases,
s does not preserve AL Nevertheless, we can choose another fan A
preserved by s with edges generated by e, and —e, such that X (A) is

a )((.A”)—bundle over (CPl)z. D

Proposition 6.3.2. Let X (A) be a toric threefold so that X (A) —
)((AI) Zs an equivariant )((A”)—bundle. If ¢ is a multiplicative real
structure on X (A) that preserves this toric fibration then IR(X (A)) is

a ]R(‘Y(A"))—bundle over R(‘Y(A,))

Proof. Since the real structure c preserves the toric fibration, it induces
a real structure ¢ on ‘Y(A”) associated with the restriction of s to NV
and a real structure c on ‘Y(A,) associated with the involution s on
N’ defined by s = fs‘fi1 (where fil is the inverse homeomorphism

A']). Tet us denote by f, the fibration X (A) — X (A"

of F: |AL| —

associated with f. Then for each = in X (A), fo(w) = utf and
(o)) = fo)'s’ — wu'a"f — fo(ed).

Therefore, the restriction of fj to IRX (A) defines a map IRX (A) —
R‘Y(A,) and it remains to determine local trivializations to conclude
that it is a fibration. If o is a cone in A preserved by s’ and o =

’

’ ’ —1 ’
o, + o a cone in f (o) preserved by s then X_ is isomorphic to

o

X < X_» and IRX_ is isomorphic to IRX _r < IRX_~. Since f induces
o o

’ ’
an homeomorphism from s onto o , X_ is isomorphic to X_.5 > X _

and IR X _ is isomorphic to IRX _/ < IRX_~. Finally, gluing the IR X _ for
—1

all o preserved by s such that f(o) = o' we conclude that fD (IRX /)

is homeomorphic to IR X, > R)((A")_ D

In the following theorem c¢,;,c,,c5,c, and cg; are respectively multi-

plicative real structures of type I, II, III, IV and V (see Theorem 6.1.1).



REATL STRUCTURES ON COMPACT TORIC VARIETIES rg=l

Theorem 6.3.4. Multiplicative real structures (up to equivalence) and
topological type of the real part IRX for these minimal models are as
listed below (here we keep the same labels for minimal models as in

Theorem 6.3.1).

(1) e,,c,,c, with IRX homeomorphic to = P°.

(2) ey,cn,c53,c, with IRX homeomorphic to Sl >< RPZ.
(3) cy,c, with RX homeomorphic to s < RPC.

(4) e,,c3,c5,cq with RX homeomorphic to (51)3,

c, with RX homeomorphic to 51 >< 52_

(53) cy,cs,cs with IRX homeomorphic to s =< (FEo RPz),

c, with RX homeomorphic to Sl >< Sz.

Proof. We determine successively on each minimal model the multi-
plicative real structures (up to equivalence) and the topological type
of their real parts.

Model (1). We have already seen that on CP3 there are, up to
equivalence, three multiplicative real structures: the canonical one, a
real structure of type II denoted by ¢, and a real structure of type
IV denoted by c, (see Example 3.2.2). Furthermore, it is known that
two real structures (not mnecessarly toric) on crPr® are equivalent (by
means of a mnon-toric automorphism) if their real parts are non-empty.
Nevertheless, we are going to see how to use the algorithm explained in
Proposition 3.5.2 (and its notations) to find again that the real parts
of (CPS, c,) and (CPS, c,) are homeomorphic to =27,

Let s, be the involution of /V associated with c, and P = (ABC D)
a lattice tetrahedron preserved by tsz such that: X = X, s, preserves
o 4,0z and exchanges o and o,. Therefore, under a suitable numero-
tation, we can write o, = |[e,, e,, e;] so that c, is written in principal
orbit coordinates associated with oz by ¢ +— (;2,;1,{'3)_ Then, s
the triangle (ABT7), where 7 is the middle of [C, D]. Moreover G p =
{(=z, til, )| t e s'and a® = 1}. Now we give explicitely the identifica-
tions coming from the three facets of 77 that we must make on 72 > G-
We begin with the facet Fll = [B, ] so that a;l M N is generated by

1 2 —1 1

e, e and Ggp = {(z, ¢ dJl t € S }. The restriction v G —> Gp
maps (z, til, «) to (%, til). Thus, (A, ¢, til, 1) & (N, ¢, til, —1) for ev-
ery A in Fll_ In the same way for the facet le = [, ], 0';2 M AL
is generated by 63 so that GF2 = {1, —13}. The restriction vF, Maps

—1 , —1
(¢, ¢ ,x) to o« so that for every AZ in F,, we must identify (N, ¢, ¢t , o)

.
with (A4,1,1,«). For the last facet F:; = [A, 7], o, M AL is generated by
=
1 3 2 3 . . —1
e —e ande —e so that the restriction Yy ¢ G —> GFS maps (¢, ¢ , o)

to («ot, ot 1). Thus, for every A4 in F; we must identify (AL, ¢, ¢ 1, 1)

with (AL, —t, —til, —1).
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ILet us note that G5 is homeomorphic to the disjoint union of two

circles S:L = {(£,1)]| t & Sl} and Si = {(z, —1)]| ¢t Sl}. Furthermore,
for each point AZ of P’ there exists a unique (&, 2) in [O, 1]2, x+rh < 1
R e —_
’
such that BN = xzBI + hBA. Therefore, 77 > G, is homeomorphic
to the topological space Cy, = {(x,h,t,x)| (x,R)  [O, 1]2, x + R <

1 and (¢, o) € ,S’i (W] Si} In the following, we identify o< G oand O

and malke the identifications induced on the last one. Let us consider

the map & : T, — C < IR such that §(@, ~,t, «v) = (@xt,ah). Then, if & *
0, 8§ "{(xt,0)} = {(«,0,2,1),(2,0,t, —1)}, if o %% 0O, & {(0,ah)} —
{0, t,h,a)| t € S'} and § '(0,0) — {(0,¢,0,=+1)| ¢t € S'}. Thus, &

respects exactly the identifications coming from Fll and le and con-
sequently gives rise to a continuous injection from the corresponding
quotient of C'j onto a topological set €|, homeomorphic to the union
of two solid cones with a common basis. Moreover, §(1 — A,t,h,a) =
((1 — R)Yt,xh) while §(1 — h,—t,h, —) = ((h — 1)t, —axh). Therefore,
the identifications coming from F:: induce the identification of antipodal
points of C'; so that IRX is homeomorphic to IRPS_
In the same way, c, is written in principal orbit coordinates by ¢ +—>
— —1 — —1 _—
(2,2, %%, ,%

1
s ) and 7 is the segment [7, J] where 7, J are respectively

t, tg.tg)| (£1,%3)

[ (51)2}. For the facet Fll = {73} of PI, the restriction YF, maps

the middles of [A, B] and [C, 12]. Therefore G, = {(#,,

—1
(tl,t1 ty,t5) to t5; so that (1,¢,,

—1
L ty,t53) E(L,1,t5,2;). Then, for the
2

i 1
facet le = {J}, o M A4 is generated by e — e so that the restriction

F2
1 2 : . 1.2
vV F, Mmaps (t,,t, ta,tz) tot tz. Moreover, Gp is homeomorphicto (S5 )

and for each point AZ of P’, there exists a unigue @ in [0, 1] such that
— —

’
INT = xlJ. Therefore, 7 > G5 is homeomorphic to the topological

space {(x,t,,t3)| @ € [0,1], (#,,tz) (51)2} so that we identify these

two spaces . LLet us consider /A the middle of [7, J] and define the map
S [1, K] < Gp —> C < S by 8(a, t,,t5) = (xt,,ty) for all = < [0, 1/2]
and (z,,%5) € (5')°. Then, & {(0,#5)} — {(0,¢,,2¢;)| t, € S }. There-

fore, & respects the identifications coming from Fll and gives rise to a
continuous injection from ([Z, IN] < G p) /¢ onto a topological set homeo-
morphic to a solid torus denoted by 7,. In the same way, we define the
’ _ 1 ’, —1  —2
map & : [IW,J] < Gp — C =< S by §(=z,t,,t;) = ((1 — .v)tl >t t3)

— —2
for all @ & [1/2,1] and (#,,%2,) € (S ) . Then, & {(0,¢, %)} —

’ ’ 7 ’ 1.2 —2 2 7
{1, 2,01 (¢,,t,) € (S ) such thatt t, = ¢t t3}. Therefore, § re-
spects the identifications coming from le and gives rise to a homeomor-
phism from ([#A, J] < G 5) /<& onto a topological set homeomorphic to a
solid torus denoted by 7 ,. It remains to glue 7, and 7, i.e, to identify

—1 —1
the points §(1/2,%,,2,) = (#,/2,t3) with & (1/2,¢,,¢,) = (¢, /2.t 23).

Furthermore, t; being fixed, consider the meridian on the boundary of
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T, defined ¢, —— (¢,/2,%t3;). Then, it must be identified with its image
on the boundary of 7, : ¢, ——> (t;1/2,t;2t3). Since this image is a
(2,1) loop on the boundary of 7,, IRX is homeomorphic to the lens
space LL(2,1), i.e., to r2°.

Model (2). Here, X is the product of the toric varieties X = CPI
and ‘\"; = CPz and each real structure c¢ on X is the product of two
real structures ¢, and c:) respectively on X, and ‘Y;. Thus, up to
equivalence, ¢ is determined by ¢, and c’0 and RX = R X, >< R‘Y;. If c4
is the canonical real structure on X, and c:) is a real structure of type
I or IT on ‘Yc,) (see 5.1.1)then c¢ is a real structure of type I or II (see
6.1.1). While if ¢4 is the non-canonical real structure on X, and c’o is
a real structure of type I or II then c is a real structure of type III or
IV. In each of these four cases, IRX is homeomorphic to Sl and R}(;
to RPZ so that IR X is homeomorphic to 51 >< RPz_

Model (3). Now, X is an equivariant CP -bundle over CF  with
AL = A{leil,[exl.[—e; — e; — 2e5]3 and A1) = {legl.[—e,]} (see
notations of Proposition 6.3.1). FEach real structure ¢ on X preserves
this fibration so that it induces the canonical real structure on )((A”)
and a real structure of type I or II on AY(A,)_ Therefore c is of type I
or II and in each case IR.X is Sl—bundle over RPz by Proposition 6.3.2.
Note that the fan, reduced modulo 2, is the same as the fan in case
(2) so that for the canonical real structure IRX is homeomorphic to
st o< 'R,

T.et s, be the involution of /V associated with the real structure c,
of type II. We comnsider as in case (1) a lattice polyhedron 7’ preserved
by tsz such that X = X ,. Then P is a quadrilateral that we denote
by (ABC ) where o, and ogz are the maximal cones preserved by s,.
Under a suitable numerotation, we can write og = [e,, e,, €3] and c, in

principal orbit coordinates associated with oz by ¢ +— ({'2, El, Ez) We

denote by C', 72 the vertices of = respectively in ulorb(e;, —e;, —e, —2e;)]
and gulorb(—e;, —e, — e, — 2e3)]. Let us note that &, and restrictions
maps for the facets Fll = [B,C] and le = [A, B] are the same as in
case (1). For the facet F; = [A, 2], the restriction ~F, maps (¢, til, )

1 —1
to (z,t ) so that for every AZ in F:: we must identify (AL, ¢,¢ , 1)

1 i
with (AZ,t,¢ ,—1). Moreover, for the facet F; = [, 1], T M N is
a
1 2 1 3 R R
generated by e —e and 2e —e so that the restriction YE, ¢ Gy —> GFq

1 2 2

maps (£,%t ,ax) to (¢ ,at ). Thus, for every AZ in F; we must identify
1 —1

(N, ¢, ¢t , o) with (AL, —¢t, —¢ ,ex).

,
We consider that, up to a homeomorphism, 77 is a sgquare and write

, — — — -
each point A of P BMNM = xBC + hBA with (2,/2) in [0,1] . Then,
P =< G p is homeomorphic to Cy = {(=x,h,t,x)| (x,R) & [O, 1]2 ><

and (z,«x) < Si (W] Si} As in case (1), the map 6 : €, — C < IR
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such that §(x, h,t,a) = (xt,xh) respects exactly the identifications
coming from Fll and FZI and consequently gives rise to a continuous in-
jection from the corresponding quotient of Cj onto a topological set '
homeomorphic to a solid cylinder. Furthermore, §(x,¢,1, o) = (xt, o)
so that making the identifications coming from F:: induced on C'| we
obtain a solid torus C,. Finally, §(1, —¢,”2,a) = (—%,«h”) so that with
the identifications coming from F; induced on C,, we conclude that

IRX homeomorphic to Sl >< RPz_

Model (4). The involution s of IV associated with a real structure c

must preserve one of the three pairs of generators {e,, —e, }, {e,, —e, }
and {ez;, —ez}. If s preserves exactly one pair, say {e;, —ez}, then,
up to equivalence, there are two possibilities s(e,) = e,, s(ez) = e3
and c¢ is a real structure of type II or s(e,) = e,, s(ez) = —ez; and

c is of type IV. In these two cases, s preserves the generators of the
’
edges of a subfan AN : e,, —e,,e,, —e, and the generators of the edges

of another subfan A" : ez, —ez such that X = X s < X _»~. Therefore,
IRX is homeomorphic to 52 >< Sl since the real structure induced on
the toric surface X - is of type II (see Theorem 5.4.1). If s preserves
the three pairs and p vectors of the basis (e,,e,,e;) of V then for p
equal to 3,2,1,0 we conclude that ¢ is respectively of type I, III, V and
VI. Since A can be considered as the product of three one-dimensional
subfans preserved by s, IRX is homeomorphic to (51)3_

Model (5). Here, X is an equivariant < -bundle over (C‘,‘]Dl)2 with
A1) = {[e,]. [es]. [—e; — ex]l. [—e5 — €3]} and A (1) = {[e,], [—e,]} (see
notations of Proposition 6.3.1). Each real structure ¢ on X preserves
this fibration so that it induces the canonical real structure on )((A”)
and a real structure ¢ on ‘\'(A,)_ ILet s be the involution of 7V associated
with c. If e, and e; are exchanged by s then & and ¢ are of type IT and
IRX is a Sl—bundle over 52_ On the other hand, & is of type I, IIT or
IV if respectively e,,e; are preserved; e, is preserved and e;, —e; — e,
exchanged; e, is exchanged with —e, — e, and e; with —e; — e,. In
these cases, ¢ is respectively of type I, III or V and IRX is a Sl—bundle
over (51)2. ILLet P be a lattice polyhedron preserved by ts such that
X = X 5. Note that 7 is homeomorphic to a cube that we denote also
by .

To determine IRX for the canonical real structure we make the identi-
fications on the faces of 77 =< {—+1, —1}2 (as indicated in the Application
3.5.4) in three steps. First, making the identifications due to the faces

of P meeting at the vertex AZ such that o,,

= [e,,e,,e;z] we obtain
a bigger cube Il. Then, the facets of /7 corresponding to ulorb(—e, —

e,)], pmlorb(—ez; —esy)], plorb(—e,)] induce identifications on pairs of op-

posite faces of TT respectively denoted by {(A,, By, Ty, D), (A,, B,,C,,
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D)3, {(Ag, Ay, By, Bo), (Do, L4, T4, CTo)}, {(Ag, Ay, Dy, Do), (Bg, By, Ty,
C'y)}- Finally, all the identifications being made, we denote the cross
sections of 11 parallel to ( Ay, By, Ty, 125) by (A,, B,,C,, 12,) for each ¢
in [0, 1] and by 7 the reflection of F#, RP2 with axis joining the edges
of (Agy, By, Ty, Dy) with opposite orientation. Then, IRX is homeomor-
phic to [0, 1] > (%, RP2) where (0,7) and (1, 7(72)) are identified for
every m in (F, ]RPZ). Since 7 is isotopic to the identity in #, RPZ, we
conclude that for the canonical real structure IRX is homeomorphic to
ST (H, RPT).

The real structure of type II is written in principal coordinates as-

sociated with [e,,e,,ez] by £ +—> (';3, ;2, ;1) so that G, = {(¢, «, t71)| t &
Sl and cv2 = 13}. NMoreover, P is a qguadrilateral that we denote by
(ABC D) where o ,,o045, 0o, o, are respectively equal to [e,, —e,, e5], [e,,
ey, e3]l, [—e;, —e5,e,, —e3 —e,] and [—e;, — e,, —€e,, —e; — e,]. Following

the same way as for the real structure of type II in case (3), we make the

identifications on 22 > G p o due to the facets Fll = [B, ], le = [A, B]

and F; = [A, D] and obtain a solid torus C,. Nevertheless, for the
—1

last facet F; = [, C] the restriction Y, becomes (¢, o, ¢ ) —> « so

that (AL, ¢, o, til) E(AM,1,x,1) for every AL in F; and (¢, o) Sl (6] Si_
Therefore, under these identifications each meridian of the torus is re-
duced to a point and IRX is homeomorphic to Sl >< Sz.

In the same way, the real structure of type III is written in prin-

—1 —1

cipal coordinates associated with [e,,e,,e;] by ¢ +— (£,,%,% , T

s ) so

3
2 1 2
that Gp = {(«,¢,¢2 )| t € S and &« = 1}. Moreover, 7 is a quadi-
lateral that we denote by (ABCD) with A, B,C, D respectively in
plorb(e,, —en)], wlorb(e,,es)], wlorb(—e, — e,,e,)] and ulorb(—e, —
e,, —e,)]. For the facet Fll = [A, B], the restriction YF, Mmaps (x, ¢, t2)
2 2 2
to (¢,t ) so that (AL,1,¢,¢t Y&E (AL, —1,¢t,¢ ) for every AL in Fll Then,
, , . .
for the facets F, = [-A, D] and F, = [B,C] the restrictions YF, and vg
2 2 2 2
map (o,%,% ) to (o, ¢t ) so that (M, o, t,t )E(NM,x, —t,t ) for every AL
e
in le L_JF:: Furthermore for the facet F4’ = |, D], o, M N is generated
a
1 2 3 L. 2 2
by —e —+ e and e so that the restriction v, maps (ax,t,t ) to (at, ¢t )
2 2
and we must identify (AL, «,¢,¢ ) with (M, —«, —¢,¢t ) for every AL in

’

F .
4

— —_— —

As in case (3), we write each point N of P BMAM — xBC + hB.A with
(a, ) in [O, 1]2 and we obtain that 77 > G p is homeomorphic to Ty =
{(x, h,t,x)| (x,h) € [O, 1]2 and (¢, o) & Si (&} Si} Then, we consider
the map 6§ : 4, — [—1,1] < C such that (=, h,t,v) = (oxax, (1 + h)t).
This map respects exactly the idenfications on Cj; coming from the facet

’
F1 so that the corresponding gquotient space is homeomorphic to C';, =

[—1,1] < /R where R is an annulus. Furthermore, the identifications
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coming from le and F; induce on C'; the identification of the opposite
diametral points on the boundary of R: (ax,?) and (ax, —t) as well as
(xax, 2t) and (ax, —2¢t). Therefore, the corresponding cquotient space,
C',, is homeomorphic to [—1, 1] =< (., RPz). Lastly, the identifications
coming from F; induce on C', the identification of the points (1, (1 +/~)?)
and (—1, — (1 + ”)t) for every (A,%t) in [0, 1] > Sl_ Thus, using the same
involution 7 of the IKlein bottle as in the case of the canonical real
structure, we conclude that IR X is homeomorphic to [—1, 1] >< (F, IRP2)
where each point (—1,7) of {—13} > (FH, RP2) is identified with the
point (1, 7(m)) in {13} > (F, ]RPZ). Therefore, IRX is homeomorphic
to Sl >< (o RPz)_

Finally, the real structure of type V is written in principal orbit

—1 _——1

—1 —1
e,,ez] by ¢ +— (t1 T t,t .t ) so

coordinates associated with |[e 4 27, s

1
7

—1
that G, = {(t,.%..%, )| (£,.%t,) € (5)°}. Moreover, 7 is a seg-

ment that we denote by [A, B] with A, B respectively in ulorb(e,)] and

plorb(—e,)]. For the facets Fll = {A} and le = {B} the restrictions

—1 2 R ; —1 2 R
z t2) so that we identify (AL, ¢,,%¢,, L t2) with

—1 2
map (t,,%t,,% t2) to (z,, N

1
1
t2) for A — A and M — B.
, — —
Then, we write each point AL of P, AN = xAB with @« in [O, 1]

(MLt , —2t,, T,
and we obtain that 72 > G p is homeomorphic to Ty = {(=,¢,,%t,))| = €
[0, 1] and (#,,%t,) (Sl)z}. We consider the map & : Ty — S =< C such
that §(=x,¢t,,%t,) = (¢,,(1 + x)t,). This map defines a homeomorphism
from C'§ onto C'| = Sl > 2 where 77 is an annulus. Furthermore, the

’ ’
identifications coming from F'1 and F2 induce on C'; the identification of

the opposite diametral points of the boundary of 2: (¢,,%,) and (z,, —%,)
as well as (¢,,2¢,) and (¢,, —2¢,). Therefore, IRX is homeomorphic to
S o (H, RPD). U

Remark 6.3.5. In the different cases of the previous theorem we note
that the real parts of X for the canonical real structure and for a
multiplicative real structure of type III are homeomorphic. To end the
topological classification of the real parts of toric Fano threefolds, we

will use an extension of this result enounced in the following theorem.

Theorem 6.3.6. Let X be a smooth compact toric threefold and cgi

a multiplicative real structure of type [I71 orn X . Ther, there is amn
1
equivariant toric bundle Y owver CIP wsith a real part for the canonical

real structure hormeormorphic to the real part of (X, c3).

Proof. We begin by the construction of another toric threefold Y pre-
served by c; that is a toric bundle over CPI . T,et s be the reflection of
IV associated with c¢; and 7 a lattice polyhedron preserved by les such
that X = X ,. Then ' is a polygon (A, ... .Aq) such that for each 2,

1 <7i=<gqg,]A,,4,,,[is in the interior of a facet of /7 denoted by F; and

i
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’
A, ,,;, = A,. Let us notice that /7 does not go through any vertex of /7.

NMoreover, there is a cone o = [e,, e,, e;] of A such that c; is written in

R - — 5 —1
principal orbit coordinates associated with o by # +— (tltsa, t2t3 N t3 D

where a, b are integers (see Theorem 6.1.1). Foralll << 7 << g, we denote
by 77; the primitive generator of the edge of A such that F; = ulorb(;)].

We may suppose that 77, = e, and 7, = €,- L.et us note that for each z,

F; is preserved by ts so that s(77;,) = 77; and 77; belongs to the sublattice
~N generated by e,,e,. Since X is smooth, the g two-dimensional cones
[72;, 77,._'_1] with Tgr1 = 771 form a complete smooth fan 3 in ~N Then, we
define ¥ as the toric variety associated with the complete stmooth fan
in /V with 2g maximal cones [77,,7,,,,¢e5], [7;,,7,,,,ae, + be, — e;5]. By

1
this way, Y is a smooth equivariant Y (3)-bundle over C/’ preserved

by c; and the theorem follows from Lemma 6.3.7 below. D

1
TLemma 6.3.7. Let Y be a toric threefold so that is Y — CP s arn
equivariant 1'(A”)—bundle. If ey is a multiplicative real structure of type
177 that induces the canonical real structure on ly(A") then the real parts

of ¥ for cg and the canonical real structure are homeomorphic.

- - ” -
Proof. Let 11, be a lattice polygon (A, ... A'—'lq) such that Y (A ) = 11—[0_
Then, ¥ = Y; where IT is the lattice polyhedron II, =< [0, 1]. We denote
by F, the facet of TII equal to [A4,,. 4, ,] =< [0, 1]. For the canonical

real structure c; on Y , we use the Application 3.5.4 to determine the

topological type of the real part. We denote by 1—,[51 72002 with (3,, 385, 3s)
B2,
in Zz the eight polyhedra forming Il < G and by 1:‘51 272 the face of
B1,82,8a <
IT corresponding to the face F of II.
Then, we determine &'y for the real structure c;. To do this, we
write a = 2a, + a5 and b = 2b, + b, where a,, a,, b,, b, are integers and

ag, by are equal to O or 1. Furthermore, considering a new basis of AZ,

’ ’ ’

1 1 3 2 2 3 3 3 . R
e = e —+ a,e e = e —+ b e e = e , we obtaln new coordinates on
a 3
the principal orbit a;, = t1t31 , v, = tztsl , g = 25 so that c5; is written
_ as . _® _—1 . 1.3 .
by o —> (a1a3 s &, & )- Thus, o« in (5 ) belongs to G'y if and only
. —ao 2 —&0 . . .
if = = o, and = = o,. We distinguish three cases
. 1 2 2
i) a and b are even so that Gy = {a]| aaz € . and o, = o, = 1%,
—2 1
ii) a is odd and b is even so that G,; = {(o,,a,,x, )| o« € .S and
2
a, = 13},
—=2 1
iii) a and b are odd so that Gy = {(o,, &, , N e, € 5 JUu{(wy, —x,,

1

2 1
a, D o, e sy

and to continue the proof we consider successively each of these three
cases. Now, to obtain the topological type of the real part of (3}, c3)
we male the identifications on II < Gy coming from the g facets F;

of IT (see the Proposition 3.5.2). To do this, we remark that for each
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’ ’ ’ ’
3

o 1 2 3
1 i =< g, there is a basis of o, M AL written by (ke +l,e —+1m,e , e )

IA

3
with (k;,1,,m,;) € Z and k,;,I, prime together so that the restrictions

T
G — Gp, map o to (o, o, o, , x3).
In case 1), 5 Gy is made of four disjoint polyhedra (with two

1
of their opposite faces identified) that are homeomorphic to Il < S .

sxo

for (a,, ox,) € Z: and by [AAi,A4i+1]r1 the

oy e

We denote them by I

oy ,oxp

facet of T corresponding to [A,,.A4,, ,] =< st Thus, to obtain the

topological type of the real part of (3, c3), we must identify, for each

1 << 7 = g and (o, a,), (38,,38,) in Zz, the facets [AAi,A'—’liJrl]rl' 7 and
y y B1.82 B, 2
[A, A ] such that o o

B R I:
=3, 3, .

2

On the other hand, to determine the real part of (¥, ¢;), we iden-

B182,1 BB, —

tify the facets F and F B for FF = pulorb(ae, + be, — e3)] and

B1,82,1

F = plorb(ez)]. Therefore, the two polyhedra IT Fa B2t

and IT

give rise to a polyhedron (with two opposite faces identificated) de-

BB - - BB - -
noted by II that is homeomorphic I . After these identifica-
23 -
tions, there is a facet of 1—151 ? corresponding to [A,,A4,,,] that we
5y .52 . .
denote by [A'—'li,‘—li_'_l]n . Then, to determine the topological type of

the real part of (¥, ¢,) it remains to make the identifications coming

from the facets F; of Il. Since ke * + ;e 2 —“+ 772 2 = kiel —l—lie2 —l—sie3 for

. . . . 3 ke I s:
some integer s,;, the restriction Y F, Mmaps each 3 in Z2 to (61 ,82 [33 > 3s)-

B8z oy ,exp
Therefore we identify the faces [A,, ‘4i+1]H and [A,, ‘—11._'_1]1_[ such
. I, [
that 61 52 = o, o, . Thus, we conclude that the real parts of (Y, ¢,)

and (Y, ¢g) are homeomorphic. More precisely, since a, b are even this
1
real part is is homeomorphic to IRY (32) =< S .

In case ii), we begin with the canonical real structure c,on Y} and

3
malke the identifications on II =< Z_ associated with the facet plorb(e;)]

of TI. This give four polyhedra homeomorphic to TIg < [—1,1] denoted

B1:82

by II for (3., 3,) in Zz Then, we malke the identifications on these

polyhedra corresponding to the facets ulorb(e,)] and ulorb(e,)] of IIL.

B8z

They induce identifications on some sides of the faces (Ilg><{—13}) of

B1,82

IT so that gluing them we obtain a surface with boundary denoted

by Sg- At this step, we have a topological space homeomorphic to

Se < [—1,1]. Now, for the facet F = plorb(ae, + be, — e,)] of IT the
3 3

restriction vy, maps each 3 in Zz to (515:, 5253) and since a is odd and

b is even the identifications give rise to a topological space denoted by

II, that is homeomorphic to S, > _

, [—1,1] where 7, is the involution

. — . B
on S, such that +4[(772, —1)51 52] = (772, —1) 1z for every (72, —1)"* 2=

B1,82

in (ITg < {—13}) Finally it remains to make the identifications for

B1.52 P18 -
the faces [A'—'li,"—li+1]n of TI coming from the facets F,; of TII for
B2
2 < i < g — 1. Therefore, we must identify the faces [A'—'li,‘—li_'_l]n
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Y172 R, 1. K I
and [A;, A—'li+1]n such that 3, 8, = v, 7, to obtain a topological set
homeomorphic to IRY . IL.et us note that in this case, the real part of

(Y, ¢;) is homeomorphic to st ><_ IRY (X)) where 7 is the involution on
IRY () induced by 7.

On the other hand for the real structure ¢; on Y , G is homeomor-
phic to Sl =< Z, so that we can denote its elements by («,, a,) with
(ex,, ) € Sl =< Z,. Then, T’ < G is made of two disjoint polyhe-
dra (with two of their opposite faces identificated), homeomorphic to
>

I, >< Sl that we denote by °? for o, in Z,. Then, the facet of -

that corresponds to [4,,.4,, ] is denoted by [A4,, ‘42._._1]0(2 and its points

1

by (172, ey, «xp) with 772 in [A,;, 4,,,] and «,; in .S . Moreover, for each
3 o k;—2m; I —2

1 << 7 < g, the restriction Gy — GF‘ maps « to (al o, , ) so

that for each 72 in [A,, A, ], ("2, ¢, , ;) must be identified with

(m, —o,, x,) if k&, is even and /, is odd,
(m, x,, —ax,) if k&, is odd and [, is even,
(e, —x,, —x,) if k; and I, are odd.
First, we comnsider 7 = g so that kq = 1,lq = O and m, = —a, and

we male the identifications on IT > Gy associated with the facet F, of
+1 —1 +1 —1
II. Thus, we glue T and I along [A,,-A_] and [A,, . A_] . Then
we malie the identifications associated with the facet F| noticing that
1 +1 1 —1
k, =— O and I, = 1. If we denote by (S5 ) and (S ) the two sheets of
1 2 .
the covering map of § : «, > x,  we obtain a double covering of =2

mapping every (772, ov,, &, ) in [A4,, A'—'li_'_l]c‘(2 to (m, o, ,x,) if2 << 72 << (g—1)

2 5,

and to (77, o, «,) if ¢ = 1. For every 3, in Z,, we denote by I" 22
. Ba By .52 .

the two sheets of the covering of T and by [A,, A4i+1]r their facets

associated with [A,, A, ] for 2 < i < (g — 1) Thus, the previous

identifications give rise to a topological space homeomorphic to II,.

P15 T1sV2
Finally, we must identify the facets [A4,, fli+1]r and [A,, A'—’li+1]r
I

ki Ii k-‘ i
such that 61 /82 = v,

2 and we conclude that the real parts of (Y, ¢,)

and (Y, c;) are homeomorphic.

In case iii), we keep notations of the previous case and conclude
by the same way that the real part of (Y, e¢;) is homeomorphic to
s =<, IRY (X)) where 7 is the involution on IRY (X) induced by 74 such

PuB2) g 1)

B1,—B2 Bz

that r,[(72, —1) for every (772, —1)51”

{—13

Omn the other hand for the real structure ¢; on Y , G'f; is homeomor-

in (IT, =<
By .82

2 1

pPhic to the disjoint union of two circles {(«,, o, =9 )| &, € S 3 and
—2 1 15

{(al,—al,al ) &, € S 3} denoted by (S ) ? with Bs in Z, so that

T =< Gy is made of two disjoint polyhedra (with two of their opposite

3
faces identificated) TI, =< (51)52 denoted respectively by I'"'?. For each

2

3
1 < 7 < g, the facet of I corresponding to [A4,,.4,,,] is denoted by
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[f’,\i,‘—lzufl]ﬁz and its points by (7, o, 35) with 72 in [A,, A4, ,] and o,

1 —2
in S . Moreover, the restriction Gy — &G, maps (o,, (£xl)o,, = ) to
ko1, —2m,

—2
N s, ) so that for each 72 in [A,, A

(="

i+1], (72, ¢y, B,) must

be identified with

(e, —x,, —3,) if k; is even and [, is odd,
(m, o, —3,) if k&, is odd and [, is even,

(e, —cxy, B,) if k; and I, are odd.

We begin with the identifications on 1’ =< G associated with the facet

1 —1 1 —1
F, of TT so that we glue " and T along [A,, A—lq]+ and [A,, . A_] .
Then, we malke the identifications associated with the facet F,. We

3.
consider the covering of I''° mapping every (2, o, 3,) in [441.,‘41.+1]52

to (m,o,,B3,) if 2 < 7 < (g — 1) and to (m,aj,[j’z) for ¢ = 1. For

< 1,3 —1,—3
every B3, in Z,, we denote by T 2 and T ® the two sheets of the

- 3. 1. —1,—52 B
covering of I'? and by [‘4""4"—'—1]1“ (or [A'—'li,‘—li_'_l]r ) their facets
associated with [A4,, .4, ,] for 2 < 7 << (g — 1). Thus, we identify every

. 1,52 . . 1,52 .
(e, vy, By) in [A,, AAZ]F with (7, —«,, —3,) in [4,, A'—'lz]r and obtain
a topological space homeomorphic to TI,. Finally, for 1 < z < (g — 1)
B1:5>
the identification of (m, o, , 3,) in [A,, A4i+1]r with
(e, —x,, —3,) if k; is even and [, is odd, gives rise to the identifi-
. 5182 RN
cation of [A,, A'—'li+1]r with [A,, A4i+1]r N
(e, vy, —3,) if &k, is odd and [, is even, gives rise to the identifica-
B1:82 B1,— B2
tion of [A4,, fli+1]r with [A;, ‘4"+1]r‘ R
(m, —,, 3,) if &k, and I, are odd, gives rise to the identification of
AN- N — Gy, — s
[, ‘45+1]1“ with [A,, 44i+1]r -
B B B8z Y1 V=2
Therefore, we identify the facets [A,, A'—'li_'_l]r and [A,, A'—'li_'_l]r such
kI, Y
that 61 62 = v, 7, and we conclude that the real parts of (¥, c¢;) and
(Y, ¢3) are homeomorphic. D

Now let us note (even if we do not use it) that, by Theorem 6.3.1,
the real parts of toric Fano threefolds are real blow-ups of the models
given in the Theorem 6.3.4. Namely, if ¢ is a real structure on X and
I’ = ~ —> X is the blow-up of X along subvarieties of dimension < 1,
closed by the action of 7 as listed below then there is a real structure
& on X' such that fcl = cf. More precisely,

i) if X' is the blow-up of X along a point fixed by ¢ then ®rX =

R X 4 R 2.
ii) if X' is the blow-up of X along two points exchanged by c¢ then
RX =RX.

iii) if X is the blow-up of X along an irreducible curve 7 preserved

5
by ¢ then RX — IR.X.
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iv) if X is the blow-up of X along two irreducible curves exchanged

by c
with nmno common point then ®rX = IRXT,
1 2
with a real common point then ®rX = IRXFH#(S > S7).

In fact, Batyrev and Watanabe-Watanabe have determined the eigh-
teen toric Fano threefolds up to isomorphism. They are listed with
their associated double-weighted triangulation of 52 in [27] p.90. We
use this explicit classification and the same labelling in the proof of the
following theorem. Note that the cases of toric varieties with labels (1),

(2), (4), (6) and (7) have already been studied in the Theorem 6.3.4.

Theorem 6.3.8. Topological types of real parts of toric Fano threefolds
are
3 1 2
rRP , S5 =< S5,
#, RP°, s w RPZ,
1.3 1 2 3 1 2 1 2
(S ) , (&8 <xIRP HF RP , S < (FH.,.RP ), S x_(#F, RP ) where
T s an involutionrn on FH, RPz,
1 2 1 2 1 2
ST (FEs IRPT), S <, (FFs RP ), S >, (Fs RFP ) where ¢ and
/

2
Y are two non-isotopic involutions on F 5, IRFP ,

1 2 1 2 2
STox (FE, RP ), S Xs:(#‘k IR P ) with ¢ an involutiorn orn #=, IR .

Proof. Successively, for each toric Fano threefold X labelled (3), (5)
or (8) to (18), we use the associated double-weighted triangulation of
s° (see [27] P.91) to determine a fan A such that X = X (A) and the
involutions of the lattice 7V that, preserving this fan, must also preserve
the double-weighted triangulation of Sz. For each multiplicative real
structure, we denote by s the associated involution of /V and by 7 a
lattice polyhedron preserved by s such that X — X - As in the proof
of Theorem 6.3.4, we use the algorithm given in Proposition 3.5.2 to
obtain the topological type of IR.X .

Threefold (3). Here, X is an equivariant CPl—bundle over (CPZ
such that with the notations used in the Proposition 6.3.1, .A’O(l) =
{[e.],[ex];[—e;, — e — e3]} and A”(l) = {[ez],.[—es3]}. Therefore s must
preserve e; and, up to equivalence, preserve e, and e, or exchange
them so that the real structure is respectively of type I or II. Let us

3
note that X is the equivariant blow-up of CZ along the point orb(7)

3
where 7 = [e,,e,, —e, — e, — e;3] (see 2.8.1) so that X = £, CF> . Since
3
this point is preserved by each real structure and Rlorb(7)] = IRZ” we
conclude that IRX = #~, RPS.

Threefold (5). In this case, X is an equivariant CP2—bundle over

1 ’ ”
Cr such that A (1) = {[es],[—e; —es—e3]} and XN (1) = {[e,], [ex],[—e,
—e,]}- Since ¢ must preserve this fibration, up to equivalence, e;, —e; —

e, — e; are preserved or exchanged and so are e,,e,. Thus there are,
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up to equivalence, four multiplicative real structures on X, one of each
type I, IT, III and V. In each case, IRX is a RPz—bunclle over Sl so that
it is homeomorphic to Sl >< RPz_

Threefold (8). Here, X is an equivariant <P -bundle over (CP1)2
such that A/ (1) = {[e,], [es]l. [—e, + eyl [—es — e,]1} and A" (1) = {[e,],
[—e,]}- EFach real structure c preserves this fibration so that e, and —e,
are preserved or exchanged by s. If s(e,) =— e, there are three possibili-
ties s(e,) = e,, s(ez) = ez and c is the canonical real structure; s(e,;) =
e,,s(ez) = —e,—e; and cis of type IlI; s(e,) = —e, +e,,s(ez) = —ez—e,
and c is of type V. If s(e,) = —e, then e, and e; are exchanged so that
c is a real structure of type IV. Since the fan A reduced modulo 2 is the
same as in the case (5) of the previous theorem, we conclude that for
the canonical real structure IRX is homeomorphic to Sl =< (FE, RPZ)_
Following the same way for the real structure of type III as in case (5)
of the previous proof, we conclude that IRX is also homeomorphic to
S o (H, RPD).

The real structure of type IV is written in principal orbit coordinates

—1 ’
,t,) and F is the segment

associated with [e,,e,,e;] by ¢t —> (tfs,t2

[A, B] where A, B are respectively in ulorb(e,;, e;)] and glorb(—e, +

1 1.2

€5, —€3 — e5)]. Therefore, Gp = {(t17t25t1 DI (24,22) € (S ) } and
, —> —_—

writting for each point AZ of P, AN = axAB with @ in [0,1], we

obtain that 22 > G p is homeomorphic to {(@,¢,,2,)| & € [0, 1] (#,,%,) €

(51)2}. IL.et us consider 7 the middle of [A, B] and define the map

S [AT] < Gp — C < S by S(a,t,,t,) = («t,,t,) for all =z < [0, 1/2]

and (¢,,t,) € (51)2_ For the facet Fll = {A3}, the restriction map is
—1

YF, Ot (tl,tz,t1 ) +— ¢, so that & respects the identifications coming

from Fll and gives rise to a continuous injection from ([A, 7] <x G o)/&

onto a topological set homeomorphic to a solid torus denoted by 7.

In the same way, we define the map s’ L, B] < G — C < st by
, —1 —2 —1 . 1.2
S (x,t,,t,) = ((1—w)t1 N N ) for all 2 € [1/2,1] and (z,,%t,) € (S ) .
, . . B —1
For the facet F2 = { B3}, the restriction map is YF, ¢ (ty, t,, ., ) —
2 1
t, ot so that & respects the identifications coming from le and gives

rise to a homeomorphism from ([7, B] < G'5)/<& onto a topological set

homeomorphic to a solid torus denoted by 7.

- Finally, we must identify

the boundaries of the tori so that a meridian ¢, — (1/2¢,,%¢,) of 7 is

mapped onto a (2,1) loop on the boundary of 7,. Therefore IRX is
3

homeomorphic to IR/~ .

The real structure of type V is written in principal coordinates by

—1 — - —1 —1 2 1 2
z —> (t1 Sttt Lt ) so that G = {(%,,%,, t2t1| (t,,t,) € (S ) F and
’

P = [A, B] where A, B are respectively in ulorb(e,)] and uglorb(—e,)].
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We conclude as in case (5) of the previous proof that IRX is homeo-
morphic to Sl > (Fo RPZ).

Threefold (9). Now, X is the product of the toric varieties X, =
<P’ and ‘Y; = F, (see Examples 2.2.7) and each real structure c on
X is the product of two real structures ¢, and c; respectively on X,
and ‘\';_ Thus, up to equivalence, ¢ is determined by ¢, and c; and
RX = IRX, x< R‘Y;. If ¢; is the canonical real structure on X, and c; is
a real structure of type I or III on ‘\'; then ¢ is a real structure of type
I or III. While if ¢;5 is the nmnon-canonical real structure on X, and C’o is
a real structure of type I or III then ¢ is a real structure of type III (
not equivalent to the previous one) or V. In each of these four cases,
IRX, is homeomorphic to Sl and Rl‘(; to FE, RPz (see Examples 3.5.5
and Theorem 5.4.1) so that IRX is homeomorphic to Sl =< (o RPZ).

Threefold (10). Here, X is an equivariant (#, CP2)—bundle over
<P’ such that A/ (1) = {le,], [—e, —e,—e,]} and A" (1) = {le,], les], [—e,
—ez]l,[—e3]}- Each real structure ¢ must preserve this fibration so that
e, and —e, — e, — e; are preserved or exchanged by s. Since s preserves
also the associated double-weighted triangulation of Sz, s(e,) = e, and
s(ez) = e5z so that c is the canonical real structure or a real structure of
type III (with a = —1 and 6 = —1). Using Theorem 6.3.6, we conclude
that in each case IRX is homeomorphic to Sl =< (FEL RP2) where 7 is
the involution on &, RP2 more precisely described in the proof of the
Theorem 6.3.6 and not isotopic to the identity.

Threefold (12). From the study of this threefold, we will deduce

the study of the threefold (11). First, let us note that X is the blow-up

of the toric variety of case (5) along the point orb(e,,e,, —e, —e, —e3).
Thus, the fan A\ such that X = X (A) has exactly eight maximal cones
[e1,en,e3] [€1,€2, —e3] [e1,€5, —ey — €3] [€x,e5, —e; — €3] [—ey — ex —
€e5,€5, —€3] [—e, — e, —e5,e,, —ez] [e,, —e, — e, —e;, —e, —e,] [e,, —e; —
e, — ez, —e, — e,]. Watching at the associated weighted-triangulation
of S° we conclude that s(ez) — e; and s preserves or exchanges e, and

e, so that ¢ is the canonical real structure or a real structure of type

II. In each case, orb((e,,e,, —e, — e, — e3) is preserved by c so that
- 1 2 3
RX = (5 < IRP HFHFIRPFP .

Threefold (11). X = X(A') where A’ is the fan with exactly eight
maximal cones [e,, e,, e5] [e,, €5, —e3] [e,,€3, —e, —e, +2e;] [e,, €3, —e, —
ey, + 2e3] [—e; — e, +e5,€5, —eg]l |[—e; — e, +e5,e,, —eg] ey, —e; — e, +
ey, —€, — e, + 2e5] [e,, —e, — e, + €5, —e;, — e, + 2e;]. Using the graph of

2
S, we conclude as in the previous case that s(e;) = e; and e,,e, are

preserved or exchanged by s so that ¢ is a real structure of type I or II.
First, let us note that in cases (11) and (12) the fans A and A\, reduced

modulo 2, are the same so that the real parts of the toric varieties for
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the canonical real structure are homeomorphic. On the other hand,

for the structure of type II in both cases P is a pentagon denoted by

(A, A,4,4,4), Gp = {(a,, @, ,as)| (a,a3) € S > Z,} and for each
1 <z =<5 [A;,A,;, ,]is contained in a face F,; of P with A = A, , F, =
plorb(e,, ex)l, F, — plorb(ey)] and Fi — plorb(—ey)]. Furthermore in
case (11), Fy — plorb(—e, — e, + 2e,)] and F, — ulorb(—e, — e, + €5)]

—1
with the restrictions G, —> GFE and &G'p — GF4 that map (o, [T ag)

2 2 2
respectively to (o, ,a ay) and (o, ,o;,a3) while in case (12), F; =

plorb(—e, — e,)] and F, = pulorb(—e, — e, — e5;)] with the restrictions

f— —2 —2
that map (o,, o , cxg) respectively to (al , cxgz) and (al , ¥, cxg). Since

1
,

all these restrictions give rise to the same identifications on 7 >x G'p we

conclude that in cases (11) and (12) the real parts of the toric varieties

are homeomorphic.

Threefold (13). Now, X is the product of the toric varieties X =

1 2
CZFr and ‘Y; = #H5; CF and each real structure ¢ on X is the product
of two real structures ¢; and c; respectively on X, and ‘Y;_ Thus, up

’ ’
to equivalence, ¢ is determined by ¢, and = and RX = RX, x< RX -

If ¢4 is the canonical real structure on X, and c; is a real structure of
type I or IT on ){; then c is a real structure of type I or II. While if ¢4
is the non-canonical real structure on X, and c’o is a real structure of
type I or II then ¢ is a real structure of type III or IV. In each of these
four cases, IRX; is homeomorphic to Sl but if c:) is of type I or II, Rl‘(;
is homeomorphic respectively to #t; sz or RPZ. Therefore, if ¢ is of
type I or ITTI, IR.X is homeomorphic to Sl >< (F5 sz) and if c is of type
IT or IV, IRX is homeomorphic to Sl >< RPZ.

Threefold (14). In this case, X is an equivariant (3 CCP2)—
bundle over CZ' such that A;(l) = {l[e,]l,[—e;, — e,]} and A”(l) =
{les]l, [—e=l, les]. [—es], les — e5]}- Since s must preserve this fibration,
up to equivalence, e,, (—e, —e,) are preserved or exchanged and s(e,) =
e,,s(ez) = ez. Thus there are, up to equivalence, two multiplicative
real structures on X, one of each type I and III (with a = —1 and
b = 0). Using Theorem 6.3.6, we conclude that in both cases, IR.X is
homeomorphic to s > (F~s RPZ) where ¢ is an involution on #& ®rR P
not isotopic to the identity (see the proof of Theorem 6.3.6).

Threefold (15). In the same way, X is an equivariant (F; CPz)
-bundle over @7  such that A/ (1) — {[e,],[—e, + e,]} and A1) —
{lez], [—esls [es], [—esl, [—es — e3]}. There are, up to equivalence, two
multiplicative real structures on X, one of each type I and III (with
a = +1 and & = 0). Using Theorem 6.3.6, we conclude the real parts
for the two types are homeomorphic. Furthermore the fans associated

with the toric varieties in cases (14) and (15), reduced modulo 2, are
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1 2
the same so that IR.Y is homeomorphic to .S > (F*3 IRF ) as in the
previous case.

Threefold (16). Here, X is again an equivariant (%, (CPz)—bundle

over ©P' such that Alo(l) = {[es]l,[—e, — e, — ez]} and A”(l) =
{le.]l.[—eil.les 1. [—es]l.[—e;, — e3]}- Since s must preserve this fibra-
tion, up to equivalence, e,,(—e, — e, — e;) are preserved or exchanged

and so are e,, e;. Thus there are, up to equivalence, four multiplicative
real structures on X, one of each type 1, 11, 111 (with a = b6 = —1)
and IV. Using Theorem 6.3.6, we conclude that for the types I and
I1T, RX is homeomorphic to Sl =< (Fs RPZ) where 2 is an involution
on FHg RPz neither isotopic to the identity nor to ¢ (see the proof of
Theorem 6.3.6). For the types II and IV, the real structure induced on
‘Y(A”) is of type II so that R‘Y(A”) is homeomorphic to RPz and IRX
is a sz—bundle over 51 ie., IRX is homeomorphic to Sl >< RP2_

Threefold (17). Now, X is the product of the toric varieties X, =
(CIID1 and )(; = FHE, CP2 and each real structure ¢ on X is the product
of two real structures ¢y, and c; respectively on X and ){;. Thus, up to
equivalence, ¢ is determined by ¢, and c’0 and RX = IRX, > R‘Y;. If cl0
is the canonical real structure on X then ¢ is a real structure of type I
or III (with a = b = 0) so that IRX is homeomorphic to st =< (Fa RPZ).
If c’0 is a real structure of type II then c is of type II or IV so that IR.X is
homeomorphic to Sl >< 52_ If c:) is a real structure of type III then c is
of type III (with a = 1 and & = 0) or IV so that IRX is homeomorphic
to Sl >< (FE, RPZ)_ Finally, if c; is of type IV then c is of type V or VI
so that IR.X is homeomorphic to (51)3.

Threefold (18). Here, X is an equivariant (#, CPZ)—bundle over
' such that AL (1) = {[e;].[—e, — e,]} and A"(1) = {[e,].[es +
ez]l, [es]l, [—es], [—en — e3], [—es3]}. Since s must preserve this fibration,
up to equivalence, e,, (—e,; — e,) are preserved or exchanged and so are
es3,(—e, — e3). Thus there are, up to equivalence, four multiplicative
real structures on X, one of each type I and V and two non-equivalent
of type I11. More precisely, if e; and —e, — e; are preserved by s then ¢
is of type I or III (with a = 1 and 6 = 0) so that IR.X is homeomorphic
to Sl =< (Fa RPZ) where ¢ is an involution on F#, RPZ not isotopic to

the identity (see the proof of Theorem 6.3.6).

If s preserves e,,(—e, — e,) and s(ez) = —e, — e; then c is of type
IIT (with a = —1 and & = 0). More precisely, P = (A, A A A ) with
[y, A.]in mlorb(eid], [A,, Agl in mlorb(en)], [As, ALl in mlorb(—e, — e3)]

and [A,, A,] in gylorb(—e,)]. Then, we use Theorem 6.3.6 and consider
Y the equivariant (F, CPZ)—bundle over CPI associated with the fan
32 that has eight maximal cones [e,,e,,e;], [e,, —e, — e,,ez], [—e, —

€, —€n,€3], [—€a,e1, 3], [e1, €5, —ex—e3], [€x, —e; —e€5, —ex—e3], [—e, —
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e,, —€,, —€,—ez], [—e,,e,, —e, —e5z]. Therefore IRX is homeomorphic to
the real part of ¥ for the canonical real structure, i.e., to Sl >< _(FEo RPz)
where 7 is an involution on F#, RPz isotopic to the identity. Thus, IR X
is homeomorphic to st =< (o5 RP2).

If ¢ is a real structure of type V then r= [A, B] with A in F, =
plorb(e,)) and B in F, = pulorb(—e,)]. Moreover G, = {(tzt;l,tz,t3)|

1.2
(t2,t3) € (S ) } and the restrictions Gp — Gp (or Gg ) map (%5, t3)

2 —1
to (tzt3 ,t3) so that we must identify (A,%,,%;) with (A, —%,,%2;) and
1.2
(B,t,, tg) with (B, —t,,t;) for every (Z,,%3) in (S ) . Therefore, IRX is
ie to 57 g 0
homeomorphic to .S < (#F*, IR ).

6.4. Cohomology. Let (X,c) be a real toric projective threefolds we
denote by 3, the modulo 2 Betti numbers of the real part, i.e., 3, =
dim Hk(]R‘Y, Z,)- For the canonical real structure (see [15]) they are
given by

B = C FHEN(EB — g)-

SO
Kk

g—r

In fact, H (IRX,Z,) == Z, [x,| p € A(1)]/(L+ J) where I is the ideal

>

generated by { ca(iy
P

(m,n,yx,| m & AN} (here (1m2,7n,) is reduced
modulo 2) and J is the ideal generated by the square free products

II-
. @, , P+ -+ p, & A

i—1 s

Theorem 6.4.1. For a non-canonical mwultiplicative real structure c
associated with an involution s of IV, Bo = Bz = 1 and 3, = 3,.

Furthermore,

(1) 2f ¢ is of type II or [I1l then 3, = r, — 1 where r, is the number of
cones inn AN(2) preserved by s;

(2) 2f ¢ 2s of type IV and if exactly two cones of AN(2) are preserved

by s thern 3, = 1, while if only one cone of N(2) is preserved by s
thern 3, = 2;
(3) 2f ¢ s of type V thern 3B, = 3;
(4) 2f ¢ zs of type VI thernn IR X = (51)3 arnd 3, = 3.
Proof. By Poincaré duality 3, = dim H,; ,(IRX,Z,) so that we rather

determine the modulo 2 homology groups of IRX . Since IRX is path-

connected (see Proposition 4.2.1), 8; = 1. Moreover, 3, = (3B; and
3B, = (B, so that it remains only to caculate 3, for each type of real
structure.

We begin with a real structure c of type IIT on X and then deduce
the case of a real structure of type II. Let us recall that to prove the
Theorem 6.3.6, we construct a toric threefold ¥ with a real part for the

canonical real structure homeomorphic to the real part of (X,c). In
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1
this construction, Y appears to be an equivariant toric bundle over CZF

that has », + 2 edges where r, is the number of two-dimensional cones
of A\ preserved by s. Thus, using the previous results for the canonical
real structure on Y we conclude that the dimension of H,(IRY , Z,) is
equal to (7, + 2) — 3. Therefore, since IRX and IRY are homeomorphic,
By =7y — 1.

Now let ¢ be a structure of type II and 7 a two-dimensional cone of
AN preserved by s. If each point of 7 is preserved by s then the two
maximal cones o and o adjacent along 7 are exchanged by s while, on
the contrary, if 7 is only globally preserved then o and o’ are preserved
by s. Let g be the mumber of cones of A(2) having all their points
preserved so that r», — g is the number of cones of A(2) that are only
globally preserved by s. The blowing-up of X along orb(7) where
is a two-cone only globally preserved gives rise to four maximal cones
01,02,0;,0; so that o,,oc, (respectively, all,a;) are exchanged by s
and adjacent along a mew two-cone -y (respectively, ‘y’) preserved by
s. Then, we consider ‘\',, the blow-up of X along the (r, — g) curves
orb(7;) where the cones 7, are the cones of A(2) that are only globally

preserved by s.

Lemma 6.4.2. Let X be the equivariant blow-up of X along an ir-
redwucible curve preserved by the real structure c and the actior of 7.

’ ’
Thenrn, ¢ extends to a real structure ¢ on X and

dirmm H,(RX ,7Z,) — dim H,(IRX, Z,) + 1.

Proof. We consider homology with coefficients in Z, and we denote
by 3, and /3’1 the dimensions respective of /7, (IR X ) and 77, (R‘Y,)_ The

equivariant blowing-up of X along the curve Y, with exceptional surface

Sy gives rise to the real blowing-up f : =X —> IRX along the real
part of ¥, denoted by Y} with the exceptional real surface S = IR.S,.
T.et U be a tubular neighborhood of ¥ in IRX then fil(l]) = V7 is a

neighborhood of .S in RX'. Since U and V retract respectively to ¥ and
S, H,(U) and H,(Y ) are isomophic as well as 2, (V") and H,(S). From

the Mayer-Vietoris secquence, we deduce the following exact sequences
, 7 V2 , Va ,  Va
H,(IRX ) — H, (V\S) > H (IRX \S)pH,(S) > H,(IRX ) — HLG(V\.S)
51 52 53 54
F,(IRX) — FH,(U\Y) — H, (IRX\Y)BH,(¥Y) — H,(IRX) — FHo(U\Y ).
Thus,
’
B, =dim[H, (IRX \S)BH,(S)]—dim[H (V\S)]+dim(Im~, ) +dim(Im-,)

B, = dim[#H, (IRX\Y )BH, (¥ )]—dim[Z, (U\Y )]+dim (ImdS,)+dim (ImdS,).
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Furthermore, f is an isomorphism from ®rX \ S onto IRX \ ¥ so that
f.  H, (R‘Y’) — H (IRX ) induces isomorphisms between 77, (]R‘Y, \ S)
and -, (IR X \Y") as well as between <, (V\.S) and /<, (LU\Y ). Therefore,

7

[31 — B3, is equal to
dim[H,(S)]—dim[H, (Y )]+dim Im~y, —dim Imd, +dim Im~, —dim Imd,.

Since IRX and IR.X are smooth, using Poincaré duality, we conclude
that f, is surjective so that Im(~,) and Im(~,) are respectively iso-
morphic to Im(s,) and Im(S5,). Finally, 6’1 — B, = dim|[H (S)] —

dim[#7, (¥)] = 1. []

’
Here, the involution s induces a multiplicative real structure ¢ of type

III on X so that the dimension of I{I(RAY,, Zin), denoted by 6,

L is
equal to g + 2(r, —g) — 1 and, by the previous lemma, 6’1 = G, +7r, —q-
Therefore, 3, = r, — 1.

If ¢ is a real structure of type IV, we use the Proposition 3.5.2 (and
its motations) to find a cellular decomposition of IR.X . T.et P be a
lattice polyhedron preserved by *s such that X =— X p then G p =
{(t;It;a, to,t5)| (2,,25) € (51)2}. Therefore, &G, is homeomorphic to
(51)2 and has a cellular decomposition with cells {(1,1)3}, (51 — {13}) =<
{13}, {13} =< (Sl — {13}, (Sl — {1}) =< (Sl — {1}) respectively denoted
by Gy, Y, C;, <',. Furthermore, P is a segment [A, B] with A in F, =
rlorb(e,, e,)] and B a point in the interior of a face F, of /7 preserved

+ o 3 + 3 3
by s. Since o, M A is generated by e and s(e ) = —e , G, s
4

1 1
equal to S and has a cellular decomposition with cells {1}, S — {13}
respectively denoted by D,,22,. Then, we must distinguish the two

cases F, is an edge of /7, i.e., s preserves exactly two cones of A (2) and

F, is a facet of P, i.e., [e,, e,] is the only two-cone preserved by s.
o
First, suppose that F, is an edge of 77 then o, M N is generated by
>

T
an eigenvector of s associated with the eigenvalue —1 that we denote

— 2k I—ka
by ke' — ke” +l¢23 with Ak,7 two integers and GF2 = {(t2 L8 | (£¢5,23) €

(51)2}. Therefore, G is also homeomorphic to s’ and we denote, in
the same way, the cells of its cellular decomposition by £E,, F, . EFi-
nally, the cellular decomposition of IR X contains one 3-cell ] A, B[><C,
with a boundary equal to O and two 2-cells | A, B[=<C', and ]A, B[><C';
The restriction &G, — GF1 maps (Z,,%3) to z; so that the boundary of
]lA, B[><C, is equal to O. On the other hand, the restriction G, — Gy

2k I ka
T

maps (t,,%t;) to t, so that the boundary of ].A4, B[><C’; is equal to

3
{A}Y < D, +— (1 — ka)|[{B} < E,] (where (I — ka) is reduced modulo 2).
We conclude that H,(IRX ,Z,) = Z,, i.e, 3, = 1.

i
Now, suppose that F, is a facet of /7 then o, M N is generated by
>

2 1 s 2 a 1.2 .
e — e and e so that Gy = {(z,t_ ,23)] (22,%3) € (S ) } and &g is
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homeomorphic to (51)2. Let Eq, E,, E;, E, be the cells of the cellular
decomposition of GF: then the cellular decompostion of IR X contains,
as in the previous case, one 3-cell | A, B[><C, and a 2-cell | A, B[<C, with
boundaries equal to O. On the other hand, the boundary of {B} =< E,
is equal to O while the boundary of ].4, B[XC; is equal to {A} < D, +
al{B} < E,] + {B} < E; (where a is reduced modulo 2). Therefore
H,(IRX ,Z,) is isomorphic to Zz, ie., B3, = 2.

If ¢ is a real structure of type V, there is a cone o = [e,,e,, e;]
such that it is written in principal coordinates associated with o by

1
t— (¢, ,t

1 -3 7
5 e t53). In this case, P is a segment [A, B] where .4 and
2 1 2

B are points respectively in the interior of F|, = ulorb(ez)] and F, =
rlorb(—ez)]. In order to determine (',, we consider that a = 2a, + ag

and b = 26, + b, where a,,b,,a,, b, are integers and aq, b, are equal to

’ ’ ’
1 1 2 2 3

O or 1. Then we choose a new basis of A : e = e e = e ,e =

1 3
a,e + be, + e . Thus, we obtain new coordinates on the principal

a; by

orbit oy = ¢,, «, = t, and oy = t, t, ts such that ¢ is written by

1 1 a 3 1.3
o — (&, ,& =" 06420643). Therefore, o« in (S ) belongs to G5 if and
2
only if a, = « P=Y% . We are going to treat successively the three
cases a is odd and b is even then a and b6 are odd, finally a and & are
even.
- - —=2 1.2
If a is odd and b is even then G, = {(a3 s, ag)| (a,, axz) € (5 ) T,
1 2

it is homeomorphic to (S ) and admits a cellular decomposition with

i i
cells denoted by Ty, T, C’;, C',. On the other hand, g MNAL and g MNANL
1 2

are generated by 511 and e’z so that GFI and GF: are homeomorphic to
(51)2 and we denote respectively the cells of their cellular decomposi-
tion by D, D,, D’1’ D, and E,, E,, E;, E,. The restrictions G, —> GFl
(or GFZ) map («,,cz) to (a;2,a2) so that the boundary of the 3-
cell 1A, B[><C, is equal to O as well as the boundaries of the 2-cells
1A, B[><C’i, {A} < D, and {B} < E, while the boundary of |.A, B[>x<C',
is equal to {AF} =< D’l + { B3} =< E; Therefore, H,(IR X ,Z,) is isomorphic
to ZZ, ie., B, = 3.

—1

<

—2
In the same way, if a and & are odd then &G, = {(a3 (=% 2>

5
1.2

az)| (a,,a3) € (5 ) } and we keep the same notations for the cellular

decompositions of &G ,,, GFl and GF:' The restrictions map (a,, ovg)

2

— —1
to (as P=% ,x¥,) so that the boundaries of the 3-cell and the 2-cells

2
1A, B[><C';, {A} < O,, {B} < E, are equal to O while the boundary of
14, B[><C, is equal to {A} x D, + {A} »< D 4+ {B} =< E, + {B} = E,.
Thus, 3, = 3.

It remains to consider a and & even so that G5 is the disjoint union

of {(a,, @y, D] (o, ) € (557} and {(a,, e, —1)| (o, ) € (S5O}

that admit a cellular decomposition with cells respectively denoted by
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[ am R e C’;, <, and D, D, Dll, ID,. As in the previous case, GFl and GF:
are homeomorphic to (Sl)z and have a cellular decomposition with cells
respectively denoted by £,, £, E;, E, and L,, L, Lr’l, L,. Furthermore
the restrictions G — G (or G g ) map (o, avy, ==1) to (o, @x,) so that
the cellular decomposition of IRX contains two 3-cells ]| A, B[><C, and
1A, B[=< 7, with a boundary equal to { A} < E,+{ B} ><7),. On the other
hand, the 2-cells ] A, B[<C, and ]A, B[><D, have a boundary equal to
{A} < E, + {B} < L, while the 2-cells | A4, B[XC; and ].A, B[><DI1 have
a boundary equal to {A} x< E; + { B} =< l/,1 Thus, we conclude that
H,(IRX ,Z,) is isomorphic to Zz, ie., B, = 3.

Lastly, if ¢ is a real structure of type VI then 7 is reduced to a
point and &', is equal to (51)3 so that IRX is homemorphic to (51)3

and 3, = 3. D

6.5. Hyperbolicity. To end this study, we examine a conjecture of
J.IKollar (see [21]) in the case of toric threefolds.

If V7 is a real f>ann threefold connected and hyperbolic, there is mno
complex threefold X algebraically smooth, ratiornal and projective such
that V = IRX (for the canonical real structure).

In fact, considering the canonical real structure on toric threefolds,

we obtain the following,

Theorem 6.5.1. There exists no hyperbolic smooth toric projective
real threefold. Newvertheless, there exist toric projective real threefolds

with a real part homeomorphic to a hyperbolic manifold.

Proof. L.et us consider a smooth toric projective threefold X and the
canonical real structure on it. By the Theorem 2.6.3, there exists an
integral convex polytope /7 such that X = X ,. Then, we establish the

following lemma.

Lemma 6.5.2. IR X , s hyperbolic if and only if no faces of F are

triangular or gquadrargular.

Proof. IL.et us recall that the universal cover of an hyperbolic threefold
is homeomorphic to i and, following IKollar (see [24] p.57), use this
property to conclude that IRX does not contain an RPZ so that 72 has
no triangular face. Omn the other hand, if F is a quadrangular face of
P then IRX . is a torus or a KKlein bottle embedded in IRX.

First, let us assume that IR X . is a one-sided surface. If it is incom-
pressible 7, (IR X ) contains a subgroup isomorphic to Z2 which is im-
possible for a hyperbolic threefold. If it is compressible, IKollar proves
(in the same paper) that IRX is a non-trivial connected sum and that

3
contradicts also the fact that the universal cover of IR.X is IR .
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Now, let us assume that IRX . is a two-sided surface. In a first step,
we prove the Z,-homological incompressibility of IRX . , i.e., the injec-
tivity of the homomorphism p: H, (IRX ., Z,) — H,(IRX ,Z,) or using

Poincaré duality the injectivity of p': H (IRX ., Z,) — H (IRX, Z,).

Lemma 6.5.3. If F is a quadrangular face of P swuch that X = X p

and R X o is a two-sided surface in IRX then this surface is not sepa-
1 2

rating and the homormorphism p,: H (IRX o, Z,) — H (IRX,Z,) s an

ingjectior.

Proof. Since F is quadrangular there exist exactly four cones [e,, e,, e3],
les, e, es], e, e5, e5] and [eg, e,, e5] containing e; such that X — orb(e;).

We denote by [e,,e,,e,] the cone adjacent to [e,,e,,e;] along [e,, e,]-

From the Application 3.5.4, we deduce that IRX . is two-sided if and

only if e, and e_, reduced modulo 2, belong to ~N = Zi, where N is the

sublattice generated by e,,e,. More precisely, in V & Z,, e, = e, and

ey =— e, for the torus while for the IKlein bottle e, — e, and e, — e, + e,.
- - 2 -

Moreover, in N & Z,, e, = pe, +rve, +e; with (u,v) Zz so that IR .X .

is mot separating in IR.X .
Then, we use the description of Z,-homology of toric variety (see

’ ’ ’ 7
e, respec-

Subsection 6.4). More precisely, if we denote by €,,€,,2,
tively the images of e,,e,, e,, e under the projection NV — ]\71, they are
the generators of a complete fan A" in V' associated with _ - Thus
each e:, gives rise to a generator z; of HI(R‘\'F,Z2) with the relations

(e, e;)xl —+ (172, e;)xz —+ (172, e;>x4 —+ (172, e;).rs = O for each 72 in the dual

lattice of N, = Z,. Therefore, all the relations are deduced for those

‘1 ;2
obtained with 772 successively equal to e , e ie., @, = x,, x, = x5 in
the case of the torus and =, = =, +«,, *; — @, in the case of the Klein
1
bottle and in both cases /7 (R‘X'F, Zz) = Z, x, @ Z, x,. In the same

way, each generator e; of the edges of the fan associated with X gives

>=

1 ”
rise to a generator y,; of /7 (IRX, Z,) with the relations 1<m, e;>y,; for

i

each 72 in M & Z_,. All these relations are deduced from those obtained

3 2 1 T—1
with 772 successively equal to e ,e ,e , i.e., vy, = yz + Z:ifs Y, Ys =
Sor—1 Sor—1
Yo + bzys + —e b,Yy;, v, + czys + e Ci¥: In the case of the
>or—t
torus and y, = y; + @Y, Ys = Yz + byys + i—e b,Ysr Ya =
o

Yy + Yo+ cCc3yz + c;v; in the case of the IKlein bottle so that in both

i—6
» 1

cases HI(R)(, Zin) = D Yy DL, Yo P D, Yg Zo, y;- Thus, the homor-

i—e6
,
phism p» maps &, to y,y; and 2, to y,¥y;- Since [e,,e;, e,] and [e,, e;, e.]

are nmot cones of AN, y,y;y, — Y,yzys — O while v,y = v,y3y, — 1 so

that y,y; and y,y; are linearly independent and pl is an injection. D

Thus, cutting IRX along IRX, we obtain an hyperbolic connected

threefold A4 that contains in its boundary two surfaces S, and S,
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homeomorphic to IRX . Choose a basepoint u, in 5, and a homeo-
morphism A2 : .S, — S5, so that R" is an isomorphism from T, (S, uy)
onto T, (S,,vy) where vy = R(uy). Then consider the homomorphisms
71 : T (S, ug) — T (M,uy) and 7, : T, (S,,ve) —> 7T, (M, uy) such
that 7,(8) = u 1(5/.L where g is a path joining z#y to vy in M. Using
Seifert-Van Kampen Theorem we deduce that if 77, and 77, are injections
then 7, (IRX, uy) is the HNIN extension of 7, (A, uy) relative to its sub-
groups 7, (7, (S, 2g)) and 7n,(7,(S,, vg)) and there is a monomorphism
T (S, ug) — T (IRX, g) (see [25]) which is impossible since 7w, (IRX, 2y)
contains no subgroup isomorphic to Zz. Therefore 77, is not an injection
and by the LLoop Theorem, there is a simple loop § in .S, homotopically
non-trivial in S, which bounds a two-dimensional disk in AZ. Let us
suppose that the homology class of & in ,(S,,Z,) is null, then § is
two-sided in S, and thus separates .S, in two bounded surfaces Sll and
S; This can not occur if S, is a torus since every simple loop that

is separating is homotopically trivial. If .S, is a Klein bottle, the Eu-

ler characteristics verify Xs, = Xs' + x5 = O. Using classification of
1 2
bounded surfaces we obtain only two possibilities xor = 1, xg = —1
1 >
Oor Xg' = Xg' = O. In the first case, S’l is a disk bounded by § which
1 >

contradicts the fact that & is homotopically non-trivial in S;,. In the
second case, .S'Il and S; are two Mdbius bands. This last case is also
impossible since § bounds already a disk in N so that IR.X would con-
tain a R, Therefore, the homology class of § is not null in 2,(S,,Z,)
while it is null in Z, (IRX,Z,). Since IRX . is two-sided, S, and IRX .
are isotopic and we obtain a contradiction with the injectivity of p.
Reciprocally, if facets of 77 are not triangular or quadrangular, An-
dreev proved (see [1], Existence Theorem p.431) that there is a right-
angled polytope II in the hyperbolic three-space fI3 which is polyhe-
drally homeomorphic to 2. This polytope is the fundamental poly-
hedron for the group I’ generated by the reflections of H3 in the one-
codimensional faces (called facets) of II. We denote by vz the reflection
in a facet F and by A, the mormal vector (reduced modulo 2) to the
facet of 77 associated with F. Since II is right-angled the order of
YV is equal to 2 if F and F' are adjacent. The set T’ of all finite
II+—= STi=a

products ~ & such that

—a Ay = O is a nmormal subgroup of I'.
i—

i=1 :

I.et us denote by F,, F,, F; three facets of TI with a common vertex.
3

Then, for each facet F there exists exactly one (a,,a,,az) in Z2 such

that A, = al)\Fl —+ az)\}_-.2 —+ az)\}__.g and ‘}/F‘yFl‘sz‘yFE is in I''. There-
4 > =

’
fore I'/IT" is generated by the cosets of VE o VE, Vi and is isomorphic

3 3

to Z2_ NMoreover, I /1—" is the disjoint union of the eight copies of
a, a, asz R 3 R R - -

IT : Ve Ve (IT) for all (a,,a,,az) in Zz_, with identification of facets
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ay a. ag = a a, +5&, as +b; ag-+bg = if A — b, Lo\ 123N
Vo, Ve, Ve, (B and Ve Y (FH i =0, + b2 + b3 .
Thus, if F and F, are two adjacent facets of IT such that A, = bl)\Fl —+
’ , ’
boAp, + b3 A, and Agpr = b Ay + b, Ap + b Ap then for each (a,,a,, as)
3 a a a 3
in Z and each 72 in -~ lﬂ/ 2‘)/ B(F mM FI), the four points of 2 /1—‘1:
2 F, ', Ty
b, by ba b’l b; b; By +b’1 5., +b; oo +b; . i
e, -yFl ‘sz ﬂ/Fa (), ‘}/Fl -yFZ‘yFa () and ‘yFI ﬂ/FZ ‘yFa () are identi-

fied. Im the same way, if F, F,, F" are three facets of Il with a common

@y @z

R ; 3 B as ’ ’
point then for each (a,,a,,az) in Z2 and 77z in ')/FI"‘/FZ")/FE(F M F M F ),

<1

<a - - 3 -
- e () with (e,,c,,c3) in Z _ are iden-

3 e
the eight points of 77 /r': - ‘y}:
>

tified. We conclude that Hs/l—" is diffeomorphic to IRX ,, and so that

IR X ;5 inherits its hyperbolic structure. D

T.et us assume now that IRX is hyperbolic. We use the toric version
of Mori’s theory introduced by Reid (see [29]) and prove that X is
minimal in the sense of this theory.

ILet us denote by Z,(NX) the additive group of algebraic one-cycles
and define the intersection pairing Div (X ) < Z,(X) — Z that maps
each (D, =z) to the intersection number D.z in Z. Then, two cycles =
and =z are said to be numerically equivalent if 7O . (=z — z,) = O for each
divisor 2. The quotient space of Z,(X) by this relation is denoted by
N, (X) and the equivalence class of a cycle =z is denoted by [=].

Furthermore, let us consider Zl+ the additive semi-group of effective
algebraic one-cycles and [Z:F] its image in NV, (X ). There is a smallest
convex cone in NV, (X ) containing [Z:r] that is denoted by NV E(X ) while
its closure in /V,(X) is denoted by N E(X). Reid proved that for a
smooth toric projective variety there exist a finite number of cones of

codimension one 7,,..., 7, such that
-+ - _ -+ -
NE(X) = INE(X) =R |orb()] + - ---+ IR [orb(r.)]

Then, each one-dimensional face L of NVE(X) is of the form L =
R+[orb(7')] and is an extremal ray, i.e, if A;, A, are two elements of
N E(X) such that their sum is in L then XA, and 2, belong to L. A
variety X is minimal in sense of Mori’s theory if for each extremal ray
L, K. L = O where I  is the canonical divisor of X .

ILLet us suppose that the toric variety X is not minimal and try to

obtain a contradiction with the geometry of the fan. As X is not
minimal, there exists a cone 7 = [e,, e,] in A such that K .[orb(+)] < O,
the extremal ray L = IR [orb(7)] is said to be negative. But 7 is the

adjacent face of two maximal cones [e,, e,,e;] and [e,,e,,e,;]. As X is
smooth, there exists a,, a, in Z such that a,e, + a,e, + e; + e, = O.
Following Reid, we denote by @ the number of coefficients a,; verifying
a, << O and by B — o« the number of coefficients a; equal to O; of course
>

o << 2. NMoreover, for a smooth toric variety K = —
- - rPEA(L) I
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so that A . [orb(7)] = —a, — a, — 2 and the hypothesis L negative
implies that o« << 2. For the different values of o, Reid proves (see [29],
Corollary 2.10) that 7 must contain a triangular or a quadrangular
face. Thus, the hyperbolicity of IRX implies that there is not any

negative extremal ray, i.e, X is minimal. To conclude it remains to

prove the following lemma.

Lemma 6.5.4. There is not any compact toric variety X of dimensionr

d, d = 2 that is minimal in sense of NMori’s theory.

Proof. L.et us consider the shed of the fan defined by

U

shed(A) = conv (0, o(1))

TgeA(d)

where conv means convex hull and o (1) is the set of primitive generators
of the edges of o. As Reid proved in [29] Proposition 4.3, for a cone
7 in AN(d — 1), I .lorb(7)] << O (respectively, => O,= 0) if and only if
the shed is strictly convex (respectively, concave, flat) locally around
conv (0O, 7(1)). Here, X is compact so that A is complete and there must
be at least one 7 such that I\ .[orb(7)] << O which contradicts the fact

that X is minimal. In fact, if the shed is everywhere concave or flat,

M*

we define a convex set C by C = 3
i—

N H, where H, is the closed half-
space that does not contain O and is limited by the hyperplan spanned
by the intersection of a cone o; in A(d) with the shed. Then, C is a
non-empty convex set that does nmnot contain O with a boundary that
surrounds O. Now, it remains to consider a straight line through O that

intersects 77, in A, and H,; in A;. The segment [/{,, F{,] is contained in

C by convexity and contains O which is impossible. D

Finally, we construct a toric threefold X, such that IRX is homeo-
morphic to a hyperbolic manifold. First, by an integral approximation,
we obtain a polytope, with the same combinatorial type as an icosahe-
dron, such that its vertices have coordinates: (0,9,6), (6,0,10), (—6, 0,
9),(10,6,0),(9, —6,0), (0, —10,6) and their opposites. By duality, we
deduce the existence of an integral dodecahedron 7 whose facets are

given by:

the equation 3z, + 5x; = —26505, the vertices A : (465, —2170,
—5580), B : (—3135, —3610, —3420),C : (—5580,465, —1953), 1 : (
—3610,3420, —3135), E : (465,1953, —5580) and the primitive normal

vector 7z, : (3,0,5);
the equation 3z, + 2@; = —17670, the vertices A, B, & : (—1953,
— 5580, —465), I : (3534, —3534, —3534),7 : (2170, —5580, —465) and

the primitive normal vector 7, : (0,3, 2);
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the equation —2x, + 3@y = — 17670, the vertices A, E, H, F : (5580,
—465, —2710), J : (3420,3135, —3610) and the nmormal primitive vector
725 : (—2,0,3);

the equation —5x, + 3x; = —26505, the vertices D, £, J, II, &’ where
I,, J, are the opposites of 7, J and the normal primitive vector n, =
(0, —5,3);

the equation 32, — 2@, =— — 17670, the vertices C, D, F,, I,, H' where
F’, H, are the opposites of F, // and the normal primitive vector 7ng =
(3, —2,0);

the equation 5z, +3x, — —26505, the vertices B, C, FI, <, 7' and the
normal primitive vector ng = (5,3, 0);

and their six opposite facets. It remains to verify that each determi-
nant of the normal primitive vectors (reduced modulo 2) to the facets
that meet at a vertex of 77 are equal to 1 to conlude, by means of

TLemma 6.5.2, that IR.X is homeomorphic to a hyperbolic threefold. D
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7. NOTATIONS
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the cone 7 is a face of the cone o . ... .. ... ... ... .. ........
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group of automorphisms of /V preserving 2N ... ... ... ...
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multiplicative part of a toric real structure c. . . ... ... _.._._.
group of 7 -invariant Cartier divisors onn X .. _ ... __._.__..._.
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irreductible Z'-invariant Weil divisor associated with po .. ..
dihedral group of order 27 .. . . . .. ...t
T -invariant Cartier divisor associated with a polytope 7 ..
group of Z -invariant Weil divisors onn X . ... ... ...
fan and its SUPPOTt . . . . . . oL ittt e e e e e e e e e
fan associated with a polytope 72 . . . . .. . ...
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number of cones of dimension A2 in AN\ ... ... ... ... . ...
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set of points of a face F invariant by s ... ... ...
rational ruled toric surface ... ... ... ... ... o 0.
set of k-dimensional faces of a polytope 772 . .. . ... ... __.....
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strongly convex rational polyhedral cone and its dual cone
orthogonal of a cone o . . ... . .. e
cone associated with a face F . . . . .. ..
algebraic torus of dimension o . .. ... ... ..o
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complementary of the hypersurface of equation 2 = o0 .. ..
X equipped with its complex conjugate charts .. ... .. .....
product of w:P if DO = >
product of the x, such that p & o(1l) . ...
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