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Réciprocité des sommes de Gauss et
invariants de variétés de dimension trois

Résumé en francais

Parmi les invariants topologiques des variétés closes de dimension trois,
ceux issus des théories topologiques quantiques des champs occupent une
place particuliere dont la nature géométrique et les liens avec les invariants
classiques demeurent peu compris.

Soit M une variété close, orientée et connexe, de dimension trois. Dans
ce travail, nous considérons un invariant topologique 7(M;G,q) € C de M
dérivé d’une forme quadratique ¢ sur un groupe abélien fini (G, construit a
partir d’une présentation par chirurgie de M ou d’une variété compacte X
de dimension 4 bordée par M. Une version de cet invariant apparait dans le
contexte des catégories modulaires et de théorie topologique quantique des
champs (cf. [Tul]). De plus, cet invariant généralise celui introduit par H.

Murakami, T. Ohtsuki and M. Okada dans [MOO)].

Notre résultat principal consiste en une formule explicite pour 7(M; G, q),
qui se calcule dans des termes intrinseques de la variété M qui sont indépen-
dants de la chirurgie ou de la variété X dont M est le bord, a savoir le premier
nombre de Betti de M, le sous-groupe de torsion de Hy(M;Z) et la forme
d’enlacement de M.

L’outil fondamental est une nouvelle formule de réciprocité pour les
sommes de Gauss qui généralise plusieurs formules classiques dues a Cauchy,
Kronecker et Siegel. Cette formule nous permet également de généraliser
Uinvariant 7(M; (7, q) aux variétés de dimension 4n — 1.

Ajoutant dans M un entrelacs L = L3 U ... U L, orienté et équipé
d’un champ de vecteurs normal non singulier, nous définissons un invariant
(M, L;G,q,¢) € C de L, ou c est un élement de G". A l'aide d’une généra-
lisation de notre formule de réciprocité, nous obtenons aussi une formule ex-
plicite pour 7(M, L; G, g, ¢) en termes d’invariants topologiques classiques de
L et M, notamment le premier nombre de Betti de M, la forme d’enlacement
de M, les nombres d’enlacement et d’auto-enlacement de L.
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Introduction

The systematic study of 3-manifolds has a one-century long history, begin-
ning in the late 19th century with H. Poincaré. While closed 2-manifolds
(surfaces) were classified in the end of the 19th century (or at least, their
classification was known and was to be rigourously achieved as algebraic
topology appeared), the classification of 3-manifolds has remained much less
developped. Two main “schools” have emerged during the 20th century
and have built specific tools to deal with topological problems pertaining
to 3-manifolds. One, originally related to Seifert and Kneser’s approach, is
centered on the geometric structures which 3-manifolds can be equipped of.
In this direction, W. Thurston’s work has been a major source of inspiration.
The other school, developping Poincaré’s approach, aims at manufacturing
topological invariants of 3-manifolds. The present thesis methodologically
belongs to the second one.

In the last decade, there has been a revolution in the theory of invari-
ants of 3-manifolds. The starting point of this revolution was the discovery
by V. Jones in 1984 of a new polynomial invariant of knots and links, after
which von Neumann algebras, Lie algebras and physics litterally broke into
the world of knots and 3-manifolds. In 1988, E. Witten invented the notion
of a Topological Quantum Field Theory (TQFT) and outlined an inspiring
picture (though based on path integrals which are not yet justified math-
ematically) of TQFTs in dimension 3. Shortly afterwards, N. Reshetikhin
and V. Turaev developped a mathematical construction of a 3-dimensional
TQFT based on quantum groups. The work of these authors have fostered
an intensive development of research in this area. Thus TQFTs have become
an important and intriguing source of topological invariants of 3-manifolds.
Even though much attention has been paid to the subject, the nature (es-
pecially geometric) of these invariants and their relation to classical invari-

13



14 INTRODUCTION

ants, like the fundamental and homological groups, are not well understood.
Furthermore, it has been conjectured [Tul] that a deeper study of TQFTs
involves number-theoretic considerations.

Three authors, H. Murakami, T. Ohtsuki and M. Okada, have introduced
in [MOO] an invariant Zy of 3-manifolds derived from surgery and linking
matrices. Their invariant, which is parametrized by an integer N and an
N-th root of unity for odd N (resp. 2N-th root of unity for even N), while
less powerful than the invariants that can be produced from quantum groups,
had the same characteristic properties: multiplicativity on connected sums
of 3-manifolds, complex conjugation on a reversal of orientation. It is known
that the invariant Zy is actually part of an abelian TQFT: it can be built
from a commutative and co-commutative Hopf algebra [MOO, §7] or a 3-
cocycle on an abelian group (an approach developped in [MPR]). On the
other hand, V. Turaev has built a general formalism for TQFTs [Tul], the
theory of modular categories. The invariant Zy has a nice interpretation
in terms of a modular category constructed from a symmetric bilinear form
on an abelian group. Furthermore, this category yields one of the very few
concrete examples of TQFT besides those based on quantum groups.

We introduce a C-valued topological invariant 7(M; G, q) of a closed ori-
ented 3-manifold M, depending on a quadratic form ¢ : G — Q/Z on a
finite abelian group (. This invariant is the central object of this thesis.
It generalizes the invariant Zy in the sense that for G cyclic and ¢ homo-
geneous, 7(M; (G, q) and Zy essentially coincides (see §2.1 for their detailed
relationship). One version of the invariant 7(M; G, q) is directly related to
the modular category mentioned above. On the algebraic level, 7(M; G, q)
is defined(") as the product of two Gauss sums. Since the deeper properties
of 7(M; @, q) are based on a new reciprocity formula for Gauss sums, the
thesis is divided into two parts: the first part (Chapter 1) is algebraic and
is devoted to Gauss sums, while the second part (Chapters 2, 3 and 4) is
topological and deals with the invariant 7(M; G, ¢) (and its generalizations)
per se.

1See formula (0.1) below.
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Reciprocity formulas for Gauss sums have a long history. A classical
formula, dating back to the 19-th century, states the following:
|b|—% Z ewi%zQ-l—wiaz — e%i(sign(ab)—ab) |a|—% Z 6—7”%1-24_7”'627
T€Z[bZ z€Z[aZ

?

where a and b are non-zero integers. Early proofs of this formula (due to
Cauchy and Kronecker) are analytical. Note that the Gauss sum on the left
hand side is the same as the Gauss sum involved on the right hand side with
the numbers a and b exchanged. Whence the name of reciprocity formula.

We state another example of reciprocity formula due to A. Krazer [Kr],
this one involving multi-variable Gauss sums. Let A be a symmetric m x m
matrix of integers invertible over the rationals and let r (resp. o(A)) be the
rank (resp. the signature) of A. Let d be a nonzero integer and assume that
either d or A is even (i.e., its diagonal entries are even). Then

ar e MEeT e A7y
€(Z/dZ)m |det A|Z  yezm/azm

The formula relates two Gauss sums on finite abelian groups (Z/dZ)™
and Z"™ [AZ™ respectively. The left hand side features a matrix A of integers
while the right hand side involves the inverse matrix A~ (with rational
coefficients).

We establish a reciprocity formula which generalizes both formulas above.
This formula is the essential tool of this thesis. The main ingredient is a well-
known correspondence, discussed in §1.3, from symmetric bilinear forms on
lattices equipped with Wu classes to quadratic forms on finite abelian groups.
Let f: V xV — Z be a symmetric bilinear form on a lattice V', assumed to be
equipped with a Wu class v. The correspondence associates to f a quadratic
form ¢f, : Gy — Q/Z on the finite abelian group Gy = Tors cokerad f,
where ad f : V' — V* denotes the homomorphism adjoint to f. Denote by
o(f) the signature of f. Given a quadratic form ¢ : G — Q/Z on a finite
abelian group G with associated bilinear form b,, we define a normalized
Gauss sum v((G, q) by:

(G, q) = |kerad b, |77 |G|72 3 e2miale),
z€G

We choose this normalization so that the absolute value of v(G, ¢) is always
1 or 0 (see lemma 1.8).
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Theorem A (Reciprocity formula). Let f: VXV = Z andg: WxW —
Z be two symmetric bilinear forms on lattices V' and W respectively and
equipped with Wu classes v and w respectively. Then:

WGy & Wby @ g) = 4 OO0l S TG 6 T 6,.).

Note that the formula is symmetricin f and g. Among the consequences,
besides the two classical formulas mentioned above, one deduces a concise
formula for the right hand side if ¢ is unimodular. The well-known fact that
an even unimodular form has signature divisible by 8 is also easily recovered.
The reciprocity formula discussed in further details in §1.4 (Theorem 1.1).

Let ¢ : G — Q/Z be a quadratic form on a finite abelian group G. With
Chapter 2, devoted to the study of the topological invariant 7(M; G, q), the
topology comes into play. The definition (?) of 7(M; &, ¢) involves a compact
simply-connected oriented 4-manifold X bounded by M and its intersection
form Bx : Hy(X;Z) x Hy(X;Z) — Z (see §2.1 for details):

7‘7(]3) _kX) (g T
T(M;G.q)=7(G.q) IG5 3 SR (o)
z€GRH>(X;Z)

We begin by showing that the definition is independent of X (Theorem
2.1). Then we compute explicitly the absolute value of 7(M; G, q) (Theorem
2.2 in §2.1):

Theorem B. If 7(M; G, q) £ 0, then |7(M; G, q)| = |[H'(M;G)|.

As a consequence of Theorem B and elementary properties of Gauss sums,
we mention the following expression for 7(M; G, q):

+(M; G, q) = (G, q) PG @ Hy(X;Z),q@ Bx)|[H'(M; )5, (0.2)

We show that the computation of the argument of 7(M; G, q) is reduced to
the structure of certain Witt monoids introduced in §1.6 (Theorem 2.4). We

?In the definition and presentation to follow, we have assumed ¢ to be non-degenerate
to simplify the discussion.
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complete the study of properties of 7(M; G, g) by obtaining a necessary and
sufficient condition for 7(M; (G, q) to vanish (Theorem 2.5). This condition
can be expressed in terms of the cup product and involves 2-cyclic summands
of Tors H*(M; Z).

A look at the definition of 7(M; G, q) indicates that 7(M; G, q) is defined
extrinsically, that is, in terms of the 4-manifold X bounded by M and not
in terms of the 3-manifold M itself. Our main result in Chapter 2 consists
in an explicit formula for 7(M; G, q) solely in terms of (classical invariants
of) M. The crucial tool is the reciprocity formula for Gauss sums (Theorem
A above). Denote by T the torsion subgroup of Hi(M;Z). As a conse-
quence of Poincaré duality, T' carries a non-degenerate symmetric bilinear

form Ly : T x T — Q/Z, called the linking form of M.

Theorem C. Let f:V x V — Z be a symmetric bilinear form on a lattice
V, with @ Wu class v € V such that (Gy,¢5,) = (G,q). Let Q : T — Q/Z

be a quadratic form over Ly;. Then

H(M;Gq) =4(1,Q) "y (Ve T, foQ)H (M;G)5.  (0.3)

It is a known result (see lemma 1.4) that there always exists a bilinear
form f and a Wu class for f as in Theorem C. As a consequence, the right
hand side of the formula above does not depend on the particular choice of
Q.

Note, in contrast to the definition of 7(M; G, q), that the topological
ingredients of 7(M; (G, q) are now apparent (cf. Theorem 2.1): the first ho-
mology group Hi(M;Z) and the linking form Ly of M. In this form, a
number of questions about 7(M; G, ) can be settled. For instance, the ex-
pression for 7(M; G, q) takes a simple form if '@ G = 0 or T' = 0 (homology
spheres). Furthermore, Theorem C shows that the definition of 7(M; G, q)
as a topological invariant is not specific to dimension 3, since closed, ori-
ented (4n — 1)-manifolds also have a symmetric linking form on the torsion
subgroup of Hy,_1(M;Z). This is discussed in further details in §2.1.

It is instructive to observe the symmetry between the data used in for-
mula (0.2) for 7(M; G, ¢) and in the formula (0.3) above. This is discussed

in §2.1 and in more details in the appendix.

In Chapter 3, we consider an oriented framed knot K in a closed, oriented,
connected 3-manifold M and define an invariant 7(M, K; G, ¢, ¢) € C, where
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q : G = QJ/Z is a quadratic form on a finite abelian group G and ¢ an
element of G. It is a generalization of the previous invariant in the sense
that 7(M, K;G,q,0) = 7(M; G, q). The definition of 7(M, K; G, g, ¢) is very
similar to that of 7(M; G, ¢) (in that it is a product of two Gauss sums) and
requires a surgery presentation for (M, K'). Assume that L = L;U...UL,, is
an m-component surgery link in S® for M and that L,,4; is a knot in S®\ L
which yields K (up to ambient isotopy) after the surgery on L. Let A be the
linking matrix for L U L,,;; in S®. Then

(M, K;Gyq,0) =7(Grg) GIE Y A,

An alternative and more general definition is also provided in §3.2.1, using
a compact simply-connected 4-manifold bounded by M and a relative 2-
cycle in (M, X). Since these definition are extrinsic, we first prove (Theorem
3.1) that the definition of 7(M, K; G, q,c) only depends on the topology of
(M, K). Then we show that the absolute value of 7(M, K; G, ¢, c) does not
depend on K nor ¢ and is the same as that of 7(M; G, g) (Theorem 3.2).

Our main result in this chapter (Theorem 3.4) consists in an intrinsic for-
mula for 7(M, K; G, q,c) in terms of (M, K), independent from the surgery
presentation (or the 4-manifold bounded by M). We shall not attempt to
state it explicitly here, but describe some of its features, referring to §3.1.3
for further details. The result makes use of the correspondence already men-
tioned above, from symmetric bilinear forms on lattices to quadratic forms
on finite abelian groups. The particular case ¢ = 0 yields formula (0.3).
One interesting feature of the explicit formula for 7(M, K; G, g, ¢) is that it
requires a homological decomposition for the knot K. Here we define an n-
decomposition for K as a pair (A, u) € Hi(M;Z) x Tors Hy(M;Z) such that
[K] = nA+ p. Clearly, K has an n-decomposition if and only if the image of
[K] by the projection Hy(M;Z) — H(M;Z)/Tors Hi(M;Z) is divisible by
n. Assuming K to be n-decomposable, we define a relative framing number
for K, which appears in the explicit formula. We recall that the classical
framing number Fr(K) of a knot K C M is a topological invariant defined
if [K] =0 in Hi(M;Q). Via n-decompositions of K, we generalize it to any
knot K C M (Theorem 3.3). From the explicit formula for 7(M, K; G, ¢, ¢),
we easily read the topological ingredients which 7(M, K; G, ¢, c) is made of,
namely: the first homology group H;(M;Z), the linking form of M and the
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(generalized) framing number of K in M (Corollary 3.4.1).

Chapter 4 is devoted to the construction and study of a topological invari-
ant of links in 3-manifolds, which is a natural generalization of 7(M, K; G, q, ¢).
Given an oriented, framed link L in a closed, oriented, connected 3-manifold
M, we define an invariant 7(M, L; G, q,c) € C where ¢ = (¢1,...,¢,) is now
an element in G™, where n is the number of components of L. This definition
requires a surgery presentation of (M, L). We also give a more general defini-
tion in terms of a compact simply-connected 4-manifold bounded by M and
certain additional data (see §4.2.1). We show that 7(M, L; G, q,c) is well-
defined and compute its absolute value (Theorems 4.1 and 4.2 respectively).
The main result (Theorem 4.3) is an explicit formula for 7(M, L; G, g, ¢) in
terms of M and L, independent of the surgery. It also relies on the correspon-
dence mentioned above from forms on lattices to quadratic forms on finite
abelian groups. We describe it here as follows. Let f: V xV — Z be a non-
degenerate symmetric bilinear form on a lattice V', with a Wu class v € V
such that (Gy, ¢5.) = (G, q). Let &,.. ., &, be elements in V* such that their
image under the projection V* — Gy = cokerad f are ¢y, ..., ¢, respectively.
Recall that we denote by T' the finite abelian group Tors Hy(M; Z).

Theorem D. Assume that the components Ly, ..., L, of L represent torsion
elements in Hi(M;Z) (that is, [L;] € T foralll <j<mn). LetQ : T — Q/Z
be a quadratic form over Ly;. Then
T(M,L;G,q,¢)
[H'(M; G)|*

Wf(u,v)ewi(éf,v QAL)(E1seén) 7| -3 o

Here Ay, denotes the linking matrix of L in M, @7, : V?®@ Q — Q is a
quadratic form depending only on f and v, s is the rank of the lattice V
and B is an (s +n) x (s + n) matrix of integers depending only on f, v and
E1,...,&,. See §4.1.2 for the definitions and further details.

It is not hard to deduce directly from Theorem D that 7(M, L; G, q,c)
is determined by the first Betti number of M, the linking form £j3; and the
linking matrix of L in M (Corollay 4.3.1).

In the appendix, we compare the definition (0.2) and the explicit formula
(0.3) for 7(M; G, q). In a sense which we make precise, the two expressions
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(0.2) and (0.3) are “dual” one to another. The invariant 7(M; G, g) can be
thought of as a bilinear pairing on closed, oriented, connected 3-manifolds.
There is a analogous statement for the invariant 7(M, L; (G, ¢, ¢), which can
be seen as a bilinear pairing on framed, oriented links in 3-manifolds.



Chapter 1

Reciprocity for (zauss sums

We establish in this chapter a reciprocity formula between Gauss sums (The-
orem 1.1) which is based upon a classical correspondence from integral forms
to quadratic forms on finite abelian groups (§1.4). The proof is given in §1.7;
it makes use of Witt monoids, which are introduced in §1.6. The reciprocity
formula and its refinement in §1.8 are the main algebraic ingredients in our
study of the topological invariants of links and 3-manifolds (Chapters 2, 3
and 4).

1.1 Brief review on quadratic forms

This section is mainly intended to fix definitions and notations (some of them
are not quite standard in the litterature).

Let G be a finite abelian group. A quadratic form q : G — Q/Z is a
function such that the map defined by b,(z,y) = ¢(z + y) — ¢(z) — ¢(y) is a
(symmetric) bilinear form on G, called the bilinear form associated to q. We
say that ¢ : G — Q/Z is quadratic overa bilinear form b : GxG — Q/Z if ¢ is
a quadratic form and b, = b. We say that ¢ is homogeneous if g(nz) = n*q(z)
forall n € Z and « € G. By adb, : G — Hom(G, Q/Z), we denote the ho-
momorphism adjoint to b,. We say that ¢ is non-degenerate if the associated
bilinear form b, is non-degenerate, i.e., kerad b, = 0. A symmetric bilinear
form is said non-singular if its adjoint homomorphism is bijective. In the con-
text of finite abelian groups, the notions of non-degenerate and non-singular
are equivalent.

21



22 CHAPTER 1. RECIPROCITY FOR GAUSS SUMS

A subgroup N of G is said to be orthogonal to a subgroup N’ of G with
respect to a symmetric bilinear form b if 5(N, N') = 0. Orthogonality for
a quadratic form ¢ is defined with respect to the associated bilinear form
b,. We say that G is the orthogonal sum with respect to b of two sub-
groups N and N’ if G is the direct sum of N and N’ and b(N,N') = 0.
In this case, N and N’ are called orthogonal summands of A. We write
(G,b) = (N,b|nyxn) & (N',b|nixnr). There is a similar notation for quadratic
forms. We say that a (quadratic or symmetric bilinear) form on G is ir-
reductble if G has no nontrivial orthogonal summands. A bilinear form
b: G x G — QJZ gives rise to a quadratic form ¢, : G — Q/Z by
gp(x) = b(x,x). The following relations hold between the forms ¢, and b,:

@, () = 2¢(x) and by, (z,y) = b(z,y) + by, z).

Two symmetric bilinear forms b : G x G = Q/Z and b’ : ' x G' — Q/Z
(resp. two quadratic forms ¢ : G — Q/Z and ¢' : G' — Q/Z) are isomorphic
if there exists a group isomorphism f : G — G’ such that ¥'(f(x), f(y)) =
b(x,y) for all z,y € G (resp. such that ¢'(f(z)) = g(x) for all z € G).

We also recall the notion of hyperbolic form. Given a finite abelian group
G, we define its dual by G* = Hom(G,Q/Z). We say that a symmetric
bilinear form b : G x G — Q/Z is hyperbolic if it is isomorphic to by :
H x H— Q/Z with H= M @ M* where M is a finite abelian group and

bu((z,a),(y, B)) = aly) + B(x), =,y e M, a,f€ M".

We say that a quadratic form ¢ : G — Q/Z is hyperbolic if it is isomorphic
toqu : H — Q/Z with H = M & M* where M is a finite abelian group and

qgu(z,a) =a(z), zeM, aec M.

Note that if a quadratic form ¢ is hyperbolic, then its associated form is also
hyperbolic.

A lattice is a finitely generated free abelian group. There are similar no-
tions of quadratic form, non-degenerate, forms, isomorphic forms, hyperbolic
forms, and so on, in the context of lattices (instead of finite abelian groups).
In the litterature, a non-singular form on a lattice is called unimodular. Uni-
modular implies non-degenerate but the converse is false. Given a quadratic
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form ¢ : G — Q/Z and a symmetric bilinear form f : V x V — Z on a
lattice V, there is a unique quadratic form ¢® f: G® V — Q/Z such that
L (¢@ fle®@y)=q(z)f(y,y) for all z € G and y € V.

2. The bilinear form b,gs associated to ¢ @ f is b, @ f.

It is easily checked that

(¢® f) ( > %‘@‘yj) = > q(@)flyi v+ Do bolag, xr) flyis yr),

1<i<n 1<j<n 1<j<k<n
(1.1)

where 37, i, 2, @ y; € G ®V, is the unique solution. Similarly, given
two symmetric bilinear forms f : V XV — Z and g : W x W — Z on
lattices V and W respectively, one defines a symmetric bilinear form f ® g :

(Ve W) x (VeW)— Z by the formula

(f@9)(r1 @y, 22 @Yy2) = flz1,22)9(y1,y2), 1,22 €V, y1,y2 € W. (1.2)

In general, the tensor product of non-singular forms gives rise to pairings
of Witt groups (see [Sc|[La]). However, the product of a non-degenerate
quadratic form and a non-degenerate symmetric bilinear form need not be
non-degenerate. (For example, take ¢ : Z/2Z — Q/Z,1 — § and the sym-
metric bilinear form on Z which maps (1, 1) to 2.)

We now introduce notations for some particular bilinear pairings, which
will be used in the sequel. For a nonzero integer m, we denote by (m) the
unique bilinear form on Z sending (1, 1) to m. Let a and b be coprime integers
such that 0 < |a| < b. We denote by (§) the unique bilinear form on Z/bZ
sending (1,1) to ¢ € Q/Z. We denote by EY (1 < k) and Ef (2 < k) the
bilinear forms on Z/2*Z @ Z /2*Z determined by the matrices

0 2—k 21—k 2—k
o=k and 9—k  ol—k

respectively. Notice that all these forms are non-degenerate and Ef is hy-
perbolic. These notations agree with those of [KK] and [Mul].

1.2 Classical reciprocity formulas

A classical formula, dating back to the 19-th century, states the following:
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Lemma 1.1 (Cauchy, Kronecker) Let a and b be two nonzero integers.

|b|—% Z ewi%z2+7riaz — e%(sign(ab)—ab)|a|—% Z e—Wigq;'Q-}—Wibe. (13)
T€Z/VZ z€Z[aZ

Early proofs of this formula (or special cases of it) are due to Cauchy,
Dirichlet and Kronecker and are analytical. One of them consists in study-
ing the limiting case of a transformation formula for the theta-function
93(‘“7 7_) — ZnEZ e7rin27'—|—27riu.

Observe that the Gauss sum on the left hand side of (1.3) is the same as
the Gauss sum involved in the right hand side of (1.3) with the numbers a
and b exchanged. Formula (1.3) is called a reciprocity formula.

Another reciprocity formula appears as an important step of H. Braun’s
classification of quadratic forms in [Br]. We formulate it as follows. Let A
be a symmetric m x m matrix of integers invertible over Q and let r (resp.
o(A)) be the rank (resp. the signature) of A. Let d be a nonzero integer and
assume that either d or A is even (i.e., its diagonal entries are even).

Lemma 1.2

m mizt Az d Bl %U(A) St A—
|d|~ = Z GTA = 7| =€ T e~ M AT Y (1.4)
2€(Z]dZ)m |det A|2 yezm/jazm

This formula is attributed by H. Braun to Krazer [Kr|. It also appears
in the context of modular transformations in C. Siegel’s work [Si] and, more
recently, is discussed in [MPR]. Krazer’s proof is analytical and also involves
the limiting case of a transformation formula for theta-functions. Recently,
R. Dabrowski [Dab] found a proof of (1.4) using p-adic numbers, in which
analysis is kept to a minimum.

We observe that formula (1.4) relates two Gauss sums on finite abelian
groups (Z/dZ)™ and Z™[AZ™ respectively. The left hand side of (1.4) fea-
tures a matrix A of integers while the right hand side of (1.4) involves the
inverse matrix A™! (with rational coefficients). Also, note that (1.3) is not a
particular case of (1.4).
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The goal of this chapter is to generalize both formulas (1.3) and (1.4). The
formula which we establish will remove Krazer’s hypothesis of “evenness” and
involves two quadratic forms on finite abelian groups. It can be interpreted
by means of a correspondence between symmetric bilinear forms on lattices
and quadratic forms on finite abelian groups, which we explain now.

1.3 The correspondences ¢ and L

Let V be a lattice. By Vg, we denote the Q-vector space V & Q, which
naturally contains V. Let f:V XV — Z be a symmetric bilinear form; we
set fq : Vo X Vo — Q to be the rational extension of f. An (integral) Wu
class v for f is an element v € V such that f(z,2) — f(x,v) € 2Z, for all
z € V. In particular, we say that f is even if 0 is a Wu class for f. Set
Gy = Tors (V*/ad f(V)) and assume that f is equipped with a Wu class
v. The pair (f,v) gives rise to a quadratic form ¢, : Gy — Q/Z by the
formula:

brale +ad [(V)) = S(fald,3) — fa(t,0) mod 1, (1)

where 7 is any element of (ad fq)™*(x). (Note that, since x 4+ ad f(V) is a
torsion element, (ad fq)™'(y) # 0.)

Observe that if f is unimodular (i.e., det f = +1), then ¢, = 0. Clearly,
(G_f,_s0) = (Gf,—¢s,). The symmetric bilinear form Ly : Gy x Gy —
Q/Z associated to ¢y, does not depend on v and is given by the formula

Li(a+ad f(V),y+ad f(V)) = fo(@§) mod 1, (1.6)

where & € (ad fq)™'(z) and § € (ad fq) '(y). It follows from definitions
that (G_s, L_y) = (Gy,—Ly). It is also clear that the constructions f — Ly
and (f,v) — ¢y, preserve direct sums and isomorphisms. In general, they
do not preserve the tensor product.

The importance of these constructions in algebraic topology lies in the
following fact. Let By : Hy(X;Z) x Hy(X;Z) — Z be the intersection form
of a compact simply connected oriented 4-manifold, let M = 9X and let
Ly = Tors Hi(M;Z) x Tors Hi(M;Z) — Q/Z be the linking form of M.
Then

(Ggy,—Lpy) = (Tors H(M;Z),Lr). (1.7)
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Furthermore, even though we will not use it, we recall the following fact: M
always admits a spin structure (see [Ki2] for example) and it is known (see
[Rok]) that this spin structure can be extended to the 4-manifold X; in this
case, Bx is even (so 0 is automatically a Wu class for Bx). Then the form
¢Bx.0 defined by (1.5) is a quadratic form over L, = —Ly and depends
only on the spin structure on M [Tu2].

At this point, we mention an elementary result [BM, Theorem 2.4] which
describes more precisely the relation between integral Wu classes for a sym-
metric bilinear form f and homogeneous quadratic forms over L.

Lemma 1.3 The map v — ¢, is a bijective correspondence between Wu
classes v (for f) modulo 2V and homogeneous quadratic forms over Ly.

It is clear from (1.5) that ¢y, is a homogeneous quadratic form over L
and depends on v only modulo 2V. What the lemma 1.3 really says is that
all homogeneous quadratic forms over L; are obtained this way.

In order to state the main result of this section, it is convenient to intro-
duce the following four monoids (for direct sum):

- My is the monoid of isomorphism classes of pairs (V, f) where f :
V xV — Z is a symmetric bilinear form on a lattice V.

- MZ" denote the monoid whose elements are isomorphism classes of
triples (a lattice, a symmetric bilinear form on that lattice, a Wu class
considered modulo 2V for that form).

- M denotes the monoid of isomorphism classes of pairs (G,b) where
b: G x G — QJZ is a non-degenerate symmetric bilinear form on a
finite abelian group G.

- ML denotes the monoid of isomorphism classes of pairs (G, g) where
q : G = QJ/Z is a non-degenerate homogeneous quadratic form on a
finite abelian group G.

Thus the construction we have just described provides us with two well-
defined homomorphisms:

Mz £>9ﬁ7(v7f) = (Gf7Lf)
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and MY B M, (V, f,0) = (G, dra)-

In Mz, we consider the equivalence relation, denoted by ~, generated by

the following operation: (V, f) — (V& Z, f & (£1)).

In 917", we define the equivalence relation, also denoted by ~, generated

by the following operation: (V, f,v)— (V& Z,f & (£1),v$ 1).

Lemma 1.4 (Main result on correspondences L and ¢)
1. The homomorphism Mz — M, (V, f) — (Gy, Ly) is surjective. For
(V, ), (V' f') € Mgz, the following two conditions are equivalent:

(1'1) (V7 f) ~ (V/7f/);
(1.2) kerad f = kerad f" and (Gy, L) = (G, Lyr).

2. The homomorphism My — M, (V, f,v) — (Gy,¢5.) is surjective. For
V., f,v), (V' f',0") € MG, the following two conditions are equivalent:

(
(2.1) (V, f,v) ~ (V' f',0");
(2.2) kerad f = kerad f" and (G, ¢5.) = (Gprypprar).

Proof. Denote by 9MY the monoid of isomorphism classes of pairs (V, f)
where f: V xV — Z is an even symmetric bilinear form. The surjectivity of
the maps Mz — M, f — L; and MY — M, (V, f) — (G, ds0) was proved
by C.T.C. Wall [Wa, Theorem 6]. (See also [Du, Theorems 4.4 and 4.7] and
[La] for generalizations.) The surjectivity of MMy* — MO, (f,w) — ¢y is
a direct consequence of the surjectivity of My — MO, (V, f) — (Gy, ¢;0)
since My, C MY". The implications (1.1) = (1.2) and (2.1) = (2.2) are
straightforward. The converse (1.2) = (1.1) can be found in [Du, Corollary
4.2], where it is assumed that f and ¢ are non-degenerate, but the argu-
ment given applies in our case as well: simply decompose f (resp. g) as a
direct sum of a 0-form and of a non-degenerate form on a summand of the
lattice V' (resp. of the lattice V’). For the implication (2.2) = (2.1), note
that, since Ly is the bilinear form associated to ¢y, there is an isomorphism
(G, Ly) = (G, L), Applying part 1, we obtain that (V, f) ~ (V' f'). We
can assume that & = rank V' — rank V > 0. Thus there exist vg € V and k
integers vy, ..., v such that v’ = vg @ @levj. It follows from the definitions
of ¢, and Wu class that vg = v mod 2V and v; =1 mod 2 for 5 =1,... k.
This is the desired result. &
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1.4 The reciprocity formula

Let ¢ : G — Q/Z be a quadratic form on a finite abelian group G. We define
the Gauss sum associated to a quadratic form ¢ by

(@G, q) = | kerad b,|7V/*|G| Y/ > e?mial@), (1.8)

reG

Our choice of normalization is motivated by lemma 1.8 (stated in the next
section). Clearly, Gauss sums are multiplicative on direct sums of quadratic
forms. It is a well-known result [Sc| that v(G, q) € usU{0}, where us denotes
the multiplicative group of 8-th roots of unity.

We are now ready to state our reciprocity formula.

Theorem 1.1 (Reciprocity formula) Let f: V XV — Z and g : W X
W — Z be symmetric bilinear forms on lattices V and W respectively,
equipped with Wu classes v € V and w € W respectively. Let o(f) denote
the signature of f. Then

V(G @W, by, @ g) = 4 CDTOICDY (VG Gy f @ Gy0).  (1.9)
Bar denotes complex conjugation. The proof is given in §1.7.

Note the symmetry in f and ¢ in (1.9). We now derive and discuss par-
ticular cases of (1.9).

1. (The even case) When one of the Wu classes is 0, the formula (1.9)
simplifies. If ¢ is even, we denote %qg the quadratic form W — Z.z —

1g(z, ).

Corollary 1.1.1 (Even case) [f g is even then

WGy @W, Ly @ 3g5) = € 17OV @ Gy, T © y0)- (1.10)
Proof. Apply (1.9). It follows from definitions that ¢;, ® g = Ly @ 1q,. ¢

2. (The unimodular case) When one of the forms is unimodular, one of the
Gauss sums is trivial and the reciprocity formula simplifies:
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Corollary 1.1.2 (Unimodular case) If g is unimodular, then

G @ W, s, @ g) = €T WN7)=Fv)g(ww))

3. (Van der Blij’s formula [Bl]) We apply (1.9) with ¢ : Z x Z — Z,
g(1,1) = 1. We obtain:

WGy, bp) = X (7D=100), (1.11)

This is the classical Van der Blij’s formula, which in particular, shows
explicitly that o(f) — f(v,v) modulo 8 is an invariant of (G, ¢;,). We also
recover the well-known fact that the signature of an even unimodular bilinear
form is divisible by 8.

4. (Krazer’s formula) We treat the case when A is even first. We choose
g=Aand f:Z xZ — Z,(x,y) = dry and apply (1.10). This yields (1.4).
The case d is even in (1.4) is treated similarly by exchanging the roles of f
and ¢ in formula (1.10).

(Cauchy-Kronecker) If both f and g are 1-dimensional, we obtain formula

5.
(1.3).

1.5 Elementary properties of Gauss sums

We recall elementary facts about Gauss (and Gauss-related) sums. First, we
mention the simplest cases:

Lemma 1.5 Let f : G — Q/Z be a homomorphism where G is a finite

group. Then
Z 627rif(z) — { |G| fo 7£ 0:

0 otherwise.
zeG

An application of lemma 1.5 leads to
Lemma 1.6 Let GG, H be finite abelian groups and f be a bilinear pairing G'x

H — QJ/Z. Letad f : H— Hom(G, Q/Z) be the left adjoint homomorphism.
For anyy € H,

0 otherwise.

Z 2mif(ey) { |G| ify € kerad f,

zeG
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As another particular case, we obtain:

Lemma 1.7 Let G be a finite abelian group and G* = Hom(G,Q/Z). For
any bilinear pairing f : G x G* — Q/Z, the sum

Z e?wif(lf,oz)

(z,0)EGXG*

is a positive real number.

The next lemma accounts for our choice of normalization for Gauss sums

in (1.8).

Lemma 1.8

_J 0 if g(keradb,) # 0,

2

Proof of lemma 1.8. We rewrite as

S gec e2mia(g)

Z e?wiq(g) Z m — Z e?wiq(g) Z e—?wiq(h) — Z <Z eZWibq(g,h)) e?wiq(g).

geG heG geG heG geG “heG

Applying lemma 1.6, we obtain:

3 e2mia(g)

g€eG

2 _ |G| Z e?ﬂq(g)

g€kerad by

We observe that the restriction of ¢ to keradb, is a homomorphism
keradb, — {1, —1} = Z/2Z. Consequently,

Y qlg) = { | kerad b,| if g(keradb,) =0,

g€kerad bg 0 otherwise.

The proof is complete. &

We need to make the condition g(kerad b,) = 0 more explicit. This is the
purpose of the next lemma.

Lemma 1.9 Let q be a quadratic form G — Q/Z on a finite abelian group
G. The following assertions are equivalent:
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(0) Y(G,q) #0;
(1) g(keradb,) =0;
(2) ¢(H) =0 for any 2-cyclic summand H of G which lies in kerad b,.

Proof. The equivalence (0) <= (1) is a consequence of lemma 1.8. The
implication (1) = (2) is obvious. We show the implication (2) = (1). For
any g € G, 2q(g) = by(g,9). If |G| is odd, then 2¢(g) = 0 implies g(g) = 0
(since the order of ¢(g) in Q/Z must be odd). It follows that g(kerad b,) = 0.
Assume |G| to be even. There is an orthogonal splitting (G, ¢) = &,(Gp, )
where p runs over prime numbers, (G, is a p-subgroup of G, G = ©,G, and
4 = q|a,. Therefore we may assume that G itself is a (finite abelian) 2-
group. Let x € kerad b, and let H be the cyclic subgroup of GG generated by
x. Its order is a power of 2. By definition of x, H is orthogonal to G. If H
is a summand of G, then condition (2) applies, so that ¢|z = 0 and hence
g(z) = 0. If H is not a summand of GG then H C 2G. Therefore there exists
an element y € G such that @ = 2y. Then ¢(z) = ¢(2y) = 2¢(y) + b,(y,y) =
2b4(y,y) = b4(2y,y) = by(z,y) = ad by(x)(y) = 0. ¢

Remarks.

1. The proof shows that a sufficient, but not necessary, assumption to ensure
condition (1) of lemma 1.9 is kerad b, C 2G.

2. From lemma 1.9, one deduces the following condition: ¢(keradb,) = 0 if
and only if there exists a 2-cyclic summand H of G which lies in kerad b,
such that ¢|g(x) = £ if 2 generates H, g|n(z) = 0 otherwise.

For the next two lemmas, set K = kerad b, and G=G/K.

Lemma 1.10 The following relation holds:

o 0 ifq(K) #0,
Z e mig(z) _ |[{|Z 627r2q(1‘) Zf q([() — 07 (112)

zeG el

where §: G — Q/Z is the quadratic form induced by q.

Proof. If ¢(K) # 0 then the result follows from lemma 1.8. If ¢(K) =0
then it is clear that ¢ : G — Q/Z induces a non-degenerate quadratic form
G: G — Q/Z. The result follows easily. &
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Lemma 1.11 Let f: V x V — Z be a symmetric bilinear form on a lattice
V. Then

2

zeGRV

KoV Ym0 i (o Ko V) =0,

zeGRV

{ 0 i (g® (K V) £0,
e2mi(a®f) (=

where q@f =i2f: GV — Q/Z is the quadratic form induced by q @ f.

Proof. Analogous to the proof of the previous lemma. The key observation

is that K @ V' C ker(ad b, ® ad B). &

The following lemma settles the question of determining the order of the
image of an element ¢ € G by a non-degenerate quadratic form.

Lemma 1.12 Assume that (G, q) is non-degenerate. Let ¢ be an element of
order n in G.

(1) The order of q(c) in Q/Z divides n if n is odd, resp. divides 2n if n is
even.

(2) The subgroup H generated by ¢ is an orthogonal summand of G if and
only if the order of q(c) in Q/Z isn if n if odd, resp. is 2n if n is even.

Proof. We have 2nqg(c) = nb,(c, ¢) = by(ne,¢) = 0. If n = 2k + 1, then

n(n —1)

5 by(c,c) = (2k + 1)q(c) + (2k + 1)kb,(c, ¢).

0 = g(nc) = ng(c) +
Since (2k + 1)b,(¢c,¢) = 0, the equality above implies (2k + 1)g(c¢) = 0,
which proves part (1). For part (2), assume first that H is an orthogonal
summand of G. let p be the order of b,(c,¢). By part (1), p divides n. Now
0 = pb,(c,c) = by(pe,c). But then b,(pe,x) = 0 for any = € G since H is
an orthogonal summand of G. Thus the non-degeneracy of b, implies that
pc = 0. Hence n divides p and finally p = n. So there exists a € Z, coprime

with n, such that g(c) = 5~ mod 1. Now

n(n —1) na

0 = g(nc) = ng(c) + qu(c, ¢) = > mod 1.

This implies that n or a is even. The result on the order of ¢(¢) follows. Con-
versely, it suffices to observe that the hypothesis on ¢(¢) implies that b,|mx o
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is non-degenerate. It follows from [Wa, lemma (1)] that H is an orthogonal
summand. &

The next two results are auxiliary lemmas, useful to simplify Gauss sums
calculations which involve tensor products.

Lemma 1.13 Let F' be a free abelian group and B : F x F' — 7 be a sym-
metric bilinear form. Let g : G x G — Q/Z be a non-degenerate symmetric
bilinear form on an abelian group G. Then

ker(ad g @ ad B) = ker(idg ® ad B).

Proof. There is an obvious commutative diagram

ad g®ad B

GRF G*® F*
H Tadg@idp*
G ® F idg®ad B G ® F*

where G* = Hom(G,Q/Z) and F* = Hom(F,Z). The homomorphism
adg : G — G* is an isomorphism. Since, as a Z-module, F' is free (hence

flat), the map ad g ® id g« is also an isomorphism. Hence ker(ad g ® ad B) =
ker(idg ® ad B). &

Lemma 1.14 Let G and H be two abelian groups. Let g € G and h € H.
Assume that g is a torsion element of (finite) order n and that h is an element

of infinite order. Then g @ h =0 i G® H if and only if h € nH.

Proof. We note that g®@h=0in G® H ifand only if g @ h =0 in G; ® H,
where (G4 (resp. H;p ) is the subgroup generated by g (resp. by h). The result
then follows from the definition of ®. &

The next lemma provides a precise criterion for deciding whether certain
Gauss sums are zero. It will prove useful when we investigate when topo-
logical invariants of 3-manifolds vanish in Chapter 2. Given two symmetric
bilinear pairings (G,b) and (G',b') on finite abelian groups, we shall say
that they have an isomorphic orthogonal summand if there exists orthogonal
summands H, H' of G and G’ respectively such that H = H' as groups.
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Lemma 1.15 Assume that (G, q) is non-degenerate. Then y(GRV,q® f) =
0 if and only (G,q) and (Gy, L) have an isomorphic 2-cyclic orthogonal
summand.

Our original proof in [Del] of lemma 1.15, which relies on the classifi-
cation of symmetric bilinear forms on finite abelian 2-groups (see [Wa] and
[KK]), goes roughly as follows. Since the condition (1) of lemma 1.9 is al-
ways satisfied for finite abelian groups of odd order, we can assume G to
be a finite abelian 2-group. Using the classification in [Wa] or [KK], there
are essentially three (isomorphism classes of) symmetric bilinear pairings to
consider, for which it is a straightforward matter to verify lemma 1.15. The
following alternative proof, which does not require any classification result,
is more natural and was suggested to the author by P. Vogel.

Proof. Without loss of generality, we can assume f to be non-degenerate,
so that by lemma 1.13, kerad(b, @ f) = kerad(idg @ f). Then, tensoring by

(G the exact sequence

yields

0—Tor(G,Gy) —= G VY Go Vv —= G o Gy —0

which shows that kerad(idg @ f) = Tor(G,Gy). Since Tor preserves di-
rect sums and G and Gy are direct sums of cyclic groups, it follows that
kerad(b, @ f) is generated by elements @ y where x € GG and y € V such
that @ (ad f)(y) = 0 in G ® V*. By lemma 1.14, the latter condition is
equivalent to: (ad f)(y) is divisible by n in V* where n is the order of z in
(. Hence, by lemma 1.8, v(G @ V,q @ f) = 0 if and only if there exist =
and y as above such that (¢ ® f)(z ® y) = q(z)f(y,y) # 0. We deduce from
lemma 1.12 that ¢(z)f(y,y) # 0 if and only if n is even and = generates an
orthogonal summand of G. Denote by valy(n) the 2-valuation of n. Since
Z/nZ is isomorphic to Z /2V20NZ x 7 /(n/2"*2("))Z by the Chinese theorem,
it follows that (G, b,) and (G, Ls) both have an orthogonal summand iso-
morphic to Z/2"2("Z, &
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Remark. In the general case, i.e. ((,q) possibly degenerate, v(G' @ V,q @
f)=0if and only if (G, ¢) and (G, L) have an isomorphic 2-cyclic orthog-
onal summand, with the same notation as lemma 1.10.

1.6 Witt monoids 91 and MY

On the monoid M (defined in §1.4), we consider the following equivalence
relation: (G,b), (G, 1) € M are equivalent if there exist hyperbolic sym-
metric bilinear forms b, : G; x G; — Q/Z and by : G5 x Gy — Q/Z such
that (G,b0) & (G1,b1) = (G', V') & (Gg,b3) in M. There is, on M, a similar

equivalence relation for (isomorphism classes of) quadratic forms.

We define 9 as the monoid of equivalence classes of 9 and ML) as the
monoid of equivalence classes of M.

We now develop a number of properties relating Gauss sums and Witt
monoids. Recall that pg is the multiplicative group of complex 8-th roots of
unity. Our first observation is that Gauss sums (as normalized in (1.8)) are
still well-defined in the context of Witt monoids:

Lemma 1.16 Let (V. f) € Mz. The map M — pus U{0}, (G, q) = v(G @
V,q ® f) induces a homomorphism M — pus U {0} making the following
diagram commute:

-QV,-®f
e —CEE U {0}

MmO

Proof. It suffices to show that v(G®@V,q® f) = 1 for ¢ hyperbolic. Suppose
G = M & M* where M is a finite abelian group, M* = Hom(M,Q/Z) and
g(z,v) = v(z). Fix a basis of V. Then ¢ ® f can be viewed as a quadratic
form

GOV=M"&(M") = Q/Z, (x,v)—_ fijvi(z:)
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where (fij)i<ij<m is the matrix of f with respect to the basis of V, x =
(x1,...,2m) and v = (v1,...,). Observe that the map

M™ x (M™)" = Q/Z, (x,v) = Y fijvj(w:)

is a bilinear pairing. Therefore it follows that from lemma 1.7 that

Z e2mi(a®f)(2)

zeEM™MX(M™)*

is a nonzero real number. From lemma 1.8, we deduce that v(GRV, ¢ f) = 1.
¢

We denote by o(f) the signature of (V, f) in the following lemma.
Lemma 1.17 Let (G,q) € M. The map B : Mz — ps U {0} defined by

V. f) =G G e V.qe f)

induces a homomorphism M — pg U {0} making the following diagram com-
mute:

Mz —> s U {0}

Proof. For simplicity, we write B(f) instead of B(V, f). It is clear that B
is well defined and multiplicative on 7.

1. To see that B(f) only depends on (the isomorphism class of) Ly and
kerad f, observe that

B(f & (+1)) = ~(G, q)a(f@(ﬂ))

G o) G e V,qe MG
(f).

The claim follows from lemma 1.4, part 1.

WG (VS Z),qa (f & (£1))
(G, +q)

sy
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2. We prove that B actually does not depend on kerad f. Let f': V/'xV' — Z
be a symmetric bilinear form on a lattice such that (G, L) = (Gy, Ly).
(The existence of such an f’ is ensured by lemma 1.4, part 1.) We can
assume k = rank (kerad f’) — rank (kerad f) > 0. Consider the symmetric
bilinear form f onV=Va (@§:1Z) defined by

(‘77 f) = (V7 f) D 69;?:1(Z7 O)
It is easy to see that (Gj, L7) = (Gy, Ly) = (G, Lys). Furthermore,
rank (ker ad f) = rank (kerad f) + k = rank (kerad f).

We deduce that B(f) = B(f'"). The multiplicativity of B yields

k

B(f)=B(f)- I] B(0) = B(f)

J=1

since B(0) = B(Z,0) = 1. Therefore, B(f') = B(f), which is the claimed
property.

3. To conclude, it suffices to show that B(f) = 1 for Ly hyperbolic. The
canonical decomposition of Gy in p-primary components is orthogonal with
respect to L;. Moreover, the property of being hyperbolic is preserved by
restriction on each p-primary component. Since the map (V, f) — (G, Ly) is
a surjective homomorphism (lemma 1.4, part 1), we can assume that (G, L)
is irreducible. In particular, it is a bilinear pairing on a (finite abelian) p-
group, isomorphic, for some prime p and positive integer m, to the bilinear
pairing on Z/p™Z x Z/p™Z determined by the matrix

0 p‘k
pro0 )

We choose f to be the bilinear form on Z? determined by the matrix

Opk
pro0 )

Thus ¢ ® f can be viewed as the quadratic form

GG = QJZ,(x,y) — prby(z,y).
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We observe that the map
Gx G = QJZ,(x,y) — pby(x,y)
is a bilinear pairing.Therefore, it follows from lemma 1.7 that
3 £2mi(a® f)(z)
ceGDG

is a positive real number. Lemma 1.8 implies that v(G ® Z*, ¢ ® f) = 1.
Since o(f) = 0, the result follows. &

1.7 Proof of the reciprocity formula

Qutline of the proof. We interpret the reciprocity formula as an identity
involving a bilinear pairing (lemma 1.18). Using a stabilization argument
(lemma 1.20), we reduce the reciprocity formula to the identity (1.3) be-
tween classical 1-dimensional Gauss sums. Ultimately, the proof relies on

(1.3) and (1.11).

Denote by (%) the following condition: (G, L) and (G, L,) have an
isomorphic 2-cyclic orthogonal summand. In the case when () is satisfied,
it follows from lemma 1.15 that

’Y(Gf ® W7 ¢f,v ®g) = V(GQ ® V7 ng,w ® f) = 7(‘/ ® Gg?f ® ¢g,w) =0

and therefore (1.9) holds. So we are left with the case when () is not satisfied.
Again by lemma 1.15, the formula (1.9) is equivalent to:

v

T (1es(w)=eNe @)y (G, @ W, 10 @ g) - AV © Gy f @ by) = 1. (1.13)

We denote the left hand side by F((f,v),(g,w)) or simply by F(f,g), if no
confusion is likely to occur.

The next lemma sets up the framework in which formula (1.13) is inter-
preted.

Lemma 1.18 The map
Fmy e x My — pus U {0}, (V) f,v0), (W, g,w)) — F((f,v),(g,w))
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induces a bilinear pairing MY x M — us U {0} such that the following
diagram is commutative:

My x My —— s U {0}

of ]

MO x MY ——> M x MY

Proof. We recall that ¢ : IMMJ* — MO is a homomorphism, that Gauss
sums are multiplicative, and signature additive, on direct sums. Therefore,
F is bimultiplicative. We establish the rest of lemma 1.18 in three steps.

1. We prove that F((f,v),(g,w)) only depends on ¢, and ¢,,. Since
(f,v) and (g, w) play symmetric roles, it is sufficient to prove that if (g, w)
is fixed in MY, then F((f,v),(g,w)) only depends on ¢¢,. Using lemma
1.4, part 2, it is sufficient to show that F((f,v),(g,w)) = F((f',v),(g,w))
where (f',v") = (f & (£1),v & vo) where vg is an odd integer. We obtain:
Gpr = Pfo and

P, )glw,w) = (F)alg) = Flv,0)g(w, w) = o(fo(g) £ vi(g(w, w)—o(g).

Since v = 1 modulo 8, we deduce that

F(f0),(g,w) = F((f.v),(g:w)) - T 1Dy (G 14,
= F((f.v), (g, w))

where the last equality follows from (1.11).

?

2. Since ¢ : MY — ML is a homomorphism, the map MO x MO — usU{0}
through which F factors is also bimultiplicative.

3. To conclude, we prove that F((f,g), (g,w)) = 1 if ¢¢, or ¢, is hyperbolic.
By symmetry, it is sufficient to examine the case when ¢y, is hyperbolic. It
follows from lemma 1.16 that v(G @ W, ¢;,@¢) = 1. By lemma 1.19 below,
we can assume that o(f) =0 and f(v,v) =0 mod 8. Thus

v}

=5 D@1 bstey (K, @V, 50 @ F) = 1(Gy @V, 600 @ f) = 1,

where the last equality follows from lemma 1.17. This achieves the proof. {
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Lemma 1.19 Let g : G — Q/Z be a hyperbolic quadratic form. There exists
(f,v) € M such that ¢ps,, = q, o(f) =0 and f(v,v) =0 mod 8.

Proof. The fact that there exists (f,v) € My" such that ¢s, = ¢ follows
from the surjectivity of the map ¢ (lemma 1.4, part 2). Since Ly is the
bilinear form associated to ¢y,, Ly is hyperbolic. Among the integral forms
g such that L, = Ly, choose one of minimal rank. The signature of such
a form f’is 0 (this is verified on p-abelian groups and then in the general
case). Use lemma 1.3 to equip f" with a Wu class v’ such that its image by
¢ is still g. Next, it follows from (1.11) that

V(Gf’a qbf’ v’) = 6%(0(f/)_f‘(v’v)) = e_%if/(vlvvl),

On the other hand, it results from lemma 1.16 that v(G/, ¢4,,) = 1. The
comparison of these two equalities leads to: f'(v',v’) =0 mod 8. &

Lemma 1.18 says that the equality we want to prove should be understood
as a relation between invariants of 919. We now observe that the special
case of (1.13) when f and g are 1-dimensional (i.e., the lattices V and W
have both rank equal to 1) is exactly given by formula (1.3).

The following result is a tool to reduce (1.13) to that I-dimensional case
already treated (1.3); it is a variation on a lemma due to T. Ohtsuki. Recall
that the 2-valuation of an integer m, denoted vy(m), is the greatest nonneg-
ative integer n such that 2" divides m.

Lemma 1.20 (Stabilization) Let (G,L) € M. There exist positive inte-
gers ay,...,a, and by, ... by such that the following identity holds in 9N :

G0 (2)oro ()= (oo (). am

Furthermore, one can impose the following condition: if (G, L) has no orthog-
onal cyclic summand of order 2%, then one can choose the integers ay, . .., a,
and by, ..., bs in such a way that their 2-valuation is different from k.

See §1.1 for notations. Roughly speaking, lemma 1.20 says that by adding
cyclic pairings and a hyperbolic form to a bilinear form, one can produce the
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direct sum of a diagonal pairing and a hyperbolic pairing. We say that the
relation (1.14) is a stabilization of (G, L). This stabilization argument relies
on the algebraic structure of 9.

Proof. According to [Wal, (G, L) is a direct sum of bilinear pairings of the
following kinds: (%) with a and b coprime such that 0 < |a| < b, E{ for 1 <1
and E! for 2 <1 (see §1.1 for notations). Since E} is hyperbolic, it is 0 in 90.
So it suﬂices to treat the two other cases. Con31der the case (G, L) = (%)
first. Using the identity [Mu, proof of lemma 2.2]

(2 (1) - )= )= (56%) oo

we deduce by induction that there exist integers ay,...,a, and by,...,b;,

such that in 901,
+1 +1 +1
=(— . 1.1
@ ( a, ) ( bl ) @ @ < bs ) ( 6)

(3)=(0) e

If (G, L) has no orthogonal cyclic summand of order 2%, then vy(b) # k. It
is then clear from (1.15) and the identity

(a) _fa—0
b) b
that we can require ay,...,a, and by,..., b, to be of valuation different from

k. Consider next the case (G, L) = E! for some 2 < [. If [ # k, we use the
following relations (cf. relations (0.3) in [KK]) in 9t

1o ()= (5= (2)=
Ef@(%):() () gi) for [ = 2. (1.18)

1.3) in [KK]):
3

1
k k
Ef & <2k+1) =FEj @ <2k+1) . (1.19)

And then apply once more relation (1.16) to (Fr), that is,

(@22 et -0 0)=()

1 .
7) for [ > 3. (1.17)

If [ = k then we use the relation (cf. relation
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(the (—1)* on the right hand side is the residue modulo 3 of —2%+1) which
combined to (1.19), yields the desired equality. This finishes the proof.

Lemma 1.21 Assume that f or g is 1-dimensional, that is, V or W has
rank 1. Assume, furthermore, that (G, Ly) and (G, L,) have no isomorphic
2-cyclic orthogonal summand. Then formula (1.13) holds.

Proof. Suppose, for instance, that ¢ is 1-dimensional. Then G is a cyclic
group. Let k be the 2-valuation of the order of GG,. We apply lemma 1.20 to

stabilize (G, Ly): there exist positive integers aq,...,a, and by, ..., bs such
that
+1 +1 +1 +1
arine(G)ee ()= (5)e e (5). o
(Gr L)@ -) oo ) O e (1.20)
where all numbers ay,...,a, and by,..., b, are of valuation different from k.

Choose Wu classes uy, ..., u, € Z for the forms (fay),. .., (+a,) respectively,
and Wu classes u},...,u’ € Z for the forms (£b),...,(£bs) respectively.
Then z = v & @;Zluj (recall v is a Wu class for f) is a Wu class for f &

"_1(%a;) and 2" = @3 u is a Wu class for ©3_,(£b;). For this choice of
Wu classes and by additivity of Wu classes with respect to direct sums, we
apply F(-,¢g) to (1.20) and obtain:

F(f,9)F(£ar),9)--- F((£ar),g) = F((£b1),g) - - F((£bs), g).

Since (+a;) (resp. (£b;) and g are both 1-dimensional forms, F((+a;),g) = 1
(resp. F((£b;),g) = 1). It follows that F(f,g) = 1. This is the desired re-
sult. &

End of the proof. The case (*) has already been verified. So we assume
that (*) does not hold. Since F is bimultiplicative with respect to orthogonal
sums, we can assume that (Gy, Ly) (resp. (G, L,)) is irreducible, hence G
(resp. () is either a p-cyclic group where p > 2 is prime, or a product
of two copies of a 2-cyclic group [Wa]. Since by hypothesis, (G, L) and
(G, Ly) have no isomorphic orthogonal 2-cyclic summands, it follows that
one of those two pairings, say (G, L,), has no orthogonal cyclic summand of
order 2%, where k is the 2-valuation of the exponent of ;. (The exponent of
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(s is the smallest integer n such that nGGy = 0.) Then we apply lemma 1.20
to (G, L,). There exist positive integers ay,...,a, and by, ..., bs such that

+1 +1 +1 +1
L — =|— 1.21
(Gg7 g)@<a1)@ ®<a,,) <b1)@ @<bs)7 ( )
where the 2-valuations of ay,...,a,, by,...,b; are different from k, respec-

tively. Choose Wu classes for the forms (+a;), 1 <j <rand (£b;),1 <7 <
respectively. For this choice of Wu classes and by additivity of Wu classes
with respect to direct sums, we apply F(f,-) to (1.21):

F(fag)F(fa(ial))F(f7(j:ar)) :F(fa(ibl))F(f7(ibs))

Lemma 1.21 yields F(f,(£a;)) =1 for 1 < 7 < r and F(f,(£b;)) =1 for
1 <j < s. It follows that F(f,g) = 1. This finishes the proof. &

1.8 A refinement of the reciprocity formula

There is a generalization of the reciprocity formula (1.9) due to V. Turaev
[Tu4] which makes use of rational Wu classes instead of integral Wu classes.
Given a symmetric bilinear form f: V x V — Z on a lattice, a rational Wu
class for f is an element v € Vg such that f(z,z) — fq(x,v) € 2Z for all
x € V. Observe that v must be an element of the lattice dual to V', which
is V¥ = {z € Vo, fq(z,V) C Z}. If f is equipped with a rational Wu
class v, then it still gives rise to a quadratic form ¢y, : Gy — Q/Z, where
Gy = Tors cokerad f, by the same formula (1.5). The quadratic form ¢y, is
homogeneous if and only if the Wu class v is integral.

It is interesting to note that lemma 1.3 generalizes to include all quadratic
forms (not only homogeneous ones) over Ly.

Lemma 1.22 The map v — ¢y, is a bijective correspondence between ra-
tional Wu classes (for f) modulo 2V and quadratic forms over Ly.

Proof. Same as [BM, proof of Theorem 2.4]; the only minor modification
one needs is the isomorphism Hom(Vg, 32/Z) = 1Z/7 @ Vo = Vo /2V.

2
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In this context, we state a natural generalization of lemma 1.4, part 2. Let
EITIVZVHQ now be the monoid (for direct sum) whose elements are (isomorphism
classes of) triples (a lattice, a symmetric bilinear form on that lattice, a
mod 2 reduction of a rational Wu class for that form). In 9t,"?, we define
the equivalence relation, denoted ~, generated by the following operation:
(V. fov)—= (Ve Z fa(£l),vd1). Let MO’ be the monoid for direct sum
whose elements are (isomorphism classes of) triples (a finite abelian group,
a non-degenerate quadratic form on that group). Note that the quadratic
form is allowed to be non-homogeneous. Using lemma 1.22, it is not hard to
prove the following result.

Lemma 1.23 The homomorphism My ® — M, (V, f,v) — (Gy, ¢50) is
surjective. Furthermore, for (V, f,v),(V', f/,v') € M5 "2, the following two
conditions are equivalent:

(D(V, fov) ~ (V' f07);

(2)kerad f = kerad f' and (G, ¢5.) = (Gprydprar).

Let f:V xV —Zand g: W x W — Z be symmetric bilinear forms on
the lattices V and W respectively. Then f®g is a symmetric bilinear form on
the lattice V@ W. There are natural homomorphisms j; : coker ad f@ W —
cokerad(f®g) and j, : V@cokerad g — cokerad(f®g) defined, respectively,
by:

jr((+Tm ad f) @ w) = v ® (ad g)(w) + Im ad(f © g),

where v € V* and w € W, and
Jo((v @ (w +Im adg)) = (ad f)(v) @ w +Im ad(f @ g),

where v € V and w € W*. This is summed up in the following commutative
diagram with exact columns:

VeoWw VOW—=VaW
ad fRidw ad fRadg idy ®ad g
& ® w tdyxRad g v ® wr ad fRidyy* 4 ® w

coker (ad f) @ W - coker ad(f ® g) ~— V @ coker (ad g)
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Observe that j;(Gf @ W) C Gsg, and 7,(V @ G,) C Gyg,.
Assume that f ® g is equipped with a rational Wu classes z € (V@ W)®
Q = Vo @ Wq. Then Turaev’s reciprocity formula reads:

VG RQW, ¢prgy..075) = e%(U(f®9)_(fQ®gQ)(Z,Z))7(V ® Gy, brogs 0 Ja). (1.22)

As above, bar denotes complex conjugation and o signature. By o, we
denote composition. Formula (1.9) is the particular case of (1.22) when
z = v ® w, where v and w are integral Wu classes for f and g respectively.

Construction of a rational Wu class. We construct now a rational Wu
class z for f ® g from two Wu classes for f and g respectively and from
any two elements (&1,...,d,) € (V#)* and (31,...,Bn) € (W#)". Let
ar = (ad fq)(ax) € V* and 8y, = (ade)(Bk) eW* 1<k<n.

Assume that vy € Vi (resp. wo € Wq) is a Wu class for f (resp. for g).
Then ug = vo ® we 1s @ Wu class for f ® g.

Clearly, &y, @ Br € (V@ W)# for 1 < k < n. It follows from definitions
that

r=v@wo—2Y dr® P (1.23)
k=1

is a Wu class for f @ g, which we call a special Wu class.
A refined reciprocity formula with the special Wu class z. We present
a reciprocity formula derived from (1.22) for f and g with the Wu class z

for f ®g. Given an element ¢ € GGy and an element 3 € W*, we denote by
F]j“hc : Gy @ W — Q/Z the homomorphism defined by

TRy Lf(xac) ﬁ(y)

Similarly, given an element ¢ € (G, and an element o € V*, we denote by

Ff o V@G, =G, @V — Q/Z the homomorphism defined by
v ®y s a(e) ().

Let ¢, = ap +Im ad; € Gy and ¢ = B+ Im ad, € Gy, for 1 <k < n.
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Lemma 1.24 (Reciprocity with special Wu class)

WG OW, b @g+ Y Fh) =
1<k<n
= exp(2mi(0(f © g) = (fa ® 9Q)(2,2))) UV © G, f @ by + D Fi*L0).
1<k<n

(1.24)

Proof. We apply formula (1.22) to f and ¢ with z as in (1.23) as a Wu class
for f ® g. The only thing to check is that

(breaz0df)(c@Y) = (b1 @9 @y)+ Y Ly, cx) Brly),

1<k<n

for ¢ € Gy and y € W, which follows from definitions. Similarly, we check
that

(61802 040) (@ ® €)= (f @ bpun)(z @ )+ D an(x) Ly(c', ),

1<k<n

for z € V and ¢ € G &

Note that (1.24) involves Gauss sums on not necessarily homogeneous
quadratic forms. This refined reciprocity formula will be an essential ingre-
dient to chapters 3 and 4.



Chapter 2

Invariants of closed 3-manifolds

Let M be a closed, oriented, connected 3-manifold. In this chapter, we con-
sider a C-valued topological invariant 7(M; (G, q) derived from a quadratic
form ¢ : G — Q/Z on a finite abelian group. This invariant appears in a
number of related situations: we will show how to build it from a modular
category (§2.3), J. Mattes, J. Polyak and N. Reshetikhin constructed it from
a 3-cocycle on a finite abelian group [MPR] and it can also be seen as a
generalization of the invariant Zy introduced by H. Murakami, T. Ohtsuki
and M. Okada in [MOO]. All those descriptions of 7(M; G, q) require a pre-

sentation of M via surgery on the 3-sphere S°.

Despite the “abelian” nature of 7(M; G, q), the problem has remained
to describe 7(M; (G, q) explicitly in terms of classical invariants of algebraic
topology of 3-manifolds (see for example the conjecture [Tul, p. 83] and
also [MOO)]). The aim of the chapter is to achieve this. We first show that
T7(M; G, q) is completely determined by (G, ¢), the first Betti number of M
and the linking form of M (Theorem 2.1). We also compute the absolute
value of 7(M; G, q) (Theorem 2.2) which only depends on the order of a
certain cohomology group of M. Then we go on using the reciprocity formula
(1.9) in chapter 1 to establish an explicit formula for the invariant 7(M; G, q)
(Theorem 2.3). As another application of the reciprocity formula, we obtain a
natural generalization of the invariant 7(M; G, ¢) to closed oriented (4n — 1)-
manifolds.

47
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2.1 The invariant 7(M;G,q)

Let M be a closed connected oriented 3-manifold. There is a simply con-
nected compact smooth 4-manifold X such that 0X = M (see [Rok]). As a
consequence of Poincaré duality, the second homology group of X is a free
abelian group and carries a symmetric bilinear pairing Bx : Hy(X;Z) x
Hy(X;Z) — Z. (Note that Bx may be degenerate since X has a boundary.)
Let o(Bx) be the signature of Bx, which is equal to the number of positive
eigenvalues of By minus the number of negative eigenvalues of Bx. Denote
by by(X) the second Betti number of X.

Let ¢ : G — Q/Z be a quadratic form on a finite abelian group G.
We shall assume, throughout this chapter, that ¢ is non-degenerate, unless
explicitly stated to the contrary. (This is no loss of generality, see lemma 2.1
below.) We define the following complex number:

———(Bx) _ (X (gl T ¢
T(M;G.q)=7(Gq) IG5 3 SR o)
z€GRH>(X;Z)

For the definition of the Gauss sum (G, q), see §1.4, formula (1.8). Note
that, by lemma 1.8, v(G,q) # 0. For the definition of ¢ ® Bx, see §1.1,
formula (1.1). Here |G| denotes the order of G.

The terms (G, q)U(BX) and |G|_b2(2X) in the right hand side of (2.1) are
normalization factors which are better understood in light of Theorem 2.1
below. Theorem 2.1 says that the complex number we have defined does not
depend on the choice of X, which in particular justifies the fact that we made

the notation dependent on M rather than X in formula (2.1).

Theorem 2.1 7(M; G, q) is a topological invariant of M, which is indepen-
dent of the choice of X. If the pair (G, q) is fized, T is completely determined
by the following data:

(1) the first Betti number, dim H,(M;R);

(ii) the linking form Ly on Tors Hy(M;Z), considered up to isomorphism.

, T(M;G,q) . ,
Moreover, if T(M; G, q) # 0, then ——————= is an 8-th root of unity and the
WG 20 e E 00 )

phase of T(M; G, q) only depends on the linking form Ly on Tors Hy(M;Z).
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A useful expression for 7(M; G, q) can be obtained by choosing X as
follows. Present the 3-manifold M as the result of surgery in S® = 9B* on a
framed link L with components Ly,..., L,,. Let X be the simply connected
compact smooth 4-manifold obtained by attaching m 2-handles to the 4-ball
B* (the attaching map being determined by the framed link L). These m 2-
handles yield a basis of Hy(X;Z) (which is free of rank m). The intersection
form By, with respect to this basis, is given by an (m x m) matrix of integers
(whose (7, k)-entry is the linking number of L; and Ly). The definition (2.1)
of 7(M; G, q) can be rewritten in terms of the linking matrix A = (1;1)1<j k<m
for L:

r(M;G,q)=7(GCq) V6% Y emten), (2:2)

rzeGRZ™

The invariant M — 7(M; (G, q) arises in the theory of modular categories
(see [Tul]). For an explicit construction of 7(M; G, ¢) from a modular cate-
gory, see §2.3.

The invariant also generalizes the invariants M — Zy(M;w) introduced
by H. Murakami, T. Ohtsuki and M. Okada [MOO] and further studied by
J. Mattes, M. Polyak and N. Reshetikhin (see [MPR]). Here N is a posi-
tive integer and w an N-th primitive root of unity (resp. 2N-th primitive
root of unity) if N is odd (resp. if N is even). The relation is as fol-
lows: Zn(M,w) = 7(M;G, q) where G = Z/NZ and the quadratic form
q: G — Q/Z is chosen so that w = exp(27mig(1l mod N)).

Clearly, the right hand side of (2.1) still makes sense if ¢ is degenerate.
Denote it by 7(X; G, q). The following lemma shows that our assumption
that ¢ be non-degenerate is no loss of generality.

Lemma 2.1 Let G be a finite abelian group equipped with a (possibly degen-
erate) quadratic form q such that v(G,q) # 0. Then defining 7(M; G, q) =

| ker ad bq|b2(2X)T(X; G, q) still yields a topological invariant of M. In fact:
T(M;G,q) = 7(M; G/ kerad by, §) (2.3)

where § is the non-degenerate quadratic form on G/ keradb, induced by q.

Proof. Apply lemmas 1.10 and 1.11 to the Gauss sums in the definition
(2.1) of 7(M; G, q). &
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One property of 7 is the multiplicativity on connected sums. Let M# M’
denote the connected sum of two closed oriented 3-manifolds M and M’.

Then:

T(M#M';G,q) = 7(M;G,q) - T1(M'; G, q) (2.4)

Another property is the behavior of 7 under a reversal of orientation. Let
M be a closed oriented 3-manifold and let —M denote the same manifold
with the orientation reversed. Then:

T(=M;G,q) = 7(M; G, q) (2.5)

Note also that 7 is multiplicative with respect to orthogonal sums of pairs
(G, q) of finite abelian groups equipped with quadratic forms. All these prop-
erties follow from the definition of 7 and elementary properties of Gauss sums.

The following theorem computes the absolute value of 7.

Theorem 2.2 Let M be a closed oriented 3-manifold. If 7(M;G,q) # 0,
then:
I7(M; G, q)| = |H"(M; G)|1/2.

In particular, the absolute value of 7(M; G, ¢) does not depend on the
quadratic form ¢ (unless ¢ is degenerate).

Using Theorem 2.2 and lemma 1.8, one can rewrite 7(M; (7, q) as a prod-
uct of Gauss sums normalized as in (1.8):

T(M;Gq) = (G q) (G @ Hy(X;Z),q® By) |H' (M; G5, (2.6)

We now state our explicit formula for 7(M; G, ¢) in terms of the classical
invariants listed in Theorem 2.1. Let us denote by T' the finite abelian group
Tors Hi(M;Z). Recall that T' carries a non-degenerate symmetric bilinear
pairing Ly : T'x T'— Q/Z, called the linking form (see for example [Ka]).

Theorem 2.3 (Main theorem) Let f: VxV — Z be a symmetric bilinear
form on a lattice V', with an integral Wu class v € V' such that (G, ¢s,) =
(G,q). Let Q : T — Q/Z be a quadratic form over Lar. Then

H(M;G,q) =1(T,Q) "WV e T, foQ) [H (MG (27)
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For the definitions of ¢, and Wu classes, see §1.3. The proof is given in
§2.4.3.

Observe that Theorem 2.3 provides us with an intrinsic 3-dimensional

formula for 7(M; G, q).

Remarks.

1. Formula (2.7) implies that the right hand side of (2.7) does not depend
on the particular choice of Q).

2. Since the linking form L£j; is non-degenerate, so is ). By lemma 1.8,
T, Q) # 0.

3. By lemma 1.4, part 2, there always exists a form f: V x V — Z satisfying
the hypothesis of Theorem 2.3.

The case when f is even, with Wu class equal to 0 in (2.7) is interesting
enough to be formulated explicitly. By %qf, we denote the quadratic form

V—=Zx— 1f(z,a).

Corollary 2.3.1 For any even integral symmetric form f:V xV — Z on
a lattice V' such that ¢5o = q, the following formula holds:

T(M; G, q) =1V @ T, 5qr @ Lag) |H(M; G2, (2.8)

Remark. It is a known result due to C.T.C. Wall [Wa] that there always
exists an even integral symmetric form f : V x V' — Z satisfying the hypoth-
esis of the corollary.

As an another consequence of Theorem 2.3, we mention the following
(negative) result:

Corollary 2.3.2 If M is an integral homology 3-sphere (i.e., the integral
homology of M is the same as that of S*), then T(M; G, q) = 1.

Proof. Apply (2.7) with T'= 0. &

At first sight, or as the construction from the theory of modular categories
(see §2.3) maybe would suggest, the definition of the invariant 7(M; G, q)
seems to be rather specific to dimension 3. However, Theorem 2.3 enables us
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to define such an invariant for (4n — 1)-manifolds as well. More precisely, let
M Dbe a closed oriented connected (4n — 1)-manifold. There is a well defined
linking form of M, Lay : T xT — Q/Z, where T' = Tors Hy,,—1(M;Z), which

is a non-degenerate, symmetric, bilinear pairing.

Corollary 2.3.3 With the above notations, the number 7(M; G, q) defined
by (2.7) is a topological invariant of the (4n — 1)-manifold M.

In the case when M = 90X where X is a compact, oriented 4n-manifold,
we obtain a reciprocity formula between the intersection form Bx on Ha,(X; Z)

(or on the free part of Hy,(X;Z)) and the linking form Ly on T'.

Corollary 2.3.4 Let f : V@V — Z be a symmetric bilinear form on a
lattice 'V, with @ Wu class v € V, such that (G, ¢5,) = (G,q) and let
Q:T — Q/Z be a quadratic form over Lyp;. Then

G ) UG @ Hon(X;2),q® Bx) = 3(1,Q) " (T V,Q @ f).

We now consider the equality above. This amounts to comparing for-
mulas (2.6) and (2.7). They reflect two “dual” viewpoints on the invariant
7(M; G, q). According to both viewpoints, the definition of 7(M; G, q) re-
quires certain choices, which are summed up in the following table:

first viewpoint (2.6) second viewpoint (2.7)
4-manifold X 3-manifold M
lattice Hy(X;Z) lattice V/
Bx : Hy(X;Z) x Hy(X;Z) — Z f:VxV—=1Z
finite abelian group G torsion group T
q:G—Q/Z Q:T—Q/Z

Each viewpoint requires topological information, either 3- or 4-dimensional,
and additional information. It is apparent that the forms (H2(X;Z), Bx)
and (V, f) (resp. (T,Q) and (G,q)) play symmetric roles. This is further

discussed in the appendix.

The proof of Theorem 2.1 relies on the reciprocity formula (1.9). It is pre-
cisely the reciprocity formula which converts the 4-dimensional topological
data into 3-dimensional topological data, so that 7(M; G, ¢) can be inter-
preted in a purely 3-dimensional setting.
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At this point, we mention two natural questions about the invariant
T(M; G, q):
1. Theorems 2.1 and 2.2 indicate that interesting topological information
is concentrated in the phase of 7(M;G,q). Theorem 2.1 shows that if
7(M; G, q) is not zero, the phase can take at most 8 values. The question
arises to determine its algebraic dependence on (G, q) and (T, Lar).
2. Theorems 2.1 and 2.2 leaves open the problem of determining when the
invariant 7(M; GG, ¢) vanishes.

We take up these two questions in the next section.

2.2 Two properties

2.2.1 The phase of 7(M;G,q)
The main result of this section is that the phase of 7(M; G, q), defined as

_ _T(M;G.q)
R ITRET

depends on ¢ only modulo hyperbolic quadratic forms and on £3; only mod-
ulo hyperbolic symmetric bilinear forms. The theorem below gives a precise
statement in terms of the Witt monoids introduced in §1.6.

Theorem 2.4 3 induces a bilinear pairing
B D IMQ ﬁ — s U {O}a ((G7 Q)a (Tv 'CM)) = ﬂQ(’CM)

making the following diagram commute:

MO x M > i U {0}

L
MO x M
where the left vertical arrow is the canonical projection.

As a consequence of Theorem 2.4, we mention the following result.

Corollary 2.4.1 If |G| or |T| is odd, then 3,(Lar) is a 4-th root of unity.
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2.2.2 A condition for 7(M;G,q) to vanish

In this section, we give a necessary and sufficient condition for 7(M; G, q) to
vanish.

Theorem 2.5 The following conditions are equivalent:
(1) 7(M;G,q) = 0;

(2) There exists a 2-cyclic group which is an orthogonal summand for both

(G7 Q) and (T7 'CM)J

(3) There exists a 2-cyclic orthogonal summand K of (G, q) and a cohomol-
ogy class a € H'(M; K) such that a Ua U« # 0 (here U denotes the
cup product in cohomology of M with coefficients in the ring K ).

Remark. Theorem 2.5 accounts for our introduction of Witt monoids (in-
stead of Witt groups). Suppose that Ly is the metabolic form (1/2%) &
(—1/2%). Then by Theorem 2.5, 7(M; @, q) is zero if (and only if) there is
an orthogonal splitting (G, q) = (Z/2FZ,q) ® (G',¢). Since the cases when
7(M; G, q) is zero are topologically significant, we cannot rule out metabolic
forms; whereas if £y is hyperbolic, then by Theorem 2.4, Gg (M) = 1 for
any non-degenerate quadratic form g on G. Hence our introduction of the
Witt monoid.

2.3 Relation with modular categories

We explain how the invariants 7(M; (, q) arise from the theory of modular
categories. We first give a brief survey of this theory (we refer to [Tul] for
more details) and then we describe the relation with our work.

Modular categories are tensor categories with certain additional algebraic
structures (braiding and twist) and properties of semisimplicity and finite-
ness. Semisimplicity and finiteness mimic the corresponding properties in
the representation theory of semisimple Lie algebras. In particular, simple
objects play the role of irreducible modules. The braiding is a generalization
of the permutation isomorphism U @ V. — V ® U for modules over a com-
mutative ring. Given a tensor (monoidal) category I/, a braiding is a family
of isomorphisms

c = {CU,V : U® V— V® U}U,VEV
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which satisfy some naturality and compatibility conditions. A twist in / is
a family of isomorphisms

which satisfy the identity
buev = cvucoy(0u @ Oy)

for any objects U and V in I/. As all the algebraic formalism involved in
the theory, the braiding and twist are best seen graphically, once a proper
connection between ribbon graphs (or colored framed links) and ribbon cate-
gories is established. A ribbon category is a monoidal category with braiding
and twist plus one more feature which generalizes the usual duality in linear
algebra. From a ribbon category I/, one can construct a certain category of
ribbon graphs Riby,, which consists of geometric objects. There is a canon-
ical functor Ribyy — IV which “represents” geometric framed links (more
generally ribbon graphs) in terms of the ribbon category I/ we started with.
Furthermore, this functor yields isotopy invariants of framed links in R®. Us-
ing properties of semisimplicity and finiteness, one derives from this functor
an invariant of closed oriented 3-manifolds.

Let G be a multiplicative finite abelian group equipped with a bilinear
form ¢ : G x G — C*. The form c induces a quadratic form ¢. : G — Q/Z
by ¢.(x) = exp(2wic(z,z)) for any * € (. Using this form and presenting
M as the result of surgery in 5% we can define an invariant 7(M; G, q.) by
(2.2). This invariant M — 7(M; G, q.) coincides with the one coming from
the following modular category I (see [Tul], p.29): objects are elements of GG
(written multiplicatively); for g, h € G, the set of morphisms g — h is a copy
of Cif ¢ = h and is {0} otherwise; the composition of morphisms is defined
as the product of the corresponding elements in C; the tensor product of
objects is their product in G. This category is a strict monoidal category.
For g, h € G, the braiding gh — hg is defined to be the element ¢(g,h) € C;
the twist ¢ — ¢ is defined to be ¢(g,g) € C. If, moreover, we define the
duality by ¢ = ¢g7! for all ¢ € G, then this category becomes an abelian
ribbon category. It can be seen that the category is modular if and only if
the S-matrix ((c(g, h)c(h, g))y.nec is invertible over C. Under this condition,
the invariant 77, coming from the category I/ is essentially the same as our
invariant 7(M; G, q.). More precisely, the following relation holds:



56 CHAPTER 2. INVARIANTS OF CLOSED 3-MANIFOLDS

i (M; G, q.) = |G/kerad6|_% -7(M; G q.)

where ¢ is defined by ¢(g,h) = ¢(g,h)c(h,g). In other words, the invariant
M — 7(M;G,q.) comes from the modular category U if and only if ¢ is
non-degenerate (by definition, this is equivalent to ¢. being non-degenerate).
On the other hand, a weaker condition than the invertibility of the S-matrix
is known ([Tu3]): one can associate an invariant of closed oriented three-
manifolds to a semisimple category if AVAﬁ # 0 where Ay, is a certain el-
ement of the ground ring of the category I/ and where I/ denotes the mirror
category of I/. In our case, Ay = 3, cq e 2(®) and AV = Y, eq e2miec(®)
(because the category is hermitian) so the above condition amounts to the
non-nullity of y(G, ¢) and we recover all invariants M — 7(M; G, g.) in this
way. We see in particular that different braidings ¢ and ¢’ may give rise to
the same invariant; this happens if and only if ¢(z, ) = ¢/(z, z) for all z € G.

2.4 Proof of results

2.4.1 Proof of Theorem 2.1

Since the expression defining 7(M; G, q) depends on the intersection form
Bx, we write temporarily 7(Bx; G, q) throughout this paragraph. Set W =
Hy(X;Z). We first prove the first statement in the theorem. By lemma 2.2,
kerad Bx = H'(M;Z). 1t follows from (1.7) and lemma 1.4, part 1, that it
suffices to show invariance of 7(Bx; G, ¢) on the equivalence class of (W, Byx)
in Myz. The change of the form By into an isomorphic form clearly does not

affect the expression. If (W, By) is changed into (W & Z, Bx & (1)) then
7(Bx & (il); G,q) =

7(G7 q) |G ® W| 2 |G| Z 2mi(g@Bx)( Z e:l:27r2q

rzeGRW zeG
It follows from the definition of v((, ¢) and the fact that G @ W = Gb(X)
that 7(Bx & (£1);G,q) = 7(Bx; G, q). This is the desired result. To prove
the second statement, we observe that the phase of 7(M; G, q) is exactly
(G, q)g(BX)fy(G ® Hz,q @ Bx). Therefore, the result follows from lemma
1.17. o

o(Bx)+1
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2.4.2 Proof of Theorem 2.2

We begin by recalling a classical result of algebraic topology.

Lemma 2.2 Let X be a simply connected, oriented, 4-manifold such that
0X = M. Let By : Hy(X;Z) x Hy(X;Z) — Z be the intersection form on
X. Then for any abelian group G,

ker(idg ® ad Bx) = H'(M; (&) and coker (idg ® ad Bx) & H,(M; Q).

Proof. This follows from Poincaré duality and the homological sequence of

the pair (X, 0X) with coefficients in G. &

Lemma 2.3 The following relation holds for an arbitrary non-degenerate
quadratic form q: G — Q/Z on a finite abelian group G:

2

E exp(2mi(q @ Bx)(z))| =
z€GRH2(X;Z)

{108 BOGDIHOHG) a0 Bty 02 5) =0,

0 otherwise.

where m is the rank of Hy(X;Z).

Proof. Apply lemma 1.8 to the finite abelian group G ® Hy(X;Z) equipped
with the quadratic form ¢®@ Bx. The bilinear form b,g 5, associated to ¢@ Bx
is equal to b, ® Bx. So |kerad b,gs, | = | ker(ad b, @ ad Bx)| and the result
follows from lemmas 1.13 and 2.2. &

Now for ¢ non-degenerate, Theorem 2.2 follows from lemma 1.8, the defi-
nition (2.1) of 7(M; G, ¢q) and lemma 2.3. Use lemma 2.1 in the general case
to finish the proof. &
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2.4.3 Proof of Theorem 2.3
Using formula (2.6), we have:
———(Bx 1
m(M;G.q) =2(G,q) (G @ W.q@ Bx) [H'(M; G) |2,

where W = Hy(X;Z). By (1.7) and lemma 1.22, we can equip Bx with a
Wu class w such that (7,Q) = (Gpy, —¢Bxw). Then

WG@W,q@ Bx)= ~(G; @ W, ¢, @ Bx)
= e%(U(f)U(BX)—f(UW)BX(wvw))ﬂy(V ® Gy, f @ dBw)
= eT(U(f)U(BX)_f(vvv)BX(wvw))r)/(V ® T7 f ® Q)

where the first equality follows from the equality (G,q) = (G, ¢y,.), the
second one from the reciprocity formula (1.9) and the last one from the fact

that (G, ¢Bw) = (T,—Q). Then
TMiGha) B )= sm)e(Bx) B e B - [ Bx iV & T, £ & Q)
[HY(M; G2 |
= T /EE)-Bxwu)y(V T, f @ Q)
= (T, ¢B§(,w))f<“7”)v(v T, f®Q)
= 1T,Q) (VeT feq),
where we used (1.11) in the first and third equalities. This is the desired
result. &

2.4.4 Proof of Theorem 2.4
It follows from (2.6) and Theorems 2.2 that

Bu(Lar) = G a)" "G © Hy(X;Z), 4 ® Bx). (2.10)

We already know, by Theorem 2.1, that the right hand side of (2.10) only
depends on Ly. It follows from lemma 1.17 that for a fixed pair (G, q), the
homomorphism (T, Lar) = B,(Lar) depends only on the class (T, Las) € M.
This proves half of Theorem 2.4. The second half (the statement about
(G, q)) follows from the equality (2.10) and lemma 1.16. &
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2.4.5 Proof of Theorem 2.5

Proof of (1) <= (2). By our hypothesis on ¢, v(G, q) # 0. Hence 7(M; G, q)
is 0 if and only v(G ® H2(X;Z)) is 0. Now apply lemma 1.15.

Proof of (2) <= (3). Assume first that both (7T, Ly) and (G, b,) have an
orthogonal summand of order 2F. Denote that of 7' by (a) for some element
a € T. Since (a) is an orthogonal summand of 7" and £y is non-degenerate
on T, the restriction £M|(a)><(a> is non-degenerate. Thus a determines an

element a € Hom(T,Z/2*Z) C Hom(H,(M;Z),Z/2*Z) by Ly (a,z) = %kﬂ
Since Hom(H,(M;Z),7/2*Z) = H'(M;Z/2*Z), we view a as an element in
HY(M;Z/2*Z) and apply Turaev’s formula [Tu2, Theorem I]:

1
Q—k(a UaUa)[M] (mod 1) = 2" Ly (a,a) # 0.
Conversely, if K = Z/2*Z is an orthogonal summand of G such that the
inequality above holds, there exists an element a € T of order 2% such that
Lul(ayx(a) (Where (a) denotes the subgroup generated by a in T') is non-
degenerate. Then it follows from [Wa, lemma (1)] that (@) is an orthogonal
summand of 7". It is isomorphic to Z/2*Z. &
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Chapter 3

Invariants of knots in
3-manifolds

In the previous chapter, we considered a C-valued topological invariant of
a closed, oriented, connected 3-manifold M, denoted 7(M; G, q), depending
on a finite abelian group G equipped with a quadratic form ¢ : G — Q/Z.
Now we shall consider the more general situation of a pair (M, K') where K
is a framed oriented knot in M. (Here, a framed knot is defined as a knot
equipped with a non-singular normal vector field.) We define a C-valued
topological invariant of (M, K'), denoted 7(M, K; (G, q, c), where ¢ is a fixed
element of G. This invariant generalizes the invariant 7(M; G, ¢) considered
in the previous chapter in the sense that 7(M, K; G, q,0) = 7(M; G, q).

We give two presentations of 7(M, K; G, q,c¢). One is based on a presen-
tation of M via surgery on the 3-sphere (§3.1.1); the second one, which is
more general, requires a simply-connected, oriented 4-manifold X such that

9X = M (§3.2.1).

In our study of 7(M, K; G, q,c), we follow the same approach as in the
previous chapter. Our main goal is to derive an explicit formula in terms of
classical invariants of (M, K') and is achieved through an application of the
reciprocity formula in §3.1.3 (Theorem 3.4 and corollary 3.4.1).

This chapter can also be considered as a warm-up for the next general-
ization (invariants of links) which is dealt with in the next chapter.

61
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3.1 The invariant 7(M, K;G,q,c)

3.1.1 A description based on surgery

We first recall some basic facts about surgery. See for example [Rol] for details
and references. Let L = L1U---UL,, be an oriented framed link (the surgery
link) in S® and L,,, € S®\ L an oriented framed knot (possibly linked to L).
For j =1,...,m,let N(L;) denote a tubular neighborhood of L; in S®\ L, 41
of L;. The framing of L; induces (up to ambient isotopy) a knot L which lies
in aN( ;) (the longltude of L;). Let h: Uicj<mON(L;) = Ui<j<m 0(D*x ST)
be a homeomorphism such that L’ is sent on 0D?*x 1 (j-th copy). We remove
from S® the interior of the m tubular neighborhoods N(L;) and glue back
m coples of D? x S' along the boundary Ui<j<,»ON(L;), identifying each
longitude L’ with the meridian 9D? x 1 of the j-th copy of d(D? x S') for
7 = 1,...,m. The result of this operation, known as surgery, is a closed,
connected, oriented 3-manifold:

X(S% L) = (S%\ W=7 Int N (L qu mD? xS,

The curve L,,11 “survives” the surgery and yields (after the surgery, i.e. after
the identification on Ui<j<nON(L;) by k) an oriented knot K in x (5% L).
We say that (L, L,,41) is a surgery presentation of the pair (x (5% L), K).
Lickorish [Li] and Wallace [Wal] have proved that any closed oriented 3-
manifold M may be obtained from S® by surgery. More generally, any pair
(M, K), where M is a closed connected oriented 3-manifold and K an ori-
ented framed link in M, can be obtained from S® by surgery.

Let M be a closed, connected, oriented 3-manifold and K an oriented
framed knot in M. Fix a surgical presentation (L, L,41) for (M, K). De-
note by A = (aij)i<ij<m+1 the linking matrix of L U L4, that is, the
(m + 1) x (m + 1) matrix of integers defined by: a;; is the linking number
of L; and L; in S® if i # j and aj; is the framing number of L; (see (4.2)
and (3.2) for definitions). Denote by Aj the m x m submatrix of A given
by Ar = (aij)i<ij<m. Let o(L) denote the signature of (the real symmetric
bilinear form determined by) Ay.

Let ¢ : G — Q/Z be a quadratic form on a finite abelian group. For
simplicity, unless explicitly stated to the contrary, we shall assume in this
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chapter that ¢ is non-degenerate. (This is no loss of generality as we shall see
in lemma 3.1 below.) By lemma 1.8, this condition ensures that v(G, ¢) # 0.
Fix an element ¢ € GG. Then we define the following complex number:

f(M, K Gq,0) =GVl E Y e (3

For the definition of ¢® A, see (1.1) in §1.1. The terms |G|~ and (G, q)U(L)

in (3.1) are normalization factors which are better understood in light of
Theorem 3.1 below.

Theorem 3.1 The number 7(M, K; (G, q,¢) is a topological invariant of the
pair (M, K).

An argument very similar to the proof of lemma 2.1, explains why assum-
ing ¢ to be non-degenerate is no loss of generality. For ¢ degenerate, define

(M, K; G, q,c) as | kerad b,z times the right hand side of (3.1).

Lemma 3.1 Ifq is degenerate then 7(M, K; G, q,c) = (M, K; a, q, ¢), where
G = G/keradby, ¢: G — Q/Z is the induced quadratic form on G and ¢ is
the projection of ¢ in (.

As a further elucidation of 7(M, K; G, ¢, ¢), we compute its absolute value:
Theorem 3.2 If7(M,K; G, q,c) # 0, then |[7(M, K; G, q,¢)| = |H'(M;G)]=.

Note that the absolute value of the invariant does not depend on the knot
K, nor on ¢ (unless ¢ is degenerate).

Theorem 3.2 uncovers only part of the nature of 7(M, K;G,¢,¢). Our
goal consists in providing an explicit formula for 7(M, K; G, ¢, ¢) in terms of
the classical topological invariants of (M, K'). See Theorem 3.4 and corollary
3.4.1. As in the previous chapter, this goal is achieved through an application
of a reciprocity formula between Gauss sums, which we describe in §3.1.3.
As a necessary step, we first need a generalization of the framing number of
a knot.
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3.1.2 The generalized framing number of a knot

We denote by T the finite abelian group Tors Hy(M;Z). Recall that given an
oriented framed knot K C M such that [K] € T, there is a framing number
Fr(K) € Q which is a topological invariant defined as follows. Let r be an
integer such that r[K] = 0 in Hy(M;Z). There exists a singular 2-chain C
in M such that dC = rK. Denote by K’ the push-off of K determined by

the framing. Put

K
C K iy (3.2)

r

Fr(K) =

r

where C - K’ is the algebraic intersection number of C' and K’. In particular,
recall that Ly ([K],[K]) = Fr(K) mod 1.

We now present our generalization of the framing number. Let K C M
be an oriented framed knot. We shall say that K has an n-decomposition
if [K] = nA+ pu, wheren € Z, X € H(M;Z) and p € T. Clearly, K has
an n-decomposition if and only if the projection of [K] in H{(M;Z)/T is
divisible by n. For example, K has a 0-decomposition if and only if [K] € T'.
Set

n ifn =1 mod 2.

Nn:{Zn if n =0 mod 2;

Let r be an integer such that ru = 0 in Hy(M;Z). Choose a l-cycle ¢
in M such that [{] = A. Since r[K — nl] = r[K] — rnA = 0, there exists a
singular 2-chain C' in M such that 0C = rK — rnf. Equip £ with a non-
singular vector field and take the push-off ¢’ of £ going along that vector field.
Now we define
7! !
FR, ,(K) = R =Cnl 17/N,Z. (3.4)

r

The right hand side of (3.4) seemingly depends on a number of choices:
the integer r, the 2-chain C, the 1-cycles £, ¢'. The following result says that
FR, ,(K) is independent of these choices.

Theorem 3.3 (Generalized framing number)
1. FRy .(K) only depends on (M, K) and the n-decomposition of K.
2. For any n € Z such that K has an n-decomposition, the number

B C-K'
- T

FR,(K) € 17/27 = Z/nZ
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is a topological invariant of (M, K).
3. FR,, generalizes the usual framing number Fr in the sense that if [K] € T,
then Fr(K) = FRo(K).

The proof, which involves a computation in a 4-manifold X bounded by
M (see §3.2.3), is given in §3.3.3.

We shall need both numbers FR, ,(K) and FR,(K) in the next section.
Note that they are related : FR,(K) = FR, ,(K) mod 2. In fact, in the next
section, we develop an explicit formula for 7(M, K; (G, q,¢) which requires
an n-decomposition for K (where n is the order of ¢ in ). It turns out
that FR) ,(K) is an important ingredient in this formula. However, since
(M, K; G, q,c) does not depend on a particular choice of an n-decomposition
for K, 7(M, K; G, q,c) will depend only on FR,,(K), which is a topological
invariant of (M, K'), rather than FR, ,(K).

3.1.3 Understanding 7(M, K; G, ¢, c) through reciprocity

Let f:V xV — Z be a non-degenerate symmetric bilinear form. Then the
induced homomorphism ad fq : Vq — V¢ = Hom(Vq, Q) is an isomorphism.
Suppose that f is equipped with an integral Wu class v € V. We denote by
Dy, Vg — Q the quadratic form defined by:

®5.(2) = 5 (val(ad f) ™ (2)) — 2(v), (35)

where xq € Vj denotes the rational extension of z € V*. Recall that by
definition (§1.3,(1.5)), ¢s.(x +ad f(V)) = @4,(x) mod 1 for any z € V*.

We say that the triple (G, ¢, ¢) is derived from the quadruple (V, f,v,§),
where f : V x V — Z is a non-degenerate symmetric bilinear form on a
lattice V, v € V an integral Wu class for f and ¢ an element in V*, if
(G,q) = (Gy, ¢y,) and cis the image of € under the projection V* — G = G.

Lemma 3.2 Let n be the order of ¢ in G. Then ®;,(£) € iZ if n is even
and ®y,(§) € 2Z if n is odd.

Proof. By definition, ¢;,(c) = ®,(£) mod 1. Applying lemma 1.12, part
1, to ¢s.(c) yields the desired result for @ ,(¢). O
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Let s be the rank of V and let (ey,...,e5) be a basis for V. We define
an (s + 1) x (s + 1) matrix B = (bjr)1<jk<s+1 in the following way. For
1 <jk <s,weset by, = flej,exp); for 1 <k <'s, set bspyp = brst1 = E(er);
set bsi1s41 = &(v). Note that this matrix is symmetric and contains the
matrix of f as an (s x s)-submatrix.

Recall that we denote Ly : T x T' — Q/Z the linking form of M.

Theorem 3.4 Let M be a closed oriented connected 3-manifold and K an
oriented framed knot in M. Let QQ : T — Q/Z be a quadratic form over L.
Let (G, q,c) be a triple derived from a quadruple (V, f,v, &) as above. Let n
be the order of ¢ in G.

1. If K has no n-decomposition, then 7(M, K;G,q,¢) = 0.

2. If K has an n-decomposition, then

T M7 I(; G7 q,c — A (W) on K = miD(z z
( 1 ;) — V(TaQ) 62 Dy, (E)FRA ,(F )|T| 5 Z 62 D(z1,...,s,1)
|}{ (]k{;(;)|2 (z1e.0zs)ETS

where [K] = nX + p is an n-decomposition of K and

D(ai,..,esn) = Y0 0Qz)+ Y. bplar(zj, wr).

1<5<s+1 1<5<k<s+1

This is the main result of this chapter. The right hand side of (3.6)
seems complex, but in contrast to (3.1), does not depend on the surgery and
is explicitly intrinsic. We explain why the right hand side of (3.6) is well
defined (and non-trivial). The non-degeneracy of Ly implies (lemma 1.8)
that (7, Q) # 0. It follows from lemma 3.2 that ®;,(£) € NLHZ where N,
is defined by (3.3). By definition, FR, ,(K) € Q/N,Z. Hence the product
O, (6)FR, L(K) is a well defined element of Q/Z . We observe that the
quadratic form D is actually a tensor product, namely B ® Q). (See §1.1,
(1.1).) We note that in the case K has no n-decomposition, formula (3.6)
has no direct generalization. The proof of Theorem 3.4 is given in §3.3.4.

Remarks.

1. Theorem 2.3 is the particular case ¢ = 0 in Theorem 3.4. (Since in this
case, n = 1 and all knots are 1-decomposable, part 2 of Theorem 3.4 applies.)
This follows from formula (3.1) and the reciprocity formula (1.24) but can
also be verified directly from (3.6).
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2. It is not obvious (and is a consequence of Theorem 3.4) that the right
hand side of (3.6) is a topological invariant of M (because of the choices of Q)
and (A, p)). It can be checked directly that the right hand side of (3.6) does
not depend on the particular choice of () and therefore, depends in fact on
(the associated bilinear form) Lys. It can also be verified directly that the
right hand side of (3.6) is independent of the particular n-decomposition for
K. 1t follows also from Theorem 3.4 that the right hand side of (3.6) does
not depend on the choice of (V, f,v,£). The author does not know a direct
proof of this fact.

3. The absolute value of the right hand side of (3.6) is 0 or 1. This is a con-
sequence of Theorem 3.2 or, alternatively, follows from properties of Gauss
sums (lemma 1.8).

4. Any triple (a finite abelian group (G, a homogeneous non-degenerate
quadratic form ¢ : G — Q/Z, an element ¢ € ) can be derived from a
quadruple as above. This follows from lemma 1.4.

Before stating the following consequence of Theorem 3.4, we note that the
invariant FR,(K) (defined in Theorem 3.3, part 2) can be trivially extended
by setting it to 0 if K has no n-decomposition.

Corollary 3.4.1 For fized (G, q,c¢), the invariant 7(M, K; G, q,c) is deter-
mined by the following data:

(1) the first Betti number of M, by(M) = dim H,(M;Q);
(i1) the linking form Ly : T x T — Q/Z;

(117) the framing number FR,(K) of K, where n is the order of ¢ in G.

Proof of corollary 3.4.1. The statement is a direct consequence of Theo-
rem 3.4 and the fact that |H'(M; )| is determined by by (M) and T. &

Corollary 3.4.2 If M is a homology sphere, then
(M, K; G, g, ¢) = 2R,

Proof. follows from Theorem 3.4 and the fact that 7' = 0. &
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3.2 Preliminary computations in dimension 4

3.2.1 A 4-dimensional formula for 7(M, K;G,q,c)

In this section, we give a more general formula than (3.1). Let M be a closed,
oriented, connected 3-manifold, with an oriented framed knot K in M. There
exists a simply connected compact smooth 4-manifold X such that 0.X = M
(see [Rok]). As a consequence of the Poincaré duality, the second homology
group of X is a lattice and carries a (non necessarily unimodular) symmetric
bilinear pairing Bx : Hy(X;Z) x Hy(X;Z) — Z. Let 0(Bx) be the signature
of Bx, which is equal to the number of positive eigenvalues of Bx minus the
number of negative eigenvalues of Bx. Denote by by(X) the second Betti
number of X.

Since X is simply-connected, K bounds a singular 2-chain ¥ in X, equipped
with a generic normal vector field which extends that of K. Pushing off along
that vector field, we obtain another 2-chain ¥’. Denote by ¥ - ¥/ the alge-
braic intersection number of ¥ and ¥’ in X. Since ¥ is a relative 2-cycle in

X modulo X, we set a = [¥] € Hy(X,0X;Z). The map
G x Hy(X;2) = Q/Z, (9,y) = by(g,¢) - (- y) (3.7)

(where a -y € Z denotes homological intersection of o and y) induces a
homomorphism Fy .+ G ®@ Hy(X;Z) — Q/Z. Then we define the following

complex number:

(M, K;G,q,¢c) =

——0c 2 (X) i - o (z s
= (G, q) (Bx)|G|—¥ Y BB+, (D +@EE) (g g
r€GRH, (X;2Z)

For the definition of ¢®@ Bx, see (1.1) in §1.1. Since ¢(¢) € Q/Z and X-¥' € Z,
the product ¢(c)X - X' is well defined.

By comparison with formula (3.1), we observe that the right hand side of
(3.8) involves topological data from the 4-dimensional manifold X instead of
surgery data. The following lemma makes explicit the relation between the
two formulas.
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Lemma 3.3 The formula (3.1) is a particular case of formula (3.8) above.

Proof. Let (L,L’) be a surgery presentation for (M, K'). This surgery on
S3 = 9B* can be seen as the boundary of a certain 2-handle surgery on B*
(see [Rol][Ki2] for details). There are as many 2-handles Cy,...,C,, as L
has components. We can choose these 2-handles so that the surgery on B*
produces a compact, simply connected, oriented, smooth 4-manifold X such
that 0X = M. The linking matrix Ay, is identified with the matrix of the
intersection form By with respect to the base ([C4],...,[Cn]) of H2(X;Z).
Next, we can choose a 2-chain ¥ in X such that 0¥ = K, (¥ - C)x is the
linking number of L and Ly for all 1 < k < m and (¥ - X')x is the framing
number of L' in S3. This achieves the proof. &

3.2.2 Self-intersection of a relative homology class

In this section, we use the intersection of the relative 2-cycles ¥ and ¥’ de-
fined in the previous section to define a self-intersection for the homology
class o € Hy(X, M;Z). We keep the same notation.

By [K]- H2(M;Z), we denote the ideal in Z defined by {([K]- o)m, 0 €
Hy(M;Z)}, which can also be defined by Poincaré duality and cup product.

Lemma 3.4 The intersection number ¥ - %' € Z considered modulo 2[K] -
Hy(M;Z) does not depend on the choice of the representative ¥ for a.

Therefore, the number defined in lemma 3.4 only depends on o and K
(with its orientation and framing). We denote it by a - a. Note that in
particular, a - € Z if [K] € T

Proof. Let ¥ be another (relative) 2-cycle representative for a. Then Py
is a 2-cycle in X. But the image of [; — Y] by the inclusion homomorphism
Hy(X;Z) — Hy(X,M;Z) is 0 since ¥ and ¥ are both representatives for a.

Hence, by exactness of the sequence
0— Hy(M;Z) — H3(X; Z) — Ha(X, M Z)

DD € Hy(M;Z). So > and ¥ differ by a 2-cycle o in M. Similarly, the
push-off 3 of ¥ (obtained by going along the normal vector field on ¥) will
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differ from ¥’ by another 2-cycle ¢’ in M. It also follows that ¢ and ¢’ are
homological in M. Pushing slightly o, ¢’ in X, we obtain

IS =X+0) (¥4
= Y4+¥Y.-0o+0c-X+0-0
= Y+¥ .0 +0c-X
=Y .Y 42 .0
=Y .Y 42K 0.

The second equality follows from the fact that ¢ and ¢’ are 2-cycles in M and
hence o- ¢’ = 0 in X. The third one follows from - ¥ = ¥/ 0 = ¥ ¢’ since
[c] = [0]. The last equality is a consequence of the fact that 0¥ = K € M
and ¢’ C 0X = M. This proves the claimed result. &

As an important consequence of lemma 3.4, we mention the following
result:

Lemma 3.5 If K has an n-decomposition, then a-a mod 2nZ is well defined.

Proof. Since [K]- Hy(M;Z) C nZ, the result follows directly from lemma
3.4. %

3.2.3 A 4-dimensional view of the framing number of
a knot

In this section, we present an alternative definition of the framing numbers
of a knot K C M which we defined in §3.1. This alternative definition can
be thought of as a 4-dimensional computation of the framing number and is
crucial to the proof of Theorem 3.3.

We keep the same notation as §3.1 and §3.2.2. We are given an oriented
framed knot K in a closed, oriented 3-manifold M, bounding a smooth,
oriented, simply-connected 4-manifold X. Since H;(X;Z) = 0, the boundary
homomorphism

Hy(X,M;Z) 2 Hy\(M;Z)

is surjective ; we choose an element o € Hy(X, M;Z) such that da = [K].
Assume, furthermore, that K is equipped with an n-decomposition: [K| =
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nA+ pu. Consequently, there exist 3,y € Hy(X, M;Z) such that a = nf+ 7,
with 03 = A. By exactness of the sequence

Hy(X;2) 5% Hy(X, My Z) "~ H,(M; Z),
for any integer r such that ru = 0, there exists v € Hy(X;Z) such that
(ad Bx)(u) = ry. (Here we have identified Hy(X;Z)* and Hy(X,M;Z).)
Let ‘
Nn:{ 2n if n =0 mod 2;

n ifn=1mod 2.
We now define the following number:

Bx(u,u)

2

fr(K)=a-a— € lZ/NnZ. (3.9)
r

"
Since K has an n-decomposition, 2[K] - Hy(M;Z) C 2nZ C N,Z. Thus
a-a mod N, makes sense (cf. lemma 3.5) and hence the right hand side of

(3.9) is well defined.

Lemma 3.6 The number fr(K) defined by (3.9) does not depend on the
choice of r, a and X. It only depends on (M, K) and the n-decomposition
of K. Furthermore: fr(K) = FR) ,(K).

For the definition of FR, ,(K), see §3.1.2, formula (3.4).
Proof. We proceed in 3 steps.

1. We show that fr(K') does not depend on the choice of v € Hy(X;Z) nor
on the choice of r. Any other choice for u is obtained by adding an element
v € ker(ad Bx). Thus: Bx(u 4+ v,u 4+ v) = Bx(u,u). Let now r’ be another
integer such that r'u = 0. Suppose that r divides r’ (otherwise exchange r
and r’'). Then we choose v’ = %lu so that ad Bx(u') = %'r’y = r’'y. Hence
r?Bx(u',u') = TQBX(%IU, %'u) = Bx(r'u,r'v) = r”?Bx(u,u). This is the de-

sired equality.

2. We show that fr(K) (which we temporarily write as fr,(K)) does not

depend on the choice of a. Any other choice o' is obtained by adding to «
an element ad By (a) € ker d = Im ad By, for some a € Hy(X;Z). Thus:

oo =a-a+2a-a+ Bx(a,a).
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Let w € Hy(X;Z) such that ad Bx(u) = rvy. We have:

froz’([() — fra([() = o -ad—-—a- o + Bx (u,u)— BX2(u+ra,u-|—ra)
2a- a + Bx(a, a)—ZBX(u a) — Bx(a,a)
2(a-a— Bx(u, “))

r

= 2(a-a—7v-a)
= 2nf-a
= 0 mod 2n.

3. We prove that fr(K) coincides with FR) ,(K') defined by (3.4). Since
FR, ,(K) does not depend on the choice of a smooth, oriented, simply-
connected 4-manifold X bounded by M, this will also prove that fr(K) is
independent of X and finish the proof.

First, we find a representative 2-cycle U for u. We are already given
relative 2-cycles Y, ¥/ such that 93 = K and 0¥’ = K'. Let o be a relative
2-cycle in (X,0X) such that do = ¢. Extend the non-singular vector field
on ¢ (along which we obtain the pushed-off ¢') to a generic vector field on o.
Let us denote by o the push-off of o along this extended vector field. We
can choose o so that o (resp. o') is in tranversal position with respect to
Y’ (resp. X). Then a representative U for u is given by U = r¥ — C — rno
(which is an integral 2-cycle in X).

Now we construct another representative 2-cycle U’ in general position
with repect to U. See figure 3.1. Add a collar to M = dX. Let C’ be a
2-chain in M such that 9C’' = r K’ — rnl’. Take

U=r(X+K x1)—C"x1—rno.
We now compute Bx(u,u) = [U]-[U] = U -U’. We have:
U-U = 2. —¢rC-Y —r?noe-Y —r’no’ - X +rnC - o' + r’n’c - o’

Y Y —rC-K' —r*n(oc- Y +%-0")+rnC -l 4+ r*n*c- o
r’a-a—rC-K' +rnC-{ mod N,.

The first equality follows from computation (all other terms are 0); the sec-
ond equality from the fact that C'-¥' = C- K’ and C-0’ = C-¥'; to see the last
equality, observe that o-¥' +3-0" = 203, thus n(o-X'+3-0') = 0 mod 2n.
Finally, it remains to see that n? € 2nZ if and only if n € 2Z. Now dividing
the last equality by r2, we obtain the desired result. &
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777777 K K°C n?n! nlh?” CcK K M

O- .
(rn copies)

2 >’
(r copies) (r copies)

Figure 3.1: Self-intersection of the 2-cycle U

3.3 Proof of results
All proofs use the 4-dimensional definition (3.8) of 7(M, K; (G, g, ¢) as a start-

ing point.

3.3.1 Proof of Theorem 3.1

Let n be the order of ¢ in G. We distinguish two cases according to whether
[K] has an n-decomposition or not.

Case 1. K has an n-decomposition

By lemmas 3.5 and 1.12, ¢(¢)X - ¥’ = g(¢)a - o (thus this expression de-
pends only on « and K). We now proceed in two steps.

1. First we prove the following claim: the right hand side of (3.8) does
not depend on the choice of a € Hy(X,0X;Z). Let 8 € Hy(X,0X,Z) be
another lift of [K] € Hi(M;Z). Then 8 = a+i(u), where u € Hy(X;Z) and
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i: Hy(X;Z) — Hy(X,0X;Z) is the inclusion homorphism. We have:
F () = Bofa)+ (b By)(e.c@u), o€ Go HlX, M)

(see §3.2.1, (3.7) for the definition of the homomorphism F}? ) and

q(c)B-B = qlc)a-a+2q(c)a-u+qg(c)u-u
= q(c)a-a+ I (c®u)+(¢@ Bx)(c®u).

It follows that

(¢ Bx)() + B (2) + a(c)B- B = (q® Bx)(2) + F2 (2) + q()a - a
T B2 (c@u) + (b, ® Bx)(x, e 8 u) + (¢© Bx)(c D).

Using the identity Q(z 4+ y) = Q(z) + Q(y) + bg(x,y) in the equality above
with ) = ¢ ® Bx and y = ¢ ® u, we find that

(¢® Bx)(x)+ Fy (x) +q(c)B- 8= (¢® Bx)(x+y) + Fy (x+y) + ¢(c)a-a.

Therefore, by translation of the variable:

S exp(2ni((¢@ Bx)(z+y) + Fy (x4 )+ qlc)a- a))

z€GRH>(X;Z)
= Y exp(2ri((¢@ Bx)(x) + F (x) + glc)a - a)).
z€GRH>(X;Z)

That is the desired equality, which proves the first step.

2. Our next claim is that the right hand side of (2.1) (which we tem-
porarily denote by 7(X)) does not depend on the particular choice of the
4-manifold X. Let Y be another smooth, oriented, simply-connected 4-
manifold bounded by M. It follows that the intersection forms Bx and
By induce the same linking form £j; on the boundary M (see (1.7)). Ac-
cording to lemma 1.4, (H2(X;Z), Bx) and (Hz(Y;Z), By) are related by

stabilization: there exists an integer N such that
(H:(Y3Z), By) = (Hy(X: Z), Bx) ® &;1,(Z, (£1)).

(By (£1), we mean the unique bilinear form on Z which sends (1,1) to
+1.) Suppose that we are given an isomorphism ¢ : (Hz(X;Z), Bx) —
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(Hy(Y;Z), By ) which makes the following diagram commute:

(X3 Z) ’ (Y3 Z)
ladBX ladBy
Hy(X, M; Z) vy Hy(Y, M Z)
H(M;Z)

Choose 3 = (¢ ') € Hy(Y,M;Z). (ie., -y =a- ¢ (y) for all y €
Hy(Y;Z).) Let [K] = nA + p be an n-decomposition for K. There exist
ag,y € Hy(X, M;Z) such that @ = ny 4+ ap and dxag = p. Let r be an
integer such that ru = 0. Pick a € Hy(X;Z) such that ad Bx(a) = rao.
Then ad By (¢(a)) = r(¢~)*ag. Hence, by lemma 3.6,

FRyu(K)=a-a— i;z,a) =03-8- Br(¢la), ¢(a)) (mod N,,)

7 72

where N,, = 2n or n according to whether n is even or odd respectively. Therefore:

aa=5:8 = (Bx(ea) - By(4(a),6(e)) mod N,

L (Bx(a,a) - Bx(a,))) mod N,

72

= 0 mod N,.

It follows from lemma 1.12 that ¢(c)a - a = ¢(c)5 - 3. Set

Sy= Y exp(2mi((¢® By)(y) + F{ .(v) + (a)(c)B - ).
yEGRH2(Y;Z)
The map ¢¢ = idg ® ¢ is an isomorphism between GG @ Hy(X;Z) and
G ® Hy(Y;Z). Accordingly, we find:

Sy = Z( | )exp(zmaq@ By)(éa(2)) + ] (¢a(2)) + qlc)a - a))

= Y exp(2mi((q® Bx)(@) + F (2) + q(c)a- a)) = Sx.
z€GRH,(X;Z)
Since (H2(X;Z), Bx) = (Hy(Y;Z), By ), we have by( X ) = by(Y) and o(Bx) =
o(By). It follows that 7(X) = 7(Y).
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Next, assume that (Hy(Y;Z), By) = (Hy(X;Z),Bx) & (Z,(£1)). Then
Hy(Y,M;Z)= Hy(X,M;Z) & Z. We choose:

ﬁ: (O./,O) € HQ(X7M7Z)@Z

Then:
Sy =Sx-Y. exp(:l:27rq(g)).
geq
Therefore:
o(By)

") = 16 s
— |G 5O, g P S - Y exp(£2ma(9)
- T(X)

Here we used the fact that bo(Y) = ba(X) + 1, 0(By) = 0(Bx) + 1 and the
definition of v((, ¢). This achieves, in Case 1, the proof of Theorem 3.1.

Case 2. K has no n-decomposition

We show that the right hand side of (3.8) is zero.
Lemma 3.7 If K has no n-decomposition, then 7(M, K; G, q,¢) = 0.

Proof of lemma 3.7. First, we claim that F}? (G @ kerad Bx) = 0 if and
only if c®@ [K] = 0. If F} (G @ kerad Bx) = 0, then by(c,c)a -u =0 for all
u € Hy(X;Z). Since the order of b,(c, ¢) is exactly n, we deduce that « - u
must be a multiple of n for all u € Hy(X;Z). Therefore, a € nHy(X, M;Z)
and thus [K] = da € nH1(M;Z). Since n is the order of ¢ in G, that implies:
¢ ® [K] = 0. Conversely, assume that ¢ ® [K] = 0. By lemma 1.14, there
exists K € Hy{(M;Z) such that [K] = nk. Let ap € 97'x (recall that 9 is
onto). By exactness of the sequence

a.dBX

Hy(X;Z) 25 Hy(X, M Z) —2> Hy (M, Z)

there exists ug € Hz(X;Z) such that o = nag + ad Bx(ug). Let g € G and
u € kerad Byx. Then

bQ(C7g)a U= bq(c,g)(nao “u+ BX(u(h u))
by(ne, 9)at -+ by(e,9) B (o, )
= 0.
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This proves the claim. Next, let S be the orthogonal complement of kerad Bx
in Hy(X;Z), so that G @ Hy(X;Z) = (G®S) & (G @ kerad Bx). By

multiplicativity of Gauss sums, we have

VGOHy(X;Z),q@Bx+Fy, ) = 7(GRS, q@Bx+F;) .)-7(GQkerad Bx, Fy ).

(3.10)
Since K has no n-decomposition, [K]| ¢ nH{(M;Z). Applying lemma 1.14
below, we find that ¢ ® [K] # 0. By our claim above, we deduce that
By (G @ kerad By) # 0. It follows from that lemma 1.5 that (G @
kerad By, Fy: .) = 0. Hence, by (3.10), 7(M; G, q,c) = 0. &

3.3.2 Proof of Theorem 3.2

The proof follows the same lines as that of Theorem 2.2. Instead of consid-
ering ¢ @ By, we consider the quadratic form () = ¢ ® Bx + Iy} .. Observe
that the associated bilinear form bg is b, @ Bx. From lemmas 1.13 and 2.2,
we deduce that kerad(b, ® Bx) = H'(M;G). Then it follows from lemma
1.8 and the definition (1.8) that

2

2 P rillam B+ F(w)

0 otherwise.

_ { G © Hy(X;2)|[H(M; G)] if Q(kerad(b, ® Bx)) = 0

The theorem now follows from lemma 1.8, the definition (3.8) for 7(M, K; G, ¢, ¢)
and the equality above. &

3.3.3 Proof of Theorem 3.3

Part 1 of Theorem 3.3 follows from lemma 3.6.

Proof of part 2. Observe that FR,(K) = FR) ,(K) mod 2. So it suffices to
prove that FR) ,(K) is unchanged modulo % if we vary the n-decomposition
(A, p) for K. Let

[K] =nA + 1y

be another n-decomposition for K. Choose an integer r such that

r=ru = 0.
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Let X be a compact simply connected smooth 4-manifold such that 0.X = M.
Let a € Hy(X, M;Z) such that da = [K]. Let 8,061,v,m € H2(X,M;Z)
such that

a=nl+~vy=nb+m (3.11)
and

a/‘)/ =T, a"}/l =Tl1.
It follows from lemma 3.6 that

Bx (u,u) — Bx(uy,ur)

2 Y

FRy, ., (K) = FRy ,(K) =

r

where ad Bx(u) = rvy and ad Bx(u1) = ry;. Then:

Bx(u,u) — Bx(u,u) Bx(u — u1,u + uy)

(ad Bx(u — ul)) (u+ uy)
r(y —=m) - (v ur)

0 mod rn.

The last equality follows from the fact that v —v; € nHz(X, M;Z) (because
of (3.11)). This is the desired equality.

Part 3 follows from definitions. &

3.3.4 Proof of Theorem 3.4

Part 1 of Theorem 3.4 is proved in the course of the proof of Theorem 3.1
(§3.3.1, case 2).

We turn to the proof of Part 2. By lemmas 3.5 and 1.12, ¢(¢)¥ - ¥/ =
g(c)a - . Set W = Hy(X;Z), g = Bx and gq = Bx ® idq. We identify
Hy(X, M;Z) with W*. From Theorem 3.2 and formula (3.8), we deduce that

(M, K;G,q,c)

2mid s 4 (c aaTA T —ol9) o
|H1(M; G)|% = ?miéta(0) V(Gﬁ(bf,v) V(Gf QW,ds @9+ Fb%c);
(3.12)
where (G, q) = (G, ¢s,). Next, by (1.7) and lemma 1.22, we can equip g
with a Wu class w € Wq such that (T, Q) = —(Gy, ¢g.w). Since [K] = nA+p,
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there exist 3,y € Hy(X, M;Z) such that a = nf + v and 9y = u. We are
now able to apply the reciprocity formula (1.24), with the following rational
Wu class for f ® ¢: )

z=vRw—2R®7,
where ¢ € (ad fq)™'(€) is a lift of £ (which exists because ¢ is a torsion ele-

ment) and § € (ad gq) ' (7) is a lift of 4 (which exists because u is a torsion
element). We have:

_ %( o(f@g)— (fQ®gQ)(z z)) ~(V @ Gyy f @ bga + Ff )
FUO)-UQPQEN (VR T, f Q + FE, ).

o

The first equality follows from the observation that F; = = sz,ﬁcﬂ = ngc
since n is the order of c¢. The second equality is the application of (1.24) per
se. A straightforward calculation yields:

(fQ ® gQ)(Zv Z) = f(‘U, ’U)g(‘w, w) — A, (313)

where A = 4fq(v,&)gq(w,7) — 4fa(£,€)gq(7,7). Using (1.11), we deduce
from (3.13) that

v

TG 3T DT W 0-(iq8a)5) = F (ola)-stww) fo) T
= g7¢gw) UU€4A
= AT, "R,
Therefore:
(M, K;G,q,c¢)
|HY(M; G)|%

f(v,v)

= il @eat AT YV o T F e Q + FE, ).

We compute the remaining term (the next three equalities are to be under-
stood modulo 1):

pru(c)a-a+ A = 3(fal€€) — falév))(a: - ga(7.7))
— fa(v,)}(9q
= &7, (E)FR(K) = fo(v.&)i(ga(7,

=&, (OFRyL(K) + £(v )Q( )-

7) = 9a(w, 7))

(’?)

(7,
7) -
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The second equality follows from definitions, lemmas 3.6 and 3.2 (which
guarantees that ®;,()FR, ,(K) is a well defined element in Q/Z). The
last equality follows from the facts that by definition, Q(¢) = —3(9q(5,7) —

9q(¥,w)) mod 1 and that fg(v,&) = £(v) is an integer (so that &(v)Q(u) is
a well defined element in Q/Z). Finally, we observe that

).
5

e?wiQ(u)&(v) 7(‘/ ® T,f ® Q 4 FEMW,) — |T|_2£ E e?wi(B@Q)(zl ..... zs,u)‘

(z1,..zs)ET®

The equality follows from the definition of «, the fact that keradbsgg =
ker(ad f @ ad B) = 0 (f and @ are non-degenerate) and the definition of the
matrix B. This achieves the proof of Theorem 3.4. &



Chapter 4

Invariants of links in
3-manifolds

This chapter consists of a generalization of the constructions and results of
the previous chapter. Instead of restricting oneself to knots, we now allow
links to come into the picture. Although it is a direct continuation of chapter
3, this chapter can be read independently from it.

Let M be a closed oriented and connected 3-manifold and let L = L; U
...U L, be an oriented framed link in M. (Here, by framed link, we mean
a link each component of which is equipped with a non-singular normal vec-
tor field.) We define a C-valued topological invariant of (M, L), denoted
(M, L; G, q,c), where ¢ = (¢1,...,¢,) is a fixed element of G™.

We follow the same approach as in the previous chapter. In §4.1.1, we
give a definition of 7(M, L; G, q,¢) in terms of a surgery presentation for
(M, L). An alternative, more general, definition is given in §4.2.1 in terms
of a simply-connected, oriented 4-manifold bounded by M. The main re-
sult consists in an explicit formula for 7(M, L; G, q,c) in terms of classical
3-dimensional invariants of (M, L) (Theorem 4.3 and corollary 4.3.1). The
fundamental ingredient is the reciprocity formula for Gauss sums of §1.8.

Remark. For technical reasons, we shall limit ourselves to the case when
all homology classes of the components of L are torsion elementsin Hy(M;Z).

81
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4.1 The invariant 7(M, L;G,q,c)

Let M be a closed, connected, oriented 3-manifold and L = Ly U...U L, be
an oriented framed link in M. We make the additional hypothesis that all
homology classes [L;] are torsion elements in Hy(M;Z).

4.1.1 A description based on surgery

The surgery and related results described at the beginning of §3.1.1 can be
easily generalized to produce (M, L). Instead of using an additional oriented,
framed knot in the complement of the surgery link in S®, use an extra ori-
ented, framed link and follow the same surgery instructions on the surgery
link. All pairs (closed connected oriented 3-manifold, framed oriented link in
this 3-manifold) are known to be produced in that fashion. Let (L', L") be
a surgery presentation for (M, L), where L' = L{ U ... U L! is the surgery
link and L" = L], ,, U...UL! . . Denote by A = (a)i1<ij<m4n the linking
matrix of L'UL", that is, the (m+n) x (m+n) matrix of integers defined by:
a;; is the linking number of L] and L’ in S° if i # j and a;; is the framing
number of L in S3. Denote by Ap: the m x m submatrix of A given by
Ap = (aij)i<ij<m- Let o(L’) denote the signature of the (real symmetric
bilinear form determined by) matrix Az

Let ¢ : G — Q/Z be a quadratic form on a finite abelian group G. For
simplicity, we shall assume in this chapter, unless explicitly stated to the
contrary, that ¢ is non-degenerate. By lemma 4.1 below, this hypothesis
is no loss of generality. Recall that the non-degeneracy of ¢ implies that
v(G, q) # 0. (see §1.4 for the definition.) Fix n elements ¢1,...,¢, in G. We
define the following complex number:

———a (L) _m i Lo oL oo
(M, L;G,q,0) =v(G,q) |GI7% Y. el )

(4.1)

The tensor product ¢ ® A is defined in §1.1. This invariant is a direct
generalization of the invariant defined in the previous chapter in the sense
that 7(M, L;G,q,¢) = 7(M,K;G,q,¢) if n = 1, i.e., L = K is a knot (I-

component link).
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/

The terms |G|~% and (G, q)U(L) are normalization factors which are
better understood in light of Theorem 4.1. The right hand side of (4.1)
seems to depend on our choice of the surgery presentation of (M, L). The
theorem belows says that the number 7(M, L; G, g, ¢) is independent of the
surgery.

Theorem 4.1 The complex number 7(M, L; G, q,¢) is a topological invariant
of the pair (M, L).

An argument, very similar to the proof of lemma 2.1, justifies why assum-
ing ¢ to be non-degenerate is no loss of generality. For g degenerate, define

(M, L;G, q,c) as | kerad b,|? times the right hand side of (4.1).

Lemma 4.1 [fq is degenerate, then (M, L; G, q,¢c) = 7(M, L; G, q, ¢), where
G = G/keradb,, ¢ : G — Q/Z is the induced quadratic form on G and

¢=(¢,...,&,) is the projection of ¢ = (cy,...,¢,) in G".
As a further elucidation of 7(M, L; G, q, ¢), we compute its absolute value:
Theorem 4.2 If 7(M, L; G, q,¢) # 0, then |7(M, L; G, q,¢)| = |H'(M; G)|z.

Note that in particular, the absolute value of the invariant does not de-
pend on the link L, nor on gq.

4.1.2 Understanding 7(M, L; G, ¢, c) through reciprocity

We keep the same notation as §4.1.1. Let f : V xV — Z be a non-degenerate

symmetric bilinear form on a lattice V. We define a symmetric bilinear form
VG x Vg — Q by the formula

vy =z((ad fQ) ' (y), w,y€ Vg

Note that this is nothing else but the bilinear form associated to the quadratic
form @y, : Vj — Q defined by (3.5) in §3.1.3. We say that the triple (&, ¢, c)
is derived from the quadruple (V) f,v,€), where f : V x V — Z is a non-
degenerate symmetric bilinear form, v a Wu class for f and ¢ = (&1,...,&,)
an element in (V*)", if (G, q) = (G, ¢y,) and ¢; is the image of £; under the

projection V* %Gy =@, for 1 < j <n.



84 CHAPTER 4. INVARIANTS OF LINKS IN 3-MANIFOLDS

Let s be the rank of V and let (eq,...,€e5) be a basis for V. We define an
(s +n) x (s +n) matrix B = (bjz)i1<jr<s+1 of integers in the following way.
For 1 < j,k < s, weset bjr = f(ej,ep); for 1 <7 <nandl <k <s, set
b5+j7k = bk75+]‘ = f]‘(ek); for 1 S ],k‘ S n, set bs+]‘75+k = fj(’U)(Sjk where (Sjk 1s
the Kronecker symbol. Note that this matrix is symmetric and contains the
matrix determined by f as a (s x s)-submatrix of B.

flejren) | &ler)

Eklej) | &i(v)djk

Let T'= Tors H1(M;Z). Recall that given two disjoint oriented knots K
and K’ in M such that [K],[K'] € T', there is a linking number Lk(K, K') €
Q which is a topological invariant of (K, K', M), defined as follows. Let r be

an integer such that r[K] =0 in H;(M;Z). There exists a singular 2-chain

C in M such that 0C = rK. Put
C-K' 1
Lk(K,K') = — " ¢ -7 (4.2)
r

r

where C'- K’ denotes the algebraic intersection number of C'and K" in M. The
linking number is symmetric as a function of K and K’. Given a framed knot
K, let K’ be its preferred longitude determined by the framing. We recover
the framing number Fr(K') as defined by (3.2), by: Fr(K) = Lk(K, K').

Let A; be the linking matrix for the link L C M: the jk-th entry is
Lk(L;, Ly) if 7 # k, and Fr(L;) otherwise. It is an n X n symmetric matrix
of rationals.

Theorem 4.3 Let M a closed oriented connected 3-manifold M and let
L =L;U---UL, be an oriented framed link in M such that [L;] € T
for1 <j<n. Let Q:T — QJZ be a quadratic form over Ly . Let (G, q,c)
be a triple derived from a quadruple (V, f,v,€) as above. Then:

(M, L;G,q,c)

) ST, Oy M ermieseean) €
s
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This is the main result of the chapter. The right hand side of (4.3)
seems complex, but in contrast to (4.1), does not depend on the surgery and
is explicitly intrinsic. Note that the non-degeneracy of (7', ()) ensures that
Y(T,Q) # 0. Explicitly, ®;, ® Ap : V3 ® Q" — Q is the quadratic form
defined by

(50 @ AL)(Er, .. 6) = Y Fr(L)®pu(&)+ Do Lk(Lj, Le)é; - &

1<j<n 1<j<k<n

and BRQ: VT =T — Q/Z is the quadratic form defined by
(B@Q) @1, vxsen) = Y bjQz)+ Y. bular(wj, wr).

1<j<s4n 1<j<h<stn

Remarks.

1. It is not obvious (and is a consequence of Theorem 4.3) that the right
hand side of (4.3) is a topological invariant of M because of the choice of Q)
over L. It can be checked directly that the right hand side of (4.3) does
not depend on the particular choice of () and therefore, depends in fact on
L. Tt also follows from Theorem 4.3 that the right hand side of (4.3) does
not depend on the particular choice of (V) f, v, £). The author does not know
a direct proof of this fact.

2. The absolute value of the right hand side of (4.3) is 0 or 1. This is a con-
sequence of Theorem 4.2 or, alternatively, follows from properties of Gauss
sums (lemma 1.8).

3. Any triple (a finite abelian group (7, a homogeneous non-degenerate
quadratic form ¢ : G — Q/Z, an element ¢ € G") can be derived from
a quadruple as above. This follows from lemma 1.4.

As a consequence of Theorem 4.3, we obtain the following result:

Corollary 4.3.1 If (G, q,c) is fixed then the invariant 7(M, L; G, q,¢) is de-
termined by the following data:

(i) the first Betti number, by(M) = dim H{(M;Q);
(i1) the linking form Ly : T x T — Q/Z;
(ii1) the linking matriz A, of L in M.

Proof. Follows from Theorem 4.3 and the fact that |H'(M; ()| is determined
by by (M) and T. &
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Corollary 4.3.2 If M is a homology 3-sphere, then

Proof. Since T'= 0, A, is a matrix of integers. Thus (®;,@AL)(&1,. .., &) =
(¢ ® Ar)(e1,...,¢,) mod 1. Now apply Theorem 4.3. &

4.2 Preliminary computations in dimension 4

4.2.1 A 4-dimensional formula for 7(M, L; G, q,c)

In this section, we give a more general formula for 7(M, L; G, g, ¢) than (4.1).
Let M be a closed connected oriented 3-manifold, with an oriented framed
link L = Ly U...U L, in M such that [L;] € T for 1 < j < n. We shall
use the fact that there exists a simply connected compact smooth 4-manifold
X such that 90X = M. We keep the same notation as §3.2.1. Since X is
simply-connected, each component L; of L bounds a singular 2-chain ¥; in
X. Equip ¥; with a generic normal vector field extending that of L; (recall
that L; is framed). Pushing ¥; along that vector field, we obtain another
2-chain, ¥%. We denote by ¥; - ¥ the algebraic intersection number of ¥;
and Y. Let a; = [¥;] € Hy(X, M;Z), 1 < 57 <n. We now use the fact that
[L;] is a torsion element in Hy(M;Z), 1 < 5 <n.

Lemma 4.2 The intersection numbers ¥; - ¥y € Z do notl depend on the
particular choices of ¥; and Xy and therefore only depend on o and ay.

Therefore, we will denote this integer by «; - a;. It depends on a;, o and
K. Recall that by lemma 3.4, one can define the self-intersection number
aj; - Oy by Zj . Z;

Proof. As in the proof of lemma 3.4, any other choice of representative of
a; will differ from 3; by a 2-cycle in M. So let 0,0’ be two 2-cycles in M,
which we slightly push in X. Then:

(Z]'—I-O')'(Ek—l-a'/) :E]"Ek—I-Z]"O'/—I-O'-Ek—I-O"O'/
:Ej-2k+2j'0/—|—0'2k
IE]‘-Ek—I-LJ'-O',—I-Lk-O'
=5
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The second equality follows from the fact that ¢ and ¢’ are 2-cycles in M and
hence o-¢’ = 0 in X. The third one follows from the facts that o-¥, = ¥ -0
and 0%; = L; C M and o' C X = M. The last equality follows from the
fact that [L;] is a torsion element in Hy(M;Z), for 1 < j < n. This proves
the claimed result. &

Let I' be the n x n symmetric matrix of integers defined by I';;, = ¢ - ay,
ifl1<j#k<n,and I';; = a; - o for 1 <7 < n. Recall that we defined a
homomorphism Fy*, : G @ Hy(X;Z) — Q/Z in §3.2.1, see (3.7). We define

the following complex number:

(M, L;G,q,¢c) =

_ |G|_b2(2X) ma(Bx) 3 ezm((chBX)(z)JerF;‘q’j% ()+(a®0) (c1,..m) cn))‘
z€GRH>(X;2Z)
(4.4)

The right hand side of (4.4) is very similar to that of (3.8) in §3.2.1. The only
difference is that we are now dealing with one more quadratic form, namely
g1 :GRZ" — QJZ (see (1.1) for definition).

The following lemma, which follows from elementary considerations on
surgery, is the immediate generalization of lemma 3.3.

Lemma 4.3 The formula (4.1) is a particular case of formula (4.4) above.

4.2.2 A 4-dimensional view of linking numbers

In this section, we present an alternative definition of the linking number

defined in §4.1.2 by (4.2).

Let K and K’ be oriented knots in a closed, oriented 3-manifold M,
bounding a smooth, oriented, simply-connected 4-manifold X. We assume
that [K] and [K’] are torsion elements. Let a, 8 € Hy(X, M;Z) such that
Ja = [K] and 08 = [K']. By exactness of the sequence

Hy(X;2) 25 Hy(X, My Z) 2~ H, (M Z),
for any integer r such r[K] = r[K'] = 0, there exist u,v € Hy(X;Z) such that
(ad Bx)(u) = raand (ad By )(v) = r3. (Here we have identified Hy(X, M;Z)
and Hy(X;Z)*.) Then we can recover the linking number of K and K’ (see
(4.2) for definition) by means of the following lemma:
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Lemma 4.4 The following equality holds:

Bx(u,v) 1
Lk(K,K')=a- 83— M € 7. (4.5)

r

~

Proof. A representative 2-cycle U for u is U = r¥ — C, where ¥ is a relative
2-cycle in X such that [¥] = a and C is a 2-chain in M such that 0C = rK.
Now construct a representative V' of v in general position with respect to
U. See figure 4.1. Add a collar to M = dX. Let ¥’ be a relative 2-cycle in
general position with respect to ¥ such that [¥'] = a. Let C’ be a 2-chain in
M such that 9C" = rK'. Take

V=rX+K xI)-C"x1.

C'xl1
MxI
K K’ C K K
M
2 — - 2’
(r copies) (r copies)
Y
Figure 4.1: Intersection of the 2-cycles U and V.
We now compute Bx(u,v) = [U]-[V] =U -V. We have:
U-V = .3 —rC- %
= rla-a—rC-K'.
Dividing the last equality by 7%, we obtain the desired result. &

4.3 Proof of results

All proofs will use the 4-dimensional definition (4.4) of 7(M, L; G, q,c) as a
starting point.
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4.3.1 Proof of Theorem 4.1

First we prove the following claim: the right hand side of (4.4) does not
depend on the choice of aq,...,a, € Hy(X,0X;Z). Let 0, € Hy(X,0X;Z)
be another lift of [Ly] € Hi(M;Z) for 1 < k < n. Then 8y = ap + i(ug),
where up € Hy(X;Z) and @ : Hy(X;Z) — Hy(X,0X;Z) is the inclusion
homomorphism. Denote by 1" the new intersection matrix defined by I'}, =

Br- 01, 1 <k, I <n. We have:
R () = F . (2) + (b, ® Bx)(z,c @ui), =€ G® Hy(X, M;Z)

(see §3.2.1, (3.7) for the definition of the homomorphism F}%, ) and

(¢®T(0) = (@ T)(c) + z 2q(e)an - wn + glen)us - us

+ Z bQ(ckv cl)(ak CULF Ug ot U Ul)-
1<k<I<n
Therefore

(¢@Bx)( E F (2)+(q®T")(c) = (¢@Bx)( E Fyk (@) +(g@1)(e)+A,

where

= (¢ ® Bx)(cx @uy) + (by @ Bx)(z, ¢ @ up)
k=1

+ > Fr (a@uw)+ (by @ Bx)(cx @ ug, ¢ @ ).

1<k, I<n

Using the identity Q(Xpxx) = >r Q(zk) + Sper bo(2k, 1) in the equality
above with ) = ¢® By and g = x and x; = ¢; ® ug for 1 < k < n, we find

(42 Bx)(x +E Fite, (2)+(q21)(¢) = (92 Bx)(z+y +Z Fy, (z+y)+(q®T)(0),
where we set y = 3 ;<4< ¢k @ ug. Therefore, by translation of the variable,

S exp(2mi((g¢® By)(z +y) + > Fit (z+y) + (g2 T)(e))

z€GRH,(X;Z)
~ ¥ exp(ZW&(g@BA @+ L B @)+ D)(e ).
z€GRH,(X;Z)
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This proves the claim. Our next claim is that the right hand side of (2.1)
(which we temporarily denote by 7(X)) does not depend on the particular
choice of the 4-manifold X. Let Y be another smooth, oriented, simply-
connected 4-manifold bounded by M. It follows that the intersection forms
Bx and By induce the same linking form £j; on their common boundary M
(see (1.7)). According to lemma 1.4, (Hy(X;Z), Bx) and (H3(Y;Z), By) are
related by stabilization: we can assume that there exists an integer N such
that

(H:(Y3Z), By) = (Hy(X: Z), Bx) ® &;1,(Z, (£1)).

(By (£1), we mean the unique bilinear form on Z which sends (1,1) to
+1.) Suppose that we are given an isomorphism ¢ : (H2(X;Z), Bx) —
(Hy(Y';Z), By) which makes the following diagram commute:

Hy(X;Z) : (Y3 Z)
ladBX ladBy
Hy(X, M; Z) ey Hy(Y, M; Z)
X /
Hy(M;Z)

Choose 3; = (¢ Y)*a; € Hy(Y,M;Z), 1 < j < n. Let r be an inte-
ger such that r[L;] = 0 and r[L;] = 0. Pick uj,ur € Hz(X;Z) such that
ad Bx(u;) = ra; and ad Bx (ug) = rag. Then ad By (¢(u;)) = r(¢~')*a; and
ad By (¢(ux)) = r(¢~')*ax. Hence, by lemma 4.4,

Bxlg ) _ g, 5,

LML) — o Blolts) o))

r
From By (¢(u;), p(ur)) = Bx(uj, ur), we deduce that
aj - ag— - Br=0.

Thus the intersection matrices I'x = (- a)1<jk<n and I'y = (85 Br)1<jk<n
are equal. Set ¢ = lg ® ¢ and

Sr= 3 ew(milla® B+ RL6) + (@8 T)(e)
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Accordingly, we find:
Sy= > exp(2mi((q®By)(¢a(a) +ZF£ka (¢6(2)) + (40 Tx)(c)))

z€GRH,(X;Z)

= Z exp(ZWL( (¢@ Bx)( ‘|‘Z Fbakck +(qg®T'x)(c ))) = 5x.
z€GRH,(X;Z)

It follows that 7(X) = 7(Y). Next, assume that (Hx(Y;Z), By) = (H2(X;Z), Bx)&
(Z,(£1)). Then Hy(Y,M;Z) = Hy(X, M;Z) & Z. We choose:

Br = (ag,0) € Hy(X,M;Z)&Z, 1<k <n.

Then:
Sy = Sx - exp (:|:27Tq(g)).
9€G
Therefore:
r(Y) = |GG sy
1 1 Bx)+1
= |G -24(G, q) 7(5x) Sx - exp(:l:qu( ))
9€G
= 7(X).
Here we used the fact that by(Y) = b2(X) + 1, 0(By) = 0(Bx) £ 1 and the
definition of v((, ¢). This achieves the proof of theorem 4.1. O

4.3.2 Proof of Theorem 4.2
Consider the quadratic form @) = ¢ ® Bx + FbO;fq + .4+ Fbij‘Cn. It follows

from lemma 1.8 that
‘ )1 if Q(kerad by) = 0;
(G @ Ha(X;Z),Q)] = { 0 otherwise
where bg = b, @ By is the bilinear form associated to (). From lemmas 1.13

and 2.2, we deduce that |kerad bg| = |H'(M;G)|. Then by definition (1.8),
2

> exp(sz((q@BX )+ > Bt (@ )))

z€GRH>(X;Z) 1<k<n

_ { |G @ Hy(X;Z)||HY(M; Q)| if Q(kerad(b, ® Bx)) = 0;

0 otherwise.

The theorem now follows from lemma 1.8, the definition (4.4) for 7(M, L; G, q, ¢)
and the equality above. &
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4.3.3 Proof of Theorem 4.3
Set W = Hy(X;Z), g = Bx and gq = Bx ® idq. We identify Hy(X, M;Z)
with W*. From formula (4.4) and Theorem 4.2, we deduce that :

T(MvL;GJQ7 ) 2mi(¢ )(
L — 2mi(95,08T) G, sy GQW, ds Qg+ § F“kc
[H(M; G5 G H(CreW gy, (G

(4.6)
where (G, q) = (G, ¢s.). Next, by (1.7) and lemma 1.22, we equip g with a
Wu class w € W such that (7, Q) = —(Gy, ¢y.). We are now able to apply
the reciprocity formula (1.24), with the following rational Wu class for f ® ¢:

22'1)@1}1—22&@5%,
k=1

where &, € (ad fq)~'(&) is a lift of & (which exists because ¢ is a torsion
element) and aj, € (ad gq) " (ax) is a lift of oy (which exists because [Ly] is
a torsion element). We have':

WGy OW, s @ g+ 4oy FLT L) =

_ e%( o(f®g)— (fq®gq)(zﬁz)),y(v RGy f R by + 0y Ff’;[Lk])
= (T U9y (V @ T, f @ Q + 1, Ft a)-

A straightforward calculation yields:

(fQ ® gQ)('Z7 Z) = f('U7 ‘U)g(‘w, w) — A, (4'7)
with A = 4 fj falv,&)gq(w,ax) =4 > folée. &)gq(an, dx)

k=1 Ve -
-8 Y fal&, &)gqldw, ).

1<k<I<n
Using (1.11), we deduce from (4.7) that

e

G d70) VTN @-UeaQ)=a) —  (olo)g(ww))s(o) 5 A

b1

( gv¢gw) UU€4A
7TZ

( ) 'U'U A'

IThere should be hopefully no confusion between, on the one hand, the symmetric
bilinear forms Ly, L, on Gy = G and G4 = T respectively, and, on the other hand, the
components Lg, 1 < k < n, of the link L.
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I (3I’(Ef()Ie
9 ] bl 7 foul )( ) ) V ® ngp{ k

The remaining term, (¢y,, ® I')(¢) + $A mod 1, is equal to

1
Z qbfw(ck)ozk O + Z Lf(ck,cl)ak - Qy + gA mod 1

1<k<n 1<k<I<n
ST @su(&)ak-ar—galdn, )+ Y. falée &) 01— gqldn, a))

1<k<n 1<k<I<n ~
> fa(v,&)Pgu(ax)

1<k<n

= > O (8)Fr(Ly) + D> (& &)LK(Lk, L) — D &k(v)dg,w([ L))

1<k<n 1<k<I<n 1<k<n
E((I)fW@AL)(flr'wfn + Z [Lk fk ) mod 1.
1<k<n
The second equality follows from lemma 4.4 and the fact that fq(v, ék) =
£k(v) is an integer. The third equality follows from Q([Lk]) = —¢4.w([Lk])-

Finally, we observe that:

exp(2mi Y QL&) v(VOT,foQ+ Y F& )

1<k<n 1<k<n

=177 Y exp(2ri(BoQ) (a1, w (L), (L))

(z10.zs)ETS
The equality follows from the definition of 4 and the fact keradbsgg =
ker(ad f ® ad B) = 0 (f and @ are non-degenerate) and the definition of B.

This achieves the proof of Theorem 4.3. &
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Appendix
Reciprocity revisited

In this appendix, we discuss in more detail the comparison between the for-
mulas for 7(M; G, q). There are two formulas for 7(M; G, q), respectively
(2.6) and (2.7), which reflect two distinct viewpoints. According to the first
viewpoint (2.6), the definition of 7(M; G, q) requires 4-dimensional topologi-
cal information, namely the intersection form By : Hy(X;Z)x Hy(X;Z) — Z
and additionally, a quadratic form ¢ : G — Q/Z. According to the second
viewpoint (2.7), the definition of 7(M; G, q) requires 3-dimensional informa-
tion, namely the quadratic form @ : T' — Q/Z over the linking form £y,
and additionally, a symmetric bilinear form f : V x V — Z on a lattice
V. Furthermore, (G_p,,¢-Byw) = (1,Q) and (G, ¢y,) = (G,q). This
is expressed by the horizontal arrows in figure A; the definition of the cor-
respondence ¢ is defined and discussed in §1.3. In this sense, the forms

(Hy(X;Z), Bx) and (V, f) (resp. (T,Q) and (G, q)) play symmetric roles.

It is known that any non-degenerate symmetric bilinear form on a fi-
nite abelian group can be produced as the linking form of some closed
oriented connected 3-manifold [KK]. Therefore, there exists a closed ori-
ented connected 3-manifold M* such that (Ta+, Lar+) = (G, b,) where Ty is
Tors Hi(M*;Z) and Lass : Tagx X Tag» — Q/Z is the linking form. Thus ¢ is
a quadratic form over L+, which we denote ()ps+. Furthermore, there exists
a compact simply-connected oriented 4-manifold X* such that 0X* = M*
and (Hy(X*;Z), Bx«) = (V, f). In other words, the ‘additional data’ in (2.6)
and (2.7) (see figure A) has topological meaning when referred to M* and
X* respectively. In this fashion, M™* appears to be a “test” manifold for
the invariant 7(M; G, q) since 7(M; G, q) = 7(M; Ty, Qu+). Define a bi-

linear pairing (-,-) on closed oriented connected 3-manifolds equipped with

95
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Theorem 3.3
first viewpoint: Second viewpoint:
_ i v ,
4-manifold X 3-manifold M = 90X
lattice H,(X;2) _ finite abelian group TorsH,(M;2)
topolological data : o B  EEERIEREEE @ : o B  EEERIEREEE topolological data
BX: HX2)xHX2) —= Z Q: Tors H(M;2) —— Q/Z
finite abelian group G lattice V
additional data o e G @ : o e G additional data
q: G——=Q/Z f:VxV——=2Z

Figure A: Explanatory Diagram for 7(M; G, q).

quadratic forms over their linking forms, with values in C, by
<Z\47 M*> = T(M, TM*, QM*)

It is easily checked, using (2.4) and additivity of linking forms on connected
sums, that the pairing is indeed bilinear. It follows from Theorem 2.3 that
(M, M*) does not depend on the choice of Qas over Las. (So in fact, no extra
structure is required on the 3-manifold M.) Denoting by 65s the argument
modulo 8 of y(Tar, @ar), we have:

(M, M*) = eT0u0 T3 M),

Hence the bilinear pairing is not hermitian.

These observations generalize to the invariant 7(M, L; G, ¢, ¢) introduced
in Chapter 4. We also have two viewpoints, respectively (4.4) and (4.3).
According to both viewpoints, the definition of 7(M, L; G, ¢, ¢) requires cer-
tain choices: see figure B. The first construction (4.4) starts from the 4-
manifold X and ¥ = ¥, U...U X, C X where ¥,...,%, are mutually
disjoint 2-chains such that 0¥; = L;, 1 < 7 < n. This construction re-
quires the intersection form Bx : Hy(X;Z) x Hy(X;Z) — Z and an ele-
ment a = (ay,...,a,) € Ho( X, M;Z)" = (Hy(X;Z)*)" and additionally,
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a quadratic form ¢ : G — Q/Z and an element ¢ = (¢q,...,¢,) € G™.
The second construction (4.3) starts from the 3-manifold M and an oriented
framed link L = Ly U...L, C M (where we can view L;, 1 < j < n, as
l-cycles). This construction requires a quadratic form @ : 7" — Q/Z over
the linking form £j; and an element [L] = ([L41],...,[Ls]) € T" and addi-
tionally, a symmetric bilinear form f : V x V — Z on a lattice V' and an
element £ = (£1,...,&,) € (V*)". Furthermore, the two constructions are re-
lated in the sense that the triples (), T, [L]) and (G, g, ¢) are derived from(?)
(Hy(X;Z),—Bx,w,a) and (V, f, v, £) respectively (for a certain choice of Wu
classes v and w for f and Bx respectively). This is expressed by the hori-
zontal arrows in figure B. (See §1.3 for the definition of ¢.) In this sense, the
triples (Hy(X;Z), Bx,a) and (V, f,£) (resp. (T,Q,[K]) and (G, q,c)) play

symmetric roles.

Theorem 5.3
first viemviewpoim:
¥V A
4-manifold X, Zc X 3-manifold M=0X, Lc M
lattice H,(X;Z) finite abelian group Tors H,(M:2Z)
topolological data B: HXZxHXZ) — Z - Q: Tors H(M;2) —— Q/Z topolological data
a,,...0 ] HX2)* [L,},...[L,0 Tors H(M;Z)
finite abelian group G lattice V
additional data g:G——=Q/zZ @ f:VxV——=2 additional data
¢,-6 G Ev'"E-rD \'%d

Figure B: Explanatory Diagram for 7(M, L; G, ¢, c).

%in the sense of §4.1.2.
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