H Hodge theory, complex geometry, and representation theory
Green, Mark ; Griffiths, Phillip A. ; Kerr, Matt
2013
iv, 308 p. ; 26 cm
9781470410124
48086
théorie de Hodge ; géométrie complexe ; théorie des représentations ; théorème de Borel-Weil-Bott ; cohomologie de Dolbeault ; groupe de Mumford-Tate ; représentation de Hodge ; transformée de Penrose ; domaine de drapeaux ; domaine de Hodge ; Carayol
N° | Inventaire | Code barre | Localisation | |
---|---|---|---|---|
1 | 48086 | 1039778 | GALERIE |
Type de doc : M
Ville d'édition : Providence RI
Pays d'édition : us
Langue ouvrage : eng
Collection : CBMS regional conference series in mathematics
N° dans la collection : 118
ISSN Collection : 0160-7642
Bibliographie : Bibliogr. p. 299-302
Class. Math. 2000 : 14M15 ; 17B56 ; 22D10 ; 32G20 ; 32M10 ; 14D07 ; 14M17 ; 17B45 ; 20G99 ; 22E45 ; 22E46 ; 22F30 ; 32N10 ; 32L25 ; 32Q28 ; 53C30
Class. Library : QA564.G6335
N° LCCCN : 2013029739
Class. Dewey : 516.3/6
Lien SUDOC : https://www.sudoc.fr/176661875